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EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS FOR
FRACTIONAL ORDER MIXED INTEGRODIFFERENTIAL
EQUATIONS WITH NONLOCAL CONDITIONS

ZHENYU Guo! AND MIN Liu
(Received June, 2011)

Abstract. A fractional order mixed integrodifferential equation is studied in
this article, and some sufficient conditions for existence and uniqueness of mild
solutions for the equation is established by Banach fixed point theorem and
Kransnoseslkii fixed point theorems, respectively.

1. Introduction and preliminaries

This article is concerned with the existence and uniqueness of mild solution of
the following fractional order differential equation with nonlocal condition:

Diz(t) + Az(t) = f(t,:c(t),/o g(t,s)x(s)ds,/o h(t,s)x(s)ds), te[0,77],
z(0) + k(x) = =0,

(1.1)
where 0 < ¢ < 1,7 > 0, and —A generates analytic compact semigroup {S(¢)}i>0
of uniformly bounded linear operators on a Banach space X with norm || - ||, that

is, there exist M > 1 such that ||S(¢)|| < M, and without loss of generality, assume
0 € p(A). f is a continuous mapping defined on [0,7] x X2 and k is defined on
C([0,T], Xy), where X, = D(A%), for 0 < a < 1, the domain of the fractional
power of A. g € C(D x X4, Xa),h € C(Dy x Xq,Xy), where D = {(t,s) € R? :
0<s<t<T} Do=[0,T]x[0,T].

For the sake of the shortness let

Gx(t):/o g(t, s)z(s)ds, Hx(t):/o h(t,s)z(s)ds (1.2)

and

t T

G* = sup / g(t,s)ds < o0, H* = sup / h(t,s)ds < oo. (1.3)

t€l0, 7] J0 te[0, 7] J0

Recently, fractional differential equations have been of great interest. For exam-
ple, Li[6] discussed the existence and uniqueness of mild solution for

dix(t)

dte

= —Ax(t) + f(t,z(t),Gz(t)), te][0,T],
z(0) + g(z) = zo.

(1.4)
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Li and Guérékata|[7] studied mild solutions of the fractional integrodifferential equa-
tions as follows

T2+ Aalt) = f(t.2(0) + /0a<tfs>g<s,x<s>>da te0.7), «(0)=wo.

dtq
(1.5)

For detailed discussion on this topic, refer to the monographs of Kilbas et al.[4],
Miller and Ross [8], Pazy [9], Podlubny [10], Smart [11], and the papers by Anguraj
et al.[1], Benchohra et al.[2], Guo and Liu [3], Lakshmikantham et al.[5] and the
references therein.

Applying Banach fixed point theorem and Krasnoselskii fixed point theorem, we
obtain a result of existence and uniqueness of mild solutions for equation (1.1).

The following notations, definitions, and preliminary facts will be used through-
out this paper.

Let C,, denote the Banach space C([0,T], X, ) endowed with the sup norm given
by

|z]|oo == sup ||z|la; =€ Ca. (1.6)
t€l0,T]
Lemma 1.1[9] (1) X, = D(A) is a Banach space with the norm ||z||o := ||4A%z||
for x € D(A®).
(2) S(t): X — X, for each t > 0 and a > 0.
(3) For each u € D(A%) and t > 0, S(t)A%u = A*S(¢t)u.
(4) For each t > 0, A*S(t) are bounded on X and there exist M, > 0 such that

A4S @) < Mat™™. (L.7)

Definition 1.2 A continuous function z : [0,7] — X is called a mild solution of
(1.1) it

L ¢ —g)a1 —3s)fl(s,xz(s (s 2(s))ds
r<q>/o“ V1718 (t=5)f (5, 2(s), Ga(s), Ha(s))ds (1.8)

for ¢ € [0,T7.

Theorem 1.3(Krasnoselskii fixed point theorem,[11]) Let D be a closed convex
and nonempty subset of a Banach space X, and A, B be two operators such that

(i) Ax + By € D whenever x,y € D,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then there exists z € D such that z = Az 4+ Bz.

Now list the following hypotheses for convenience.

(H1) f:[0,T)x X2 — X is continuous and there exists a function m(-) : [0,7] —
R* such that

If(t, z,y,2)|]| <m(t), Ve,y,z € Cy, (1.9)

and .
/ (t— )" *m(s)ds < M,, < oo, tel0,T]. (1.10)
0
(H2) there exists a function {(-) : [0,7] — R* such that

1 (1,91, 20) = f(E 22, 40, 20)|| < U(E) max{|[z1 = 22l 91 = Yallas (21 = 22[la

V$17y1, 21,%2,Y2,22 € COM
(1.11)
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and .
/ (t —s)1"17(s)ds < M; < 00, t€][0,T]. (1.12)
(H3) function k :OC’Q — X, is continuous and there exists b > 0 such that
[k(z) = k(W)]la < bllz = Ylloos Yo,y € Ca (1.13)

2. Existence and Uniqueness of a Mild Solution

In this section, a few sufficient conditions of existence and uniqueness of a mild
solution for equation (1.1) will be given.

Theorem 2.1 Assume —A is the infinitesimal generator of an analytic com-
pact semigroup {S(¢)}:>0 with ||S(t)|] < M,t > 0, and 0 € p(A). If zy € X,,
(H1)-(H3) hold, and MbI'(q) + M, M, max{1,G*, H*} < I'(q), then equation (1.1)
has a unique mild solution x € C,,.

Proof. Set K = sup,cc, ||k(z)||o and choose r such that

My M,,

P2 Mol + K) + =55

(2.1)

Let B, = {x € Cy : |0 < ).
Define a mapping F : C, — C, by

(Fz)(t) = S(t)(zo — k(z)) + L/0 (t—s)7'S(t—s)f(s,z(s),Ga(s), Hz(s))ds.

Ha) (2.2)
For each = € B, and t € [0,T], by Lemma 1.1, we have
[Fx)®)]., <ISOl(Izolla + K)
tr | (= )48 (- 5)f (s,2(5), Ga(s), Hals)) | ds
<M (||zolla + K) + 1{\(4;) /Ot(t —8)TH(t — )" %m(s)ds
<M (|lzolla + K) + A%(J;I)m <, (2.3)
which means Fz € B,.. For each z,y € C,,t € [0,T], we deduce that
[(Fa)(t)—(Fy)(t),
<l +) - k), + 1o [ G
[S(t—s) [f( w(s), G <s>,Hx<s> ( y(s), Gy(s), Hy(s))] | ds
<M[l@) - k)|, + s [ €

0

[A*S(t — ) [f (s, 2(s >,G:c<s>,Hx< )) — f(s,y(s), Gy(s), Hy(s))]||ds

M t
gbefyooqL—a/tfsq*l
o= sl + 55 [ (=9

(t—s)U(s) max {{|z — ylla, |Gz = Gylla, | Hx — Hylla }ds
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M, [
SMblxyoo+F<q)/O (t — )7 U(s)ds max{1,G*, H*}||z — y[la
MM
< (Mb+ FCE )l max{l,G*,H*}) 2 = Yoo, (2.4)
q

which ensures

MOZM * *
Wquwaw@mws(}m+ H@lmquG,H})awwAm<nx—ﬂ§;

Then the conclusion follows from the Banach fixed point theorem.

Theorem 2.2  Assume —A is the infinitesimal generator of an analytic com-
pact semigroup {S(t)}i>0 with ||S(¢)|| < M,t > 0, and 0 € p(A). If (H1), (H3)
hold, Mb < 1, and the function s — m(s)(t — s)~* is integrable on [0,¢], then
equation (1.1) has a mild solution for each zy € X,.

Proof. Let K and B, be the same as in Theorem 2.1.

Define two mappings A, B : X, — X, by

1

(Ax)(t) = Q) /0 (t—s)171S(t — s)f(s, x(s), Gx(s), Han(s))ds7

(Bz)(t) = S(t) (w0 — k().

(i) Obviously, Az + By € B,., Vz,y € B,.
(ii) It is declared that A is continuous. Let {z,} be a sequence of B, such that
Ty, — x in B,. Then the continuity of f ensures that

(2.6)

f(s, Zn(8), Gxy(s), Hwn(s)) — f(s, x(s), Gz(s), Ha:(s)) (2.7)

For ¢ € [0, T], we obtain
[(Azn) () — (Az)(?)]|a
_ %{DH/O (t — )T 18(t — 8)[f (5, 2n(5), Gan(s), Hrn(s))

— f(s,2(s), Gz(s), Hz(s))]ds

[0

1 t g—1|| g« s sz (s o (s (s
< pms | = A ) [ (520 (5). G (9. H (9)
_ f(s,zc(s)7 Gx(s), Hx(s))] ||d5
M,

/0 (t =) 7| (5,20 (), Gan(s), Han(s))
— f(s,2(s), Ga(s), Hx(s))||ds.

=T

According to the fact that

1/ (s, 20 (5), Gan(s), Hrn(s)) — f(s,x(s),G:c(s),Hm(s))H < 2m(s), Vs € [0,T],
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and the function s — 2m(s)(t—s)~® is integrable on [0, t], the Lebesgue Dominated
Convergence Theorem guarantees that
¢
/ (t— s)q_l_O‘Hf(s, 2 (5), Grn(s), Hrn(s)) — f(s,x(s), Gz(s), Ha(s)) Hds -0
0
as n — 00. (2.10)

Therefore,
i [|(Az)(0) — (Az) (1) 0 = 0. (2.11)

(iii) Tt is claimed that A is compact.
First to show that A is uniformly bounded on B,..

I (A2)(8) =ﬁH / (t— )77 1S(t = 5)f (s, 2(5), G(s), Ha(s))ds

a
t

1 a1 4« —8)f(s,z(s),Gx(s (s s
S@/O (t — )T H|AYS(t — 5) f (s, 2(s), Ga(s), Hz(s))||d o1
M. [ —8)T 1" (s)ds
i (oo
<MaMm

~ Ig)
Next to prove that (Az)(t) is equicontinuous. Let 0 < ¢; < t3 < T and € > 0 be
small enough, then we have

[(Az)(t2) — (Az)(t1)]|o

1 " g—1 q—1
S@H /0 [(ta —5)07 " = (t1 — 5)T7 1| S(t1 — ) f (s, 2(s), Gz(s), Hx(s))ds
1 [t

(e

/t (ta — 8)7'S(t2 — 8) f (s, 2(s), Gz (s), Hx(s))ds

+@{

M ﬁ” /0 l(tz — )t [S(tz = 5) = S(t1 — 5)] f (s, 2(s), Ga(s), Ha(s))ds
=L+ L+ Is.

[0}

e}

(2.13)
By (1.7) and (H1), we get
L = ﬁ“ /0 1 [(t2 — 8)77" = (t; — )71 S(t1 — 5)f (s, 2(s), Ga(s), Ha(s))ds )
= r<1q> / [t =97 = (1= )7 AT (01— 9)f (s, 2(5), Ganls), Ha(s) | ds
Ma t1 _ q—1 _ s q—1 M s
= Ty /O [(t2 = 5) (t1 — )17 Tk
5 li\(4;) /0 [(t2 = 5)7" = (b1 = 5)"] mds
Mo [ e m(s)
R0 /tl_e(tQ A T

= I+ 1. (2.14)
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It follows from the assumption of m(s) that I] tends to 0 as t; — to. For I{, we
can see that I}’ tends to 0 as t; — t2 and € — 0.
It can be seen from (1.7) and (H1) that

= | [ = 0 010060, Ha() s

(e

1 to o1 . B
< (q) /lt1 (ta — s)9 | AYS(ts — 5) f (s, x(s), Ga(s), Hx(s))||ds (2.15)
Mo t2 . g—1_m(s) < s
e /t1 (t2 =) —gds = 0 as hy >t
Furthermore,

1 fi—e 1
zggﬂaHA (ts — )T [S(ts — 5) — S(t1 — 5)|f (s, 2(5), Ge(s), Ha(s))ds

«

i 1 _ gyt _g— s s 2(s). Gals () ds
+F@HAE@ ) S(ta — 5) = S(t1 — 5)] f (5, 2(s), Ga(s), Ha(s))d

<o [ st - By st

[e3%

A5 1(s1206). Gato), Ha() | s
" % /tlle(tQ - [(t:nfsz)“ " (tzn_(ss))a]ds

<2°“M,l -/’51—5(]52 - s)qﬂHS(tZ ;tl b2 — s) B S(tl — s)H ' m(s) s
0

7F(q) 2 2 (t1—5)a
[ earm(s)m(s)

T T /tl_f’f? = s

=I;+ I3

(2.16)
Applying the compactness of S(t) in X implies the continuity of ¢ — [|S(t)]| for
t € [0,T); integrating with s — m(s)(t1 — s)~* € LL.([0,t1],RT), we see that I}
tends to 0, as t; — to. For IY, it follows from the assumption of m(s) that I} tends
to0ast; — ty and € — 0.
Therefore, ||(Az)(t2) — (Az)(t1)]la — O as t; — t2, which do not depend on z.
Thus, A(B,) is relatively compact. In virtue of the Arzela-Ascoli Theorem, A are
compact.

(iv) B is a contraction mapping. In fact,

[(Bz)(t) = (By)()lla < 1S@O[E(z) = k(y)lla < Mb||z - ylloo < [z — ylloo (2:17)
ensures that
[(Bz)(t) = (By)()lloc < [z = Ylloo- (2.18)

Now the proof is completed by Krasnoselskii fixed point theorem.
Remark 2.3 Theorems 2.1 and 2.2 extend and improve the Theorems 3.1
and 3.2 of Li[6], Theorems 3.1 and 3.2 of Li and Guérékatal[7].
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