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Abstract: This paper presents the novel method of mobile robot simultaneous localization and mapping (SLAM), 
which is implemented by using the Rao-Blackwellised particle filter (RBPF) for monocular vision-based 
autonomous robot in unknown indoor environment. The particle filter is combined with unscented Kalman filter 
(UKF) to extending the path posterior by sampling new poses that integrate the current observation. The 
landmark position estimation and update is implemented through the unscented transform (UT). Furthermore, 
the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem. 
Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks, which are structured with 
matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for 
multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-
Tree in the time cost of O(log2N). Experiments on the robot Pioneer3 in our real indoor environment show that 
our method is of high precision and stability.  
Keywords: mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, vision, Scale 
Invariant Feature Transform

1. Introduction

A key prerequisite for a truly autonomous robot is that it 
can simultaneously localize itself and accurately map its 
surroundings (Kortenkamp et al, 1998), which is known 
as Simultaneous Localization and Mapping (SLAM). 
Particle filters provide an attractive approach for 
updating distributions of data (Doucet, 1998). Early 
successes of particle filters can be found in the area of 
robot localization (Dellaert et al, 1999). Recently, particle 
filters have been at the core of solutions to higher 
dimensional robot problems such as SLAM, which, when 
phrased as a state estimation problem, involves a variable 
number of dimensions. Murphy adopted Rao-
Blackwellized particle filters (RBPF) ( Murphy, 2001) as 
an effective way of representing alternative hypotheses 
on robot paths and associated maps. Montemerlo et al. 
(Montemerlo & Thrun, 2003) extended this method to 
efficient landmark-based SLAM using Gaussian 
representations of the landmarks and were the first to 
successfully implement it on real robots.  
The difficulty of the SLAM depends on the robot’s 
environment, its sensors, and the representation of map. 
The environment could be relatively benign indoors with 
flat floors. But it could also be quite subversive such as 
aircraft and submarines. The most common sensors in use 
are sonar sensors, laser range finders and video cameras. 

Sonar readings are susceptible to high degrees of 
uncertainty especially due to angular and radial errors. 
Lasers are accurate while they are heavy, expensive. 
Sonar and lasers are primarily used for 2D map. On the 
other hand, cameras are light, cheap, and can provide 
abundant environmental information, but are difficult to 
work with. Popular choices for the map representation 
include grid-based (Schultz & Adams, 1998), topological 
(Choset & Nagatani, 2001) and feature based models 
(Chong & Kleeman, 1999). Grid-based models are easy to 
build and maintain while implies high data requirements 
and induces high computational costs. Topological maps 
usually have the advantage of being compact, and more 
tolerant to errors in the robot location. Feature based 
representations have been difficult to build while being 
significantly less complex. 
We primarily focus on investigating real-time, monocular 
vision based SLAM for indoor environments, and 
constructing 3D feature map from video data. Scale 
invariant features are extracted through Scale Invariant 
Feature Transform (SIFT) (Lowe, 2004), which are used to 
structure 3D landmarks because they are invariant to 
image scale, rotation and translation as well as partially 
invariant to illumination changes. We presents a fast and 
efficient algorithm for matching features in a KD-Tree in 
the time cost of O(log2N) (Moore, 1991). RBPF is used to 
estimate a posterior of the path of the robot, where each 



International Journal of Advanced Robotic Systems, Vol. 3, No. 3 (2006) 

232

particle has associated with it an entire map, in which 
each landmark is estimated and updated by the 
unscented transform (UT) (Merwe et al, 2000), and 
unscented Kalman filter (UKF) is used to sample new 
poses that integrate the current observation. Furthermore, 
the number of resampling steps is determined adaptively, 
which seriously reduces the particle depletion problem. 
All of these specialties can make data association in this 
paper more robust than other methods. Experiment 
results are compared with those of the EKF methods 
applied to the same robot in the same environment and 
indicate superior performance. 

2. Background 

Consider the case of a mobile robot moving through an 
unknown environment consisting of a set of landmarks .
The robot moves according to a known motion model 
p(st|st-1, ut), where st denotes the robot state at time t, and 
the control input ut carried out in the time interval [t-1, t].
As the robot moves around, it takes measurements of its 
environment. A measurement zt is related to the position 
of a landmark through observation model p(st|ut, , st-1).
The SLAM problem is that of simultaneously inferring 
the location of all landmarks and the path followed by the 
robot based on a set of measurements and inputs. Ideally, 
one would like to recover the posterior distribution
p(st, |zt, ut, nt), where the notation st denotes st,…st(and
similarly for other variables). In (Doucet et al., 2000) 
Doucet et al. provide an implementation of RBPF for 
SLAM:

1
( , | , , ) ( | , , ) ( | , , )Mt t t t t t t t t t t

nn
p s z u n p s z u n p s z nθ θ

=
= ∏     (1) 

This can be done efficiently, since the factorization 
decouples the SLAM problem into a path estimation 
problem and individual conditional landmark location 
problems, and the quantity p( n|st, zt, nt) can be computed 
analytically once st and zt are known. The posterior p(st|zt,
ut, nt) over the potential robot trajectories uses a particle 
filter in which an individual map is associated to each 
particle. Each map is constructed given the observations
zt and the trajectory st represented by the corresponding 
particle.
A successful instance of the RBPF SLAM is FastSLAM, 
which offers many improvements over the traditional 
EKF-based SLAM framework: it has excellent time 
complexity; it does not need to linearize the robot’s 
motion model; especially it can maintain several data 
association hypotheses. However, FastSLAM also has 
drawbacks: each particle has a different view of the map, 
integrating these views to obtain a single map is 
nontrivial, and more importantly, data association must 
be performed for each particle independently, which 
introduces a significant computational burden; FastSLAM 
is prone to diverge in regions where its measurements are 
not very informative, either due to high noise or the 
sparseness of landmarks. 

3. Novel Rao-Blackwellized Particle Filter for SLAM

RBPF calculates the posterior over robot paths p(st|zt, ut,
nt) by a particle filter. The remaining M posteriors over 
landmark locations p( n|st,nt, zt, ut) are calculated and 
updated with UKF. Each UKF conditioned on robot paths 
estimates a single landmark pose. Each particle is of the 
form St(i)={ st,(i), 1,t(i), 1,t(i),…, M,t(i), M,t(i)}, where (i)
indicates the index of the particle; st,(i) is its path estimate, 
and m,t(i) and m,t(i) are the mean and variance of the 
Gaussian representing the m-th landmark location. 
Together, all these quantities form the i-th particle St(i), of 
which there is a total of N in the posterior. Our RBPF 
update is performed in the following steps: 

Fig. 1. Moving the samples in the prior to regions of high 
likelihood is important if the likelihood lies in one of the 
tails of the prior. 

3.1. Sampling new poses using UKF
Here we need to calculate the posterior over robot paths
p(st|zt, ut, nt) approximated by a particle filter. Each 
particle in the filter represents one possible robot path st

from time 0 to time t. Since the map landmark estimates 
p( n|st, zt, nt) depend on the robot path, the particles 
sampling step is very important. However, most methods 
use the state transition prior p(st|st-1, ut) to draw particles. 
Because the state transition does not take into account the 
most recent observation zt, especially when the likelihood 
happens to lie in one of the tails of the prior distribution 
or if it is too narrow, as shown in Fig.1. If an insufficient 
number of particles are employed, there may be a lack of 
particles in the vicinity of the correct state, leading to 
divergence of the filter. This is known as the particles
depletion problem. 
In our methods, the i-th new pose st(i) is drawn from the 
posterior p(st|st-1,(i), ut, zt, nt), which takes the 
measurement zt into consideration, along with the 
landmark nt, and st-1,(i) is the path up to time t-1 of the i-th
particle. An effective approach to accomplish this is to 
use an EKF generated Gaussian approximation: 

1,( ) ( ) ( )( | , , , ) ~ ( ; , ), 1,2,...,t i t t t i i
t t t tp s s u z n N s s P i N− = (2)

EKF approximates the distribution through the first-order 
Taylor-series expansion of the nonlinear observation 
function zt=g( nt, st) around the mean st:

( , ) ~ ( , ) '( , )
tt t tt n t n s nt tz g s g s g sθ θ θ= + Δ          (3) 

The first-order mean and covariance used in the EKF is 
given by zt=g( nt, st), Pzt=g'( nt, st)T Pst g'( nt, st) which often 
introduces large errors. However, The unscented 

Prior Likelihood 
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transformation (UT) is an elegant way to accurately 
compute the mean and covariance up to the third order of 
the Taylor series expansion of g( nt, st) (Merwe  et al, 
2000). Let L be the dimension of st, the UT computes mean 
and covariance as follows: 
1) Deterministically generate 2L+1 sigma points Si={ i,Wi}:
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where  is a scaling parameter that controls the distance 
between the sigma points and the mean st,  is a positive 
scaling parameter that controls the higher order effects 
resulted from the non-linear function g,  is a parameter 
that controls the weighting of the 0-th sigma point =0,

=0 and =2 are the optimal values for the scalar case. 
( ,(L+ ) Pst)i is the i-th column of the matrix square root. 
Note that the 0-th sigma point’s weight is different for 
calculating mean and covariance. 
2) Propagate the sigma points through the nonlinear 
transformation:

( , ) 0,..,2
ti n iZ g i Lχθ= =                        (5) 

3) Compute the mean and covariance as follows: 
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Now we follow UKF algorithm to extend the path st,(i) by 
sampling the new poses st(i) from the posterior p(st|st-1,(i),
ut, zt, nt):
1) Calculate the sigma points according to Eq.(4): 
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2) Using motion model to predict: 
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3) Incorporating new observation zt, along with the 
landmark nt:
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4) Sampling new pose st(i) and extending the path st,(i):
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3.2. Updating the observed landmark estimate
In this step, we update the posterior over the landmark 
estimates represented by the mean n,t-1(i), and the 
covariance n,t-1(i). The updated values n,t(i) and n,t(i) are 

then added to the temporary particle set t along with the 
new sampling pose st(i). The update depends on whether 
or not a landmark n was observed at time t. For n nt, the 
posterior over the landmark remains unchanged. For the 
observed feature n = nt, the update is specified as follows: 

( ) ( ) ( )
, 1 , 1

,( ) ( ) 1,( ) 1 1

~ ( ; ( , ), ) ~ ( ; , )

( | , , ) ( | , , ) ( | , , )
t t t

i i i
t n t t n n t n tt t t t

t i t t i t i t t
n t n t t n

N z g s R N

p s n z p z s n p s n z
θ θ μ

θ η θ θ

− −

− − −

Σ

=

(11)
The probability p( nt|st-1,(i), zt-1, nt-1) at time t-1 is 
represented by a Gaussian with mean n,t-1(i), and the 
covariance n,t-1(i). For the new estimate at time t to also be 
Gaussian, we need generate Gaussian approximation for 
the perceptual model p(zt|st(i), nt, nt). Our methods also 
use UT to approximate the non-linear measurement 
function g( nt, st(i)):
1) Calculate the sigma points: 
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2) Using observation model to compute the mean and 
covariance of the observation as follows: 
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3) Under this approximation, the posterior for the location 
of landmark nt is indeed Gaussian. The new mean and 
covariance are obtained using the following update: 
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3.3. Selective resampling
Next, we resample from temporary particles set Št, then 
form the new particle set St. The necessity to resample 
arises from the fact that the particles in Št do not yet 
match the desired posterior. Resampling can avoid 
particles degeneracy. By weighing particles in Št, and 
resampling according to those weights, the resulting 
particle set indeed approximates the target distribution. 
To determine importance weight of each particle, it will 
prove useful to calculate the actual proposal distribution 
of the path particles in Št. Under the assumption that the 
set of path particles in St-1 is distributed according to p(st-

1|zt-1,ut-1,nt-1), path particles in Št are distributed as: 
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Target distribution p(st,(i)|zt,ut,nt) takes into account the 
measurement zt along with the correspondence nt. The 
importance weight of resampling process accounts for the 
difference of the target and the proposal distribution, 
which is given by the quotient of the target and the 
proposal distribution, applying Bayes rule and Markov 
assumption and omitting the irrelevant variables: 
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To calculate wt(i) in closed form, we employ the very same 
approximation used in the measurement update. In 
particular, the weight is given by 
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After the resampling, all particle weights are then reset to 
wt(i)=1/N. However, resampling can delete good samples 
from the sample set, in the worst case, the filter diverges. 
Accordingly, it is important to find a criterion when 
implementing a resampling step. Liu (Liu and Chen, 
1998) introduced the so-called number of particles Nt,eff 

=1/ N,i=1(wt(i))2 to estimate how well the current particle 
set represents the true posterior. Our approach 
determines whether or not a resampling should be 
carried out according to Nt,eff. We resample each time Nt,eff

drops below a given threshold which was set to 0.5N
where N is the number of particles. In our experiments 
we found that this technique drastically reduces the risk 
of replacing good particles, because the number of 
resampling operations is reduced and resampling 
operations are only performed when needed. 

4. Implementation Details for Monocular Vision 

4.1. SIFT Feature Extraction
The Scale Invariant Feature Transform (SIFT) was 
proposed in (Lowe, 2004) as a method of extracting and 
describing key-points, which are robustly invariant to 
common image transforms. The SIFT algorithm has four 
major stages: 1) Scale-space extrema detection. The first 
stage finds scale-space extrema located in Difference of 
Gaussians (DOG) function D(x,y, ), which can be 
computed from the difference of two nearby scaled 
images separated by a multiplicative factor k:

( , , ) ( ( , , ) ( , , )) ( , )
               ( , , ) ( , , )
D x y G x y k G x y I x y

L x y k L x y
σ σ σ

σ σ
= − ∗
= −

    (18) 

scale

Fig. 2. Maxima and minima are detected by comparing a 
pixel (marked with X) to its 26 neighbors in 3× 3 regions 
at the current and adjacent scales (marked with circles). 

Fig. 3. A key-point descriptor. 

(a)                                            (b) 
Fig. 4. Typical extracted SIFT features with their locations 
represented by ‘+’. The radius of the circle represents 
their scales: the 320×240 pixel test image taken at (a) 
1618mm; (b) 756mm; and the result is (a) 278 key-points; 
(b) 267 key-points. 

where L(x,y, ) is the scale space of an image, built by 
convolving the image I(x,y) with the Gaussian kernel 
G(x,y, ). 2) Key-point localization. The location and scale 
of each candidate point is determined and key-points are 
selected based on measures of stability(Fig. 2). 3) 
Orientation assignment. One or more orientations are 
assigned to each key-point based on local image 
gradients. For each image sample L(x,y) at this scale, the 
gradient magnitude m(x,y) and orientation (x,y) is 
computed using pixel differences :  

2 2

1

( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))

( , ) tan (( ( 1, ) ( 1, )) ( ( , 1) ( , 1)))

m x y L x y L x y L x y L x y

x y L x y L x y L x y L x yθ −

= + − − + + − −

= + − − + − −

(19)
4) Key-point descriptor. Typical key-point descriptors use 
16 orientation histograms aligned in a 4 × 4 grid. Each 
histogram has 8 orientation bins each created over a 
support window of 4 × 4 pixels (Fig. 3). The resulting 
feature vectors are 128 elements with a total support 
window of 16 × 16 scaled pixels. For a more detailed 
discussion see (Lowe, 2004).  The number of features 
generated is dependent on image size and content, as 
well as algorithm parameters. In this paper, we use the 
vectors with 128 elements as key-point descriptor. Fig. 4 
shows an example of SIFT feature extraction for a 
cluttered and occluded image of size 320×240 pixels. 

4.2. KD-Tree based Feature Matching
This section describes KD-tree algorithm for determining 
the matching SIFT features pairs of successive images 
captured at relatively close positions along the robot’s 
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path by a monocular vision system mounted on the robot. 
Every time the CCD camera vision system is triggered, it 
captures the consecutive digital images of pixels and after 
SIFT feature extracting, generates SIFT feature match 
pairs in adjacent images through KD-tree based feature 
matching algorithm. The match pairs are used for the 
landmarks’ 3D structure. Given a SIFT key-points set E,
and a target key-point vector d , then a nearest neighbor 
of d, d is defined as: 

1 2
2

1

" ,| ' | | " |

| ' | ( ( ) )k
i ii

d E d d d d

d d d d'
=

∀ ∈ ⇔ ≤ ⇔

⇔ = ⇔
              (20) 

where di is the i-th component of d. The KD-tree based 
SIFT feature matching algorithm is described as 
following: Constructing a KD-tree. The pivot-choosing 
procedure chooses a good vector from E to use as the 
tree’s root, which is desirable for the tree to be reasonably 
balanced, and also for the shapes of the hyper-regions 
corresponding to leaf nodes to be fairly equally 
proportioned. Our pivoting strategy is to pick the 
splitting dimension split firstly: for each i dimension, 
compute the maximal value maxi and the minimal value 
mini from the i-th dimension element of every key-point 
in set E, and choose the according dimension which has 
the most spread maxi-mini, its median value medi.
Secondly, we pick the key-point provided with the 
minimal value between the split-th dimension and medi as 
tree’s root. 
After constructing the KD-tree, the nearest neighbor 
search algorithm which is depth first is used to search the 
child node which contains the target. The space occupied 
by set E is represented by a hyper-rectangle composed of 
two arrays: one of its minimum coordinates, the other of 
its maximum coordinates. To cut the hyper-rectangle, so 
that one of its edges is moved closer to its centre, the 
appropriate array component is altered. To check to see if 
a hyper-rectangle hr intersects with a hyper-sphere radius 
r centered a point target, we find the point p in hr which is 
closest to target. Write hrimin as the minimum extreme of hr
in the i-th dimension and hrimax as the maximum extreme 
pi, the i-th component of this closest point is computed 
thus:    

         if 

       if    

         if 

min min
i i i

min max
i i i i i

max max
i i i

hr target hr

p target hr target hr

hr target hr

≤

= < <

≥

    (21) 

The object intersect only if the distance between p and 
target is less than or equal to r.

Fig. 5. The SIFT feature matches based on KD-tree, and 
the matching pairs are represented by red “·”. 
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Fig. 6. The key-point descriptor histograms of the 
matching key-point at different scale and direction. 

We implement the SIFT key-points matching algorithm 
based on nearest neighbor algorithm in a KD-tree, and 
the distance of the key-points is represented using the 
Euclidean distance between their according 128 
dimensional descriptor vector. The basic process for 
matching is as follows: A KD-tree is constructed using all 
key-points of the image It. For each key-point kp in the 
next image It+1, finding the two most nearest neighbors kp1

and kp2 based on nearest neighbor algorithm in a KD-tree. 
As proved in our experiment, if |kp1 kp|/|kp2 kp| is
bigger, then the matching quality between kp and kp1 is 
much higher, otherwise the matching quality is lower. So 
we can use the following equation to judge the matching 
for two key-points: 

1 2| | | |kp kp kp kp λ⇔ ⇔ <                  (22) 
where is constant, and 0< <1 (in this paper is 
evaluated as 0.7), if this equation is satisfied, then the 
matching is successful, and simultaneously eliminates the 
false matching.  Fig. 5 shows an example of SIFT feature 
matching, and the matched accurate rate is higher than 
80%. Fig. 6 shows the key-point descriptor histograms of 
one matching pair at different scale and direction, which 
proves the robust matching algorithm. 
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Fig. 7. Two viewpoints geometry and the epipolar 
constraint. 
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4.3. 3D Structure
After the SIFT feature matching, we obtain the 2D SIFT 
image feature matching pairs used to structure the 3D 
spatial landmarks, which are in a single world model. As 
seen from Fig. 7, According to the epipolar constraint, all 
the entities P, O1, O2, p1, p2, e1, e2, b should be coplanar. 
Through epipolar constraint, the matches with large error 
are eliminated. Let f be the focus of the CCD camera. The 
relationship between a 3D point P(Xw,Yw,Zw) and the 
image coordinates p(u,v) where it is projected is given by 
the pinhole camera model (Ma & Zhang, 1998): 

0

0

0 0 R T0 0 M
0 11 0 0 1 0 1 1

w w
x

w w
Tc y

w w

X Xuu Y YZ v v Z Z

α
α= =      (22) 

where robot motion provides extrinsic camera rotations R 
and translations T for each image. Offline calibration  
yields the camera’s intrinsic parameters x, y, u0, v0. For 
any pair of matching points p1(u1,v1,1) and p2(u2,v2,1) 
corresponding to a 3D point P(Xw,Yw,Zw), using the 
pinhole camera model: 

[ ] [ ] [ ] [ ]1 1 1 2 2 21 M 1 , 1 M 1T T T T
c w w w c w w wz u v X Y Z z u v X Y Z= =

            (23) 
The solution of three unknown variants Xw, Yw and Zw can 
be obtained through the least square method.

5. Experimental Results and Discussion 

The experiments are performed on a Pioneer 3-DX mobile 
robot incorporating an 800 MHz Intel Pentium processor 
as shown in Fig. 8(a). Motor control is performed on the 
on-board computer, while a 2.6GHz PC connected to the 
robot by a wireless link provides the main processing 
power for vision processing and the SLAM software. A 
monocular color CCD camera mounted at the front of the 
robot. The test environment is a robot laboratory with 
limited space as shown in Fig. 8(b). 

   (a)

                          (b) 
Fig. 8. (a) Pioneer 3  robot ;(b) experiment enviroment. 

(a)                        (b)                        (c)

(d)                         (e)                        (f) 

 (g)                        (h)                         (i) 
Fig. 9. Frames of an image sequence with SIFT features 
marked: (a) 2th frame; (b) 9th frame; (c) 19th frame; (d) 
70th frame; (e) 79th frame; (f) 100th frame; (g) 150th 
frame; (h) 163th frame; (i) 172th frame. 

Fig. 10. Bird’s-eye view of the SIFT landmarks in the map. 
the dashed line indicates the estimated robot path and the 
solid line indicates the real robot path. 
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(a)

(b)

(c)
Fig. 11. The 3D SIFT landmark database map viewed 
from different angles. Each landmark has appeared 
consistently in every view: (a) from top; (b) from left; (c) 
from right. 

The images are captured and processed, the map is kept 
and updated on the fly while the robot is moving around. 
The robot goes around in the laboratory for one loop and 
to come back. Fig. 9 shows some frames of the 320× 240 
image sequence (189 frames in total) captured while the 

robot is moving around. A total of 4068 SIFT landmarks 
with 3D positions are gathered in the map. The runtime 
of our RBPF SLAM algorithm with different numbers 
landmarks is shown in Fig. 10. Other performance of our 
SLAM algorithm with different numbers of particles and 
landmarks is also shown in Fig. 12. Fig. 10 shows the 
bird’s-eye view of all these landmarks. Fig. 11 shows 
three views of the 3D SIFT landmark map from different 
angles. Finally, we compare our method with traditional 
EKF method, and our method shows superior 
performance as shown in Fig. 13.  

(a)                                            (b) 

(c)                                           (d) 

Fig. 12. Performance of our RBPF SLAM algorithm: (a) 
robot position error and (b) landmark error with different 
numbers of particles; (c) runtime and (d) memory 
requirement with different numbers of landmarks.  

(a)                                           (b) 

Fig. 13. Comparison of our RBPF SLAM algorithm and 
EKF for (a) robot position error and (b) memory 
requirement.

6. Conclusion

Novel RBPF is presented to implement monocular vision-
based mobile robot SLAM in indoor environment. The 
particle filter is combined with UKF to sampling new 
poses integrating the current observation. The landmark 
position estimation and update is implemented through 
the UT and EKF respectively. For solving the particle 
depletion problem, the number of resampling steps is 
selected adaptively. Single camera tracks the 3D natural 
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point landmarks, which are structured with matching  
feature pairs extracted through SIFT. The matching for 
highly distinctive SIFT features descripted with multi-
dimension vector is implemented with a KD-Tree in the 
time cost of O(log2N). Experiment results show superior 
performance for  our method. 
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