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Abstract We have developed a system that uses aerial
imagery for improving unmanned ground vehicle
navigation capabilities. The current article focuses on the
viability of using heterogeneous computing architecture
for improving system performance in terms of energy
consumption and area analysed per second.
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1. Introduction

The objective of our research is to provide a long-range
path planning solution for an off-road unmanned ground
vehicle (UGV) by introducing collaboration capabilities
between the UGV and an unmanned aerial vehicle
(UAV). One of the key issues in off-road UGV long-term
path planning is the availability of detailed and up to
date maps. While there is no shortage of mobile path
planning devices that rely on existing road maps, they
will be rendered useless in crisis situations that introduce
a significant amount of roadblocks over a wide area such
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as earthquakes, wildfires, hurricanes or military conflicts.
In addition, the availability of detailed off-road maps
remains limited due to the changing nature of the
environment. Floods, fallen trees or man-made blockades
can significantly alter the accessibility of a given terrain,
forcing the UGV to rely solely on local navigation
capabilities.

We have developed a system that can generate maps
from aerial imagery and use them for path planning. The
system consists of a classifier, a cost map generator and a
path planner; it relies on the availability of overhead
imagery and on the environment labelling capabilities of
the UGV. We utilize the prior knowledge gathered by the
UGV for training a terrain classifier, which is then used
on the overhead imagery for feature extraction. The
produced feature vectors are used for cost map
generation and path planning (Figure 1). As the ground
vehicle continues exploration of the terrain and gathers
fresh data about the environment we continue training
the classifier to accommodate the gathered data and use it
for updating the path to target objective.
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Figure 1. Prior knowledge is used to train an aerial image classifier. The classifier will then be used for large overhead image processing

and its output is used for cost map generation and path planning.

The aerial image classification step is computationally
intensive, requiring a high performance computer to run
for extended periods at maximum power consumption
levels. For a battery powered UGV energy efficiency is an
important factor [1] and supporting a high performance
PC can severely limit its mission capability. To reduce the
energy consumption of our system we turned to
heterogeneous computing platforms, namely OpenCL
(Open Computing Language).

The heterogeneous computing platform supports two
programming paradigms: task parallel algorithms and
data parallel algorithms. The data parallel approach relies
on finding and exploiting parallelism within a function,
while the task parallel approach executes multiple
instances of the function on multiple inputs. Previous
studies [2][3] have focused on data parallel algorithms,
but we also explored the task parallel algorithm.

2. The System

To classify a large overhead image we divide it into
smaller patterns with a size of 29x29 pixels; for better
output resolution we use overlapping patterns. As the
UGV navigates through terrain it will gather explicit
knowledge about some of these patterns, which are used
to compose a training set. The training set will be used
to teach the classifier, which will then be used to
extrapolate the gathered knowledge to uncategorized
patterns.

Our classifier inputs are 29x29 pixel patterns and the
outputs are feature vectors; each element in a feature
vector represents the likelihood that a corresponding
feature is present in the input pattern. The classifier is
trained to detect explicit features (houses, roads, trees,
etc.) in input patterns; it can be trained to detect all the
specified features in the input pattern or to categorize just
one pixel of the input pattern [4]. In the first case the
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output vector elements are independent, for example
there can be a house, road and a tree in an input pattern.
In the second case the elements are dependent; the
specific pixel can only belong to one category be it tree,
road or a house.

Our proposed
convolutional

orthophoto
artificial

classifier is a deep
neural network; it is a
modification of the one used by LeCun et al. [5] for
handwritten digit classification, that was later simplified
by Simard et al. [6]. The convolutional neural networks
are especially suitable for image processing because they
utilize a key property of images - nearby pixels are more

strongly correlated than distant pixels [7].

The network structure [8, 9] (Figure 2) is optimized to
detect local features on a small subregion of an input
pattern and then combine them in the later stages of
processing to detect higher order features. Convolutional
neural networks are invariant to shift, rotation and to
some extent scale transformations (due to weight sharing
and subsampling) [7] and to colour intensity values [5]. In
addition, because of the shared weights, the variable
space of the convolutional neural network is smaller than
that of a fully connected network; it requires fewer
samples to train the network.

The reference convolutional neural network that we have
included in all our experiments consists of five layers
(Figure 2): the input layer contains three or four 29x29
neuron feature maps — one per input pattern colour
channel. The second layer contains six 13x13 neuron
feature maps, which are connected to the previous layer
using 5x5 neuron kernels. The third layer contains 50 5x5
neuron feature maps which are again connected to the
second layer using 5x5 kernels. The fourth layer is a linear
classifier which contains 100 neurons and the final layer
contains one neuron per feature category.
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Figure 2. The classifier setup

The feature vectors produced by the classifier for each
pattern are used for cost map generation. Before the cost
is calculated we convert the feature vectors into
probability vectors, where each vector element represents
the likelihood that a corresponding feature is present in
an input pattern. The classifier outputs are trained to be
1.0 when a feature is present in the input pattern and -1.0
when it is not. The network outputs, however, are rarely
1.0 or -1.0, usually they are somewhere in the range of -
1.7159 to 1.7159 (constrained by the chosen sigmoid
function). To decide if the feature is present or not
depending on the network output we need a threshold, a
decision boundary, i.e., if the network output is above the
boundary we consider the corresponding feature to be
present. To create the probability vector we map the
classifier outputs so that -1 equals 0% probability, the
threshold equals 50% probability and +1 equals 100%
probability (Figure 3).

-1.716 -1.0 Threshold | 1.0 1.716
ANN Output
-
0.0 0.5 1.0 Probability

Figure 3. Mapping a classifier output to probability

The algorithm that we use to find a decision boundary
for each classifier output above, for which we assume
the corresponding feature is present in the input
pattern, is best described graphically. First we evaluate
all the patterns in the training set and plot two graphs
for each classifier output - one graph shows the
probability density function of the classifier output
when a corresponding feature is known to be present in
the input pattern and the other shows the probability
density function of the classifier output when the
feature is known not to be present (solid lines on Figure
4). In addition we plot the cumulative and reverse
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cumulative versions of the density functions (dashed
lines on Figure 4) and use the crossing point of those
cumulative density functions as the output threshold or
decision boundary.
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Figure 4. Finding the decision boundary for a single classifier
output.

For cost map generation we assign a weight to each
feature class such that zero corresponds to unknown
terrain, negative weights are assigned to easily passable
terrains (roads, grass) and positive weights are assigned
to impassable terrains such as buildings. The transit cost
of a pattern is a dot product between the pattern feature
vector and the weight vector that is offset by a constant
that is equal to the cost of unknown terrain:

cost=0O-W + Cunknown,

where

O is the probability vector,

W is the cost vector,

Cunknown is the cost of unknown terrain.

When our classifier can’t detect any features in the input
pattern or the probability of features is very low, the
transit cost will be equal or near equal to the cost of
unknown terrain. When we detect only easily traversable
features in the input pattern (roads, grass) the cost will be
lower than the cost of unknown terrain. When only
impassable features are detected (houses, trees) the cost
will be higher than the cost of unknown terrain. In the
case where both houses and roads are detected the cost
value depends on the chosen weight values (Figure 5).

Figure 5. A sample image of suburban terrain (left) and its cost
map (right). Dark colours on the cost map correspond to easily
traversable areas (roads) and light colours are obstacles (buildings)
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3. Heterogeneous Computing

Heterogeneous computing addresses the performance
limitations of single threaded applications by making use
of a variety of different computing units. The last 40 years
of steady processor and compiler development has
focused almost exclusively on serial workloads, giving
software developers a “free ride”; a program written 30
years ago has
performance boosts from increasing clock frequencies
and improved processor architectures. During the last
decade the development of serial workloads has hit a set
of walls; namely a power wall, a memory wall and an
instruction level parallelism wall [10]. It is no longer

received a continuous stream of

reasonable to expect the serial computing workloads that
are prohibitively slow today to be exponentially faster in
five years time.

Modern processors make use of a host of techniques such
as pipelining, speculative execution and superscalar
execution that look for instruction level parallelism in
order to increase single threaded workload performance.
In modern x86 general-purpose processors more die
space is dedicated to scheduling of an instruction than to
executing the instruction, therefore more power is spent
on scheduling said instruction than on executing it. The
solution is good for executing serial workloads but
suboptimal for applications where a single function needs
to be executed on a massively parallel scale - much more
computing power can be extracted from the same amount
of silicon when optimizing for parallel workloads.

The last decade has seen the emergence of affordable
hardware that is dedicated to parallel processing and is
driven by the thriving computer gaming market. Initially
the relatively simple geometric calculations needed by
computer graphics were carried out by fixed function
hardware, but the need for better graphics has led to the
introduction of programmable hardware. Continuous
competitive pressure to produce faster graphics hardware
has led to unifying the different programmable steps in a
fixed function pipeline into general purpose processing
units that can emulate the whole graphics pipeline and
do a lot more.

The graphics processing units (GPUs) are optimized for
solving massively parallel mathematical problems and as
such they dedicate most of the die area to computational
units rather than instruction schedulers. Instead of using
high clock rates, which are exponentially linked to power
draw, they make use of larger dies that can fit more
computational units. Instead of using large on die caches
they rely on higher memory bandwidth. Modern GPUs
support thousands of simple processors that are
optimized for executing a function in a parallel and
power efficient manner.
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Heterogeneous computing emphasizes taking advantage
of the different computing units found in a device. For
our system it is better to make use of the fixed function
texture units that are found in GPUs for parsing the
orthonormalized input the parallel
computing capabilities of GPUs for training and
executing the classifier and use the CPUs for a single
threaded path planning task. We found evaluation of a
large overhead image, consisting of hundreds of
thousands, if not millions, of patterns, to be especially
suitable for GPUs.

image, utilize

4. Implementation Details

There are multiple application programming interfaces
(APIs) available for utilizing the computing resources
provided by GPUs and parallel computing architectures
in general, such as nVidia CUDA, AMD Stream and
Microsoft DirectCompute. We chose to use vendor-
independent OpenCL, which is supported by all major
GPU and CPU vendors.

An important drawback of using parallel architectures is
that they cannot be used to execute existing application
codes. To utilize the OpenCL infrastructure a separate
application has to be written and the performance critical
parts of the application have to be gathered into special
functions called “kernels” that are written in a fork of C99
programming language. In order to reap performance
benefits the kernels must be aware of multiple limitations
imposed by hardware such as count of registers per thread,
size of private memory, shared memory, constant memory
and global memory, memory access patterns, number of
processing units per group, etc
programming models and the need to micromanage every

Unconventional

aspect of the kernel execution makes the testing and
optimization process very slow and time-consuming,
prohibiting wider use of heterogeneous platforms.

The computing capacity provided by OpenCL can be
utilized in two distinct ways: task parallel algorithms and
data parallel algorithms.

1. The task parallel algorithms will execute multiple
serial workloads in parallel. For example, we can run
multiple instances of our classifier to evaluate a large
set of inputs at once. Every processor in the GPU will
then execute a classifier with a different set of inputs.

2. The data parallel algorithms break the complex
problem into simpler pieces that can be executed in a
parallel manner. For example, we can break our
classifier into layers, each containing a set of neurons
that are connected to neurons in the previous layer.
For the data parallel approach we can execute each
layer in a data parallel manner by dividing the
workload between processors (the output of each
neuron could be calculated on a separate processor).
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For comparison we implemented our classifier using both
approaches. To reduce memory copies from the host
memory to the OpenCL device memory and to reduce the
device memory usage we loaded the whole overhead
image into the device memory before executing kernels.
The extraction of relevant patterns from overhead
imagery and the initialization of the classifier input layer
is done by kernels using fixed function texture processing
hardware. In addition, we pre-allocated a device side
memory buffer large enough to contain classifier outputs
for all the patterns in a batch - effectively eliminating the
host-to-device and device-to-host memory copying
bottlenecks for large batches (10000+ patterns).

The data parallel classifier algorithm requires complete
rethinking of how the classifier is evaluated; we chose to
implement it using five steps. We used 29x29=841 threads
to initialize the input layer of the classifier. Each thread is
responsible for extracting a single pixel from the input
pattern and copying the colour channel values to
designated memory buffers.

The first hidden layer of our classifier has 13x13x6=1014
neurons and each neuron is connected to all three
previous layer feature maps using 25 weights (5x5
convolution kernel + 1 bias connection). Theoretically it
would be efficient to dedicate 1014x3x26=79092 threads to
calculating all the weight connections of every neuron in
parallel and to use parallel reducing steps to evaluate
neuron outputs, but the semi-random nature of how
convolutional layer neurons are connected to previous
layers would destroy coalesced memory access and kill
the performance of the GPU. We found that it is better to
use just 1014 threads (one per neuron) on the
convolutional layer both on the CPU and the GPU and
sum the connections with a simple FOR loop. The same
limitations affect the second convolutional layer, so we
dispatch 5x5x50=1250 threads to evaluate the layer.

The last two layers of our classifier are fully connected
layers, meaning that each neuron in a given layer is
connected to all the neurons in the previous layer with a
unique (non shared) weight. The third hidden layer has
100 neurons that all are connected to 1250 neurons on the
second convolutional layer. In order to evaluate the layer
we dispatch 100 groups of 512 threads and each group is
responsible for evaluating a neuron in the layer. For each
neuron we need to calculate the dot product of the
previous layer output vector and weight vector - both
have a length of 1250 (excluding bias) and reside in the
global memory - using 512 threads. We chose to use 512
threads as it means that each thread must only fetch three
neuron outputs and three weights from the slow global
memory and store the dot products of the three element
vectors in the fast shared memory buffer. The 512
elements in the shared memory are then reduced to single
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values using two additional steps and the network
outputs are calculated.

In comparison to the data parallel algorithm the task
parallel algorithm is a straightforward serial algorithm
that uses a single execution thread. The programming of
the task parallel algorithm is very reminiscent of
embedded programming - there are lots of hardware
limitations that have to be avoided but coding is
straightforward. When compared to our reference
implementation of the classifier (written in C#), the
OpenCL code is very low level and rigid - the specific
classifier configuration (how many layers, count of
neurons per layer, etc.) needs to be defined at the
compile time, all buffers need to be preallocated and all
relations between neurons and weights have to be
hardcoded.

5. Experiences

The primary performance bottleneck in our application is
the classifier followed by the path planner; classification
of a large overhead image is particularly slow. There are
two usage scenarios for the classifier:

1. For training we feed training patterns into the
classifier one by one, propagate the neural network
and compare the classifier output against a known
value to find the output error. The output error is
then back propagated through the network and used
for adjusting the network weights.

2. For path planning we need to re-evaluate overhead
imagery and to generate an updated path to target
objective.

Since the training is done one pattern at a time we
need a method that can process a single pattern in
minimal time. From the comparison of single pattern
evaluation times (Table 1) we can see that the fastest
algorithm is the reference implementation written in
high level language, mostly because it does not include
data transfers from the host memory to the OpenCL
device memory and back. The data transfers can be
eliminated when both evaluation and training is done
on the device, but unfortunately we don’t have an
OpenCL optimized training algorithm available to
directly compare the OpenCL learning cycle against a
reference implementation learning cycle. We do,
however, have a suboptimal data parallel OpenCL
solution that includes both evaluation and training
steps and from there we can see that training step is
about 2.2 times slower than the evaluation step in the
data parallel kernel. Given that our peak data parallel
kernel execution rate on a single GPU device is about
12000 patterns/s we should be able to achieve a
learning rate of about 5500 patterns/s, which is about
7x faster than CPU reference implementation. The
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predicted learning rate is comparable to what others
have achieved [2, 3].

System configuration Latency [ms]
Dual GTX 285 with data parallel kernel 20.3

Dual GTX 285 with task parallel kernel 211

Dual GTX 570 with data parallel kernel 3.4

Dual GTX 570 with task parallel kernel 51

i7-920 CPU with data parallel kernel 12

i7-920 CPU with task parallel kernel 3.7

i7-920 CPU with reference implementation 1.3

Table 1. Time it takes to evaluate a single input pattern using
different methods and architectures.

An overhead image that covers one square kilometre of
terrain with a resolution of 0.5m/pixel has a size of
2000x2000 pixels. To generate a cost map that has an
equal resolution we need to analyse nearly four million
overlapping patterns. For classification of the image the
task parallel approach is preferred as it has the highest
throughput (Figure 6). The high throughput of the task
parallel kernel can be attributed to memory access
efficiency - when there are enough parallel threads
scheduled for a GPU processing unit the memory
latencies will be effectively hidden. If evaluation of a
pattern on a processing unit is blocked by memory access,
the processing unit moves on with the evaluation of other
patterns and resumes the evaluation of the pattern later,
when the memory operation is completed.

For evaluating the four million patterns on an i7-920 CPU
with reference classifier implementation that had an
evaluation rate of about 800 patterns per second we
needed 5000 seconds. Given that the max power
consumption of an i7-920 processor is 130W and our
reference implementation pushes all cores to nearly 100%
usage, it takes 650k] of energy to evaluate the image. The
max throughput of a dual GTX570 GPUs is 90600 patterns
per second, so we only need 44 seconds to evaluate the
same image. Even though the two GPUs consume up to
440W, it only takes 19.3k] to evaluate the image. By
implementing the classifier of the GPU we have gained
over 100x pattern throughput and over 30x reduced
power consumption. The power gains are even more
significant if we include the power consumption of the
whole system.

It must be noted, however, that for path planning we
don’t need a cost map that has a resolution identical to
the overhead image resolution. In our experience it is
sufficient when both the and vertical
resolution of the cost map is 3 to 10x smaller than the
input image. By reducing the amount of patterns to be
evaluated in a batch by 9 to 100x, the evaluation time of
the batch reduces proportionally. We do, however, need
to evaluate more than one square kilometre during a

horizontal

mission and we plan to re-evaluate the overhead imagery
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as fresh images and training data becomes available,
bringing the total amount of patterns to be evaluated
during a mission back to millions.

100000 g G TXS70 with data parallel kernel

90000~ 4 2xGTX570 with task parallel kernel
80000 2xGTX285 with data parallel kernel
=d=2xGTX285 with task parallel kernel
70000 _p—[7.920 CPU with data parallel kernel
60000 17-920 CPU with task parallel kernel
—17-920 CPU reference implementation

50000

Patterns/s

40000

30000

20000

10000

0 — >
1 10 100 1000 10000 100000 1000000
Patterns

Figure 6. Throughput of the classifier using different methods
and architectures.

The OpenCL solution is 10x faster than our highly
optimized reference solution using the same hardware
(Figure 6), largely because the OpenCL data structures
are explicitly laid out, avoiding indirect object field
accessors in favour of direct array access, reducing
memory accesses and improving cache efficiency. In
addition, the OpenCL solution avoids safety features such
as memory bounds checks. The drawback is reduced
flexibility; the OpenCL classifier configuration has to be
specified at the compile time, making it difficult to find
the best network configuration for a task.

6. Summary and Future Work

The two advantages of using a heterogeneous computing
platform are dramatically improved performance and
reduced energy requirements. By running the slowest
part of our system - classification of a large overhead
image - on GPUs we gained over 100x performance in
terms of patterns evaluated per second and reduced
energy requirement of the system by more than 30x when
compared to CPU implementation. We found the task
parallel programming approach to be more than 3x more
efficient than the data parallel approach when processing
large datasets.
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