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Abstract This paper focuses on the kinematics,
kinetostatics and design optimization of a 2-DOF cable-
driven flexible joint module. Based on the motion
characteristics of the 2-DOF joint module, the concept of
instantaneous screw axis in conjunction with the Product-
Of-Exponentials (POE) formula is proposed to formulate
its kinematic model. However, as the instantaneous screw
axis is unfixed, the Lie group method is employed to
derive the instantaneous kinematic model of the joint
module. In order to generate the feasible workspace
subject to positive tension constraint, the kinetostatics of
the joint module is addressed, where the stiffness
resulting from both the driving cables and the flexible
backbone are considered. A numerical orientation
workspace evaluation method is proposed based on an
equi-volumetric partition in its parametric space and the
volume-element associated integral factor. A global
singular value (GSV) index, which considers the
minimum singular value of the stiffness matrix of joint
module over the achievable workspace, is employed to
optimize the geometric size of joint module. The
simulation results demonstrate the effectiveness of the
proposed GSV optimization algorithm.

Keywords Instantaneous screw axis, Lie group, Stiffness,
Numerical orientation workspace, Design optimization
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1. Introduction

The flexible Snake-Like Robot Arm (SLRA) with hyper-
redundant Degrees Of Freedom (DOF) is especially suitable
for the applications  requiring  high
manoeuvrability over complex and confined spaces such
as on-wing inspection and repair of airplanes [1] and
search and rescue in collapsed buildings [2]. The Cable-
Driven Snake-like Robot Arm (CDSLRA) with a flexible
backbone is a promising candidate in the SLRA design,
and has received increasing attention in the literature [1,
3, 4].

industrial

In this work, a hyper-redundant CDSLRA that consists of
a large number of 2-DOF flexible joint modules is to be
developed for airplane on-wing inspection and repair
applications. In order to improve the performance of the
CDSLRA, design optimization of the 2-DOF cable-driven
joint module with a flexible backbone becomes a very
critical issue, which, however, has not been well-
addressed due to the lack of effective kinematics,
kinetostatics and workspace analysis models.

In previous efforts, the D-H notation in conjunction with

the Euler angles has been extensively employed for the
kinematic modelling of a 2-DOF cable-driven joint
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module with a flexible backbone [3, 4]. However, such a
modelling approach could not clearly describe the actual
motion characteristics of the module. For example, to
represent the 2-DOF bending motions using Euler angles,
three sequential rotations (R:(a)Ry(0)R(-)) are needed in
order to remove the twisting motion about the backbone,
although only two Euler angles (¢ and 6) are used. To
avoid such a problem, the instantaneous screw axis concept
is proposed in this paper such that the 2-DOF bending
motion of the joint module can be clearly described by
one rotation about an instantaneous screw axis with its
directional component parallel to the x-y plane of the base
frame. With such a geometrically meaningful concept, the
POE formula [5] can be employed to formulate the
kinematic models of the 2-DOF joint module, making the
analysis significantly simplified. The proposed kinematic
model can also be applied to other types of mechanisms
with flexible backbones including the CDSLRA in [1, 3, 4]
and air-muscles driven SLRA in [6]. However, for the
(velocity) analysis, the
instantaneous screw axis needs to be considered as a
variable rotation axis. As a result, the conventional
instantaneous kinematics formulation approaches based

instantaneous  kinematics

on the fixed rotation axis cannot be employed. In this
work, the Lie bracket method [7-10] is employed to
analytically derive the manipulator Jacobian of the 2-DOF
joint module. Based on the manipulator Jacobian of the 2-
DOF joint module, an instantaneous kinematics model is
derived for the joint module, which will be used in the
following analysis.

Some research efforts exist in the literature analysing the
workspace quantity and quality based on the kinematics
and kinetostatics properties of the mechanisms, e.g., the
workspace volume [11], the global dexterity [12] and the
global stiffness analyses [13]. The design optimization of
the 2-DOF cable-driven joint module is to achieve a high
stiffness performance over the workspace. As a result, a
Global Singular Value (GSV) index has been proposed by
taking the minimum singular value of the stiffness matrix
over the attainable workspace into account. The
effectiveness of the proposed optimization algorithm will
be demonstrated by simulation examples.

2. Kinematics Analysis of a 2-DOF Cable-Driven Joint
Module with a Flexible Backbone

2.1 Design Consideration

The proposed CDSLRA adopts a modular design
approach, which consists of a number of serially
connected identical 2-DOF cable-driven joint modules. As
shown in Figure 1(a), each module comprises a base disk,
three cables, an elastic backbone and a moving platform.
The moving platform is linked to the base disk through
three driving cables and a flexible backbone at the centre
of the joint module. To further simplify the joint module
design with inter-changeable connectivity among the
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modules, both the moving platform and the base disk are
identical to each other. The attachment points of three
driving cables are equally spaced at 120° on both the
moving platform and the base disk. Stainless steel cables
are employed instead of super-elastic Ni-Ti tubes [4]
because the latter have limited driving force.

Moving
Platform
= 5
Backbone
Three
Cables
Base Disk
E— g

(b)

Figure 1. 2-DOF cable-driven joint module

2.2 Joint Module Displacement Analysis

The flexible backbone is made of elastic and inextensible
material, and it is designed to be rigid in torsion. Hence,
the joint module with such a flexible backbone only
allows a two-DOF bending motion, which can be
described by two kinematic parameters: rotation angle of
the bending plane « and the bending angle §, as shown in
Figure 2.

The purpose of the forward displacement analysis is to
find the pose of the moving platform T(I)e SE(3) when the
lengths of the three driving cables [=[l l2 [s]T are given.
Since it is difficult to derive T(I) directly, joint variables
@=[a 0] are used as the intermediate variables to simplify
the analysis.

Frame {j-1} is attached to the base disk with its origin
located at the centre of the disk, as shown in Figure 1(b).
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The zj1 axis is normal to the disk and the xj: axis points to
the first cable attachment point on the disk. Similarly,
Frame {j} is attached to the moving platform with its
origin located at the centre of the platform. The zj axis is
normal to the platform and the xj axis points to the first
cable attachment point on the platform.

Figure 2. The kinematics diagram of the 2-DOF joint module
2.2.1 Relationship between joint variables and cable lengths

As shown in Figure 2, Bi and Pi (i=1, 2, 3) are the ith cable
attachment points on the base disk and the moving
platform respectively. Based on the 2-DOF bending
characteristics, the bending shape of the backbone is
assumed to be circular with a constant arc length L [3, 4].
The plane OCPB formed by zi1 and z, as well as the
flexible backbone arc OC is the bending plane, which is
always perpendicular to the base disk plane. Point B and
P are the intersection points of the bending plane with the
base disk and the moving platform respectively. Note
that B and P are located on the same circles formed by B:
and Pi (i = 1, 2, 3) respectively. The backbone deflection
within the bending plane is described by the bending
angle #(i.e., Z/BMP), while the bending plane is defined
by a rotation angle « (£B1OB).

The length of ﬁ represents the cable length . A loop-
closure equation for the ith cable can be written as:

P,B, = P.C +CO+O0B; (1)

where Eﬁ, =r- Rz(a)RV(G)[cosﬂi —sin f3; O]T
T
OC = R (a)-2- (L)sing{sine 0 cose}
1 2 2 2

OB;=r-R,(a)[cosf; —sinf, O}T

Here, r is the constant radius from O to Bi and also from C
to Pi. i is a right-handed rotation angle from OB; to OB
such that:

lgi:a+(i—1)2?ﬂ,i=1,2,3
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Therefore, for a set of given joint variables « and 6, the
cable lengths are determined as follows:

L. @ . 0
li= 255m5 —2rcos f; smE (2)

While for a set of given cable lengths, the joint variables
can be expressed as:

a=atan2(\3(l, = L)L, +1 5 -21) 3)
0=2sin" (12" la )
Zx/gr sina

2.2.2 Determination of kinematics transformation matrix

Denote the forward kinematics transformation from the
frame {j-1} to {j} as T(1,j€SE(3), which has the following

general form:
R p
7"(]'—1),;':{0 J ®)

where ReSO(3) and peR*>! represent the orientation and
position of frame {j} with respect to frame {j-I},
respectively. As shown in Figure 2, when the joint
variables « and 6 are known, the position vector of point
C ie, p(p =ﬁ), with respect to frame {j-1} can be
determined as follows:

p=0C = %[cosa(l —cos#) sina(l-cos@) sin e]T (6)

However, to determine the orientation of frame {j} with
respect to frame {j-1}, i.e,, R is not so straightforward.
Conventionally, the rotation matrix R is computed
through the Z-Y-Z Euler angles as follows [4]:

R=R,(@)R,(0)R ()

2, 2
S5 +CoCo  —S,C,05  CuSp
2 2 @)
—SaCaZJe Ca +SaC€ saSB
a9 —5450 Co

where sa=sina, ca=cosa, se=sin6B, ce=cosO and ve=1-cos0.

By analysing the rotation matrix R=[rij]eSO(3) (i, j =1, 2,
3), we find that ri2=r21, r1i3=-r31, r2s=-ra.

On the other hand, for a given ReSO(3), it can always be
represented by a rotation about an axis w=[w1 w2 w3]TeR3
(|w]=1)ofa angle OeR such that [5]

601221'9 + Cg

0)10)2119 - 0)35,9 0)1603"09 + 0)256

) 2
R=e" =| oo,0,+ w5,  ©0,+c, @y050, — @5, | (8)

2
a)lcosvg - wZSH w2w3vg + a)lsg w3 Ug + Cg
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Comparing corresponding terms in (7) and (8), the
rotation axis is given by:

wz[—sina cosa O]T )

Equation (9) implies that the motion of the 2-DOF joint
module to achieve a desired posture is equivalent to a
rotation about an axis w that is parallel to the xj1-yj1 plane
as shown in Figure 3. It can be readily verified that the
rotation axis wis given by the cross product of zi1 and z,
and the rotation angle is identical to the bending angle 6.

Figure 3. The rotation motion of the 2-DOF joint module

With such a meaningful geometric description, the
kinematic transformation of the 2-DOF joint module can
be represented by a rotation about an instantaneous
screw axis (i.e., a twist), 92 ese(3) of an angle €. The twist
coordinates of £ is given by: é=(w, v)eR®! in which w=[-
sina cosa 0]" represents the direction of the screw axis
and it is always parallel to the xj1-yj1 plane, while v=[vx vy
v:z]" determines the position of the screw axis and it is a
function of the joint variables o and 6, i.e., a function of
the cable lengths.

After such a geometric treatment, the POE formula can be
employed to formulate the kinematics models of the 2-
DOF joint module.

2.2.3 POE Formula for Forward Displacement Analysis

Based on the screw theory, Murray et al. [5] showed that
each rigid motion associated with rotating and translating
along the twist direction can be expressed by the product
of matrix exponentials. Because of its compact
representation and its connection with Lie groups and Lie
algebras, the POE formula has proven to be a useful
modelling tool in robot kinematics [14, 15]. These
advantages make POE formula a convenient and
powerful modelling method for hyper-redundant robots.

Based on the POE formula, the forward kinematics of the
2-DOF joint module is given by:

f0
Tjn,(0,2) =T ) (0) (10)

where T-1,/(0,a) e SE(3) is the final configuration of frame
{j} relative to the frame {j-1} as a function of the joint
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angles 6 and a. T-1,(0)eSE(3) is the initial configuration
of frame {j} relative to the frame {j-1} at 6=0 and a=0.
e*? € SE(3) describes  the rigid  body  motion
simultaneously rotating and translating about a screw
axis (a twist) £. & is expressed in frame {j-1} and its twist
coordinates are given by & =(w,0)=(w, —wxq) e RO in
which @is the unit directional vector of the axis and g is a
point on the axis. e’ e SE(3) is given by:

,50 e ((I-e)é+wa' O)v

= 11
0 1 (
From (10), ¢%0’ can also be obtained by:
‘0 -1
e =T 1) (0,)Tj 1,7 (0) (12)

Substituting (8) and (9) into (11), and substituting (5) into
(12) respectively, then by equating (11) and (12) yields

T
1 1 1 1,86

=L |—= ——si ———ctg— 13

v {zcosa 2smoz (9 chz)} (13)

There are many possible points g on the axis @, of
particular interest is the intersection point between axis

o and the bending plane OCPB, g5, which is expressed
by:

) T
qs = [qu cosa g, sina qz} (14)

where gxy and g: are the projection of vector O—qS onto the
xj-1-yj-1 plane and the axis zj1, respectively.

Because v=-wxgq, combining (9), (13) and (14) yields

11,60, . 1 1 6 17
=L-[cosa(—~——ctg—) sina(—-—=ctg—) =] (15
95 = L-[cosa( = —clg—) (5—5clg5) 51 (1)
According to (15), it is seen that the point gs on the axis is
located on the bisector of ZPWB, and the height of gs is
always equal to L/2, as seen in Figure 4.

Figure 4. Location of point gs on the instantaneous screw axis »
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In brief, the motion of the 2-DOF flexible joint module is

equivalent to a rigid body rotation about an
instantaneous screw axis 92 € se(3) whose direction is
always parallel to the xji1-yj1 plane and normal to the
bending plane OCPB. The position of the axis can be
determined by gs which is the intersecting point of the
instantaneous screw axis and the bending plane OCPB.
Note that the position of the axis is always located at a

constant height since g: is equal to L/2.
2.3 Joint Module Velocity Analysis

In this section, the velocity analysis of joint module is
carried out in order to obtain the Jacobian matrix Jxe and

]l([) .

Since T(1, represents the forward kinematic mapping of
the joint module, the instantaneous spatial velocity of the
moving platform is therefore given by the twist [5]:

Hicl -1
Vii-1,j = Tj-1), (0. 2T (0,2)

]

:%((e‘fg)T(f’l)’f'(O)'(T(f—l),j(o))fl(6"2‘9)71 (16)

_d oy fo\
_dt(e )(e*)

where ‘7(];11) j € se(3) is a twist which can be written in
the following matrix form:

" AL i1
| @
' 01><3 0

nj-1
a)ﬂl
of joint module j with respect to frame {j-1};

€50(3) represents the instantaneous angular velocity

v/ 1 e ¥ denotes the linear velocity of joint module j
with respect to frame {j-1}.

Since the instantaneous screw axis f is not a constant
axis and it varies with variable a, the time derivative of
¢? is not straightforward. Therefore, we resort to the Lie
bracket method, in which the derivative of ¢’ is defined
as a function of dexp [7-10]:

d oy _ d(o) i 18
E(e )—deXp(éga)T (e ) ( )
Substituting (18) into (16) yields,

T dexp . 60)

Vi, = dexp(ég) n (19)
According to the Lie group theory, the right hand side of
(19) can be expressed in terms of an infinite series of
nested Lie brackets [7-10].

dexp(ég) d(jtg) =C +%[A,C]+%[A,[A,C]]+ - (20)
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where

[A,C]= AC —CA;

A= 39:|:6?) 0}6656(3);
0 0

R 6 o0 T
C:d(fﬁ): @'Oc + 0 € se(3);
dt 0 0
F:—Eﬁobw+L(w’(cose—1)+c?)a)’(sine9—6));
2 2(1—-cos0)

. T . . . .
a)’:[—cosa —sina O] is the derivative of w with
respect to a.

Since @es0(3) is a skew-symmetric matrix, it holds the
following properties [5].
2

& = oo —Ha}H2I (21)

& =—|of & 2)

According to (21) and (22), the nested Lie bracket in (20)
can be simplified. Here only the first four simplified
terms of the Lie bracket are listed.

(0w) 6% —wb6*LMd — ' OLNG
0

[4,C] { . 23

N

-36%¢ @6® %a - Hw 0’ LNE

0 0
[~dwye*a wo*LMd + w3 LN
[A[A[A,CNNT = 0 0 (25)
§0¢ -0t Lot asa)'94LN6"_
[A[LATA[ACIIT = 2 (26)
0 0 |
where
M =l—lctg€ and N:L—l
0 2 "2 2(1-cos8) &

Substituting (23-26) into (20) forms the trigonometric
. . . . 51

series for the corresponding entries of matrix of V( 1), -

i 3 5 2 94

O =00+ (0 -—+—+-)+ (00 )a(— - — +— +
31

51 21 41 6! )(27)

= @6 + &'sinba + (dw')" (1 - cos O)c
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. 9 9 9 ) 0
v =olMa(-——+—-—+-)+o—a(-0+—-——+)
4! 6! 3! 5!
P ot o ) S
+o —NO(——+———+- )+ 00 —NO(——+—+--)
21 4! 6! 3! 5! (28)
Lo , L
+—————(w'(cos @ — 1) + ww (sin 6 — 0))
2(1-cos )

oL . L . .~ .
=—>(cosd - 1)a +76(w(1 —cos ) + ww (0 — sin 9))
0 0

Furthermore, the linear velocity of the origin of the
moving platform frame is:

i-1 i-1 i-1

v =0l xp+ol, (29)

Hence, the velocity of the centre of the moving platform
is given by:

=] o® (30)
where @ = [9 a} is the joint velocities ;
Ry

X = v{;l a),ﬁ: is the velocity of the centre of the
moving platform frame.

Combining (27-30) yields the Jacobian matrix as shown in
the Equation (31).

Note that the Jacobian matrix in (31) is ill-conditioned
when €=0, i.e, there is neither bending of the backbone
nor rotation of the platform. This singularity at the
configuration =0 can be resolved by applying the
L’Hopital Rule [3,4].

_Lsina(l—cosé’) Lcosac050—1+6’sm6’
92
Lcosa(l—cosﬁ) Lsinacos@—1+051n0
62
= —sind + @ cosd
Lo 0 I sin - cos 31)
—cosasiné —sina
—sina sind cosa
i 1—cosd 0 ]

The instantaneous inverse kinematics can be given as:
I=]u® (32)

where Jacobian matrix [i; is obtained by taking the
derivative of (2) for a, 6 [3, 4]:

T = daa oOa Oa
W= o, al, al, (33)
00 060 06
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3. Kinetostatics Analysis
3.1 Tension Analysis

The principle of virtual work [4] is employed for the
large-deflection beam analysis of the flexible backbone, as
obtaining an analytical solution for a large-deflection
beam [16] using conventional Newton methods by elliptic
integral will be difficult and is unnecessary.

In the following analysis, twisting and extension of the
backbone are neglected. Since the backbone is made of
linearly elastic material and the bending shape of
backbone is assumed to be circular, the strain energy of
the flexible backbone is given by [17]:

I e Y P
L2 (ds) s 2L (34)

| EI d6, , EI&?

The virtual work resulting from the infinitesimal joint
displacement d® of the flexible backbone is VETd® . VE
represents the gradient of strain energy with respect to
joint displacement d®=[d0 da]. Let We=[fT m.T]"
represents the vector of external forces and moments
applied to the moving platform. The virtual work
contributed by an infinitesimal displacement dx of the
moving platform is W.T dx. If the cable tension to
maintain an equilibrium is 7=[11 12 73]7, the virtual work
done by an infinitesimal displacement dI of the cables is
7 Tdl. By using the principle of virtual work, we obtain:

W dx =7"dl + VE dd (35)
Substituting (30) and (32) into (35) yields

Joo W, =Jiq 7+ VE (36)
Therefore, the null space solution of 7 is:

r=(J;p" ) D+ AN (37)

where (J,")" =(Jio ) Ui Yo ) T
D=].q4 W,-VE

Using the Cramer’s rule, the null vector N of Jacobian
matrix Jip' can be written as N={n1 n2 n3)T, in which ni (i=1,
2, 3) is the determinant of the matrix formed by deleting
the ith column of the Jacobian matrix Jiz'. A is an
arbitrarily scalar.

3.2 Stiffness Analysis

When a CDSLRA performs a given task, an external force
and moment vector will be applied on the moving
platform. This contact wrench will cause the platform to
elastically deviate from its desired motion. The amount of
displacement or deformation will depend on both the
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magnitude of external wrench and the stiffness of the
manipulator [18]. Here, we focus on the stiffness model of
the 2-DOF joint module of CDSLRA, which is expressed
as:

K=[14' T ke Uy 140 1k [e™1 (38)

where k= Kdiag(l, ", 1,7 LY, k= diag(%,O),

Ju' = ];Ir)l(]q)l]i])’1(]251)]@)71];@ is the pseudo-inverse of

]xl,
]xq)+ = [(]x(D)T]xd) ]_1(]xq))T is the pseudo-inverse of Jxg.

The stiffness matrix is symmetric, positive semi-definite
and configuration dependent. Equation (38) is derived as
follows. By substituting (30), (32) into (35), we obtain

W, =1 T e+ T VE (39)
Let 6W.eR" represent the change of applied wrench and

O0x the corresponding displacement changes of the
moving platform. We have

SW, = Kox (40)

where K is the Cartesian stiffness matrix [19] of the joint
module.

With (39) and (40), and following the chain rule, we have

R
K=[],"] 5 5x+[1xq>]

rOVE b

D ox (1)

As cables behave as linear springs [19], the stiffness
equation in the joint space is given as:

5t =kl (42)

where k_ = k’diag(llfl,lzfl,- . -,lmfl) and k' is the stiffness
per reciprocal unit length of cable which is a constant and
I; is the cable length at a particular pose.

oVE . EI
g = kb = dlﬂg(T,O) (43)

Substituting (30), (32), (42) and (43) into (41) yields (38).

In this paper, the flexible backbone uses a spring steel rod
with the diameter dw=4mm and Young's modulus
E=210GPa. The stainless steel cable is employed and its
stiffness  per cable length is
k' =1x10°N /m .

reciprocal  unit

4. Design Optimization

In this section, the design optimization of the 2-DOF
flexible joint module is carried out based on workspace

www.intechopen.com

quantity and workspace quality. For the workspace
quantity, a numerical orientation workspace evaluation
method is proposed by using an equi-volumetric
partition in its parametric space. Then, in order to achieve
a high stiffness quality over the workspace, a GSV, which
accounts for the minimum singular value of the stiffness
matrix of joint module over the achievable workspace, is
employed to optimize the joint module.

4.1 Quantitative Measure

The orientation workspace of the 2-DOF joint module is a
subset of the rotation group SO(3). It can be visualized as
a circular area in its parametric domain when the polar
coordinates are employed to represent the two rotation
angles 6 €[0,n/2] and «€[0,2n], as shown in Figure 5.
However, the orientation workspace volume of the 2-
DOF joint module as described in SO(3) (Vsow) is not
equal to the geometrical volume of the circular area in its
parametric  domain due to the  nonlinear
parameterization. Therefore, an integral factor has to be
introduced, which is orientation dependent. For the polar
coordinate parameterization, it has been shown that the
integration factor is given by sin6/60 [20]. Hence, the
maximum orientation workspace volume of the 2-DOF
joint module is given by:

27 (Zsin@
WVentire = J‘SO(3)dVR = IO I02 9 0d0da =2x (44)

Figure 5. Equi-volumetric partition of a circular area in polar
coordinate

Zhao Zhang: Design Optimization of a Cable-Driven Two-DOF Flexible Joint Module
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To evaluate the orientation workspace volume for a
particular 2-DOF joint module, a numerical analysis
approach that can generally cope with complicated
workspace boundaries (due to the mechanical constraints
and singularities) is more effective. Hence, a finite
partition of the orientation workspace in its parametric
domain is necessary. Similar to [11], the parametric
domain of two rotation angles # and « in the polar
coordinate can be partitioned into 3#? finite elements with
equal volume, as shown in Figure 5. When a double index
(j, k) is specified for an element, the coordinates of the
feature points can be readily computed. Using equation
(44), the orientation workspace for a subset of rotations
5e50(3) can be numerically computed as:

sinfy

[oesdVR=Vi 2 ij] (45)

where 0j=1j/2n, aj=21tk/(6j-3), Vi=ri}/12n? is the element’s
volume in its parametric domain for the equi-volumetric
partition scheme. In this paper, the number of division
n=50.

4.2 Qualitative Measure

Displacement or deformation on the moving platform
will emerge if an external wrench is applied to it. This
deformation depends on both the external wrench and
the stiffness of the manipulator. Thus the stiffness has
effect on the position accuracy of the manipulator. Also,
the 2-DOF cable-driven joint module with the flexible
backbone structure has a relatively low stiffness.
Therefore, it is necessary to evaluate the stiffness quality
over the entire attainable workspace so as to attain an
optimal design with a high stiffness performance.

Since the stiffness matrix K of the joint module relates the
applied external wrench W. on the moving platform to
the moving platform deformation x, from the singular
value decomposition theorem [21-22], the bounds on
| x| can be established as

iz} <[ < ] (46)
(o} (o

max min

where Omax and Omin are the maximum and minimum
singular value of the stiffness matrix of the joint module.
They give the lower and wupper bounds of the
deformation | x | on the moving platform.

Supposing the vector W. is unity, i.e., | We | =1, then the

minimum and maximum deformations can be obtained
as

(47)
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Thus, 1/0max and 1/omin are actually the minimum and
maximum deformation on the moving platform when the
external wrench are unity. Furthermore, the deformations
form a deformation ellipsoid, whose axes are directed
along the left-hand singular vectors of the pseudo-inverse
of the stiffness matrix K*. Its magnitudes are all the
singular value of K*. The minimum and maximum
deformations in (47) are in the direction of the minor and
major axis of the ellipsoid. Normally, the smaller the
maximum deformation, the better the stiffness
performance, and this maximum deformation bound
depends on the omin. Therefore, the minimum singular
value omin is usually used as the criterion to design the
manipulator with respect to its the stiffness [23-24].
Moreover, a larger omin can lead to a smaller deformation,
i.e,, better stiffness performance.

Since the stiffness matrix is configuration-dependent,
based on (47), the GSV index, which can evaluate the
stiffness characteristics of the joint module over the
achievable workspace, is defined as

h
1 a
GSV = h—z%ﬁn (48)

a i=1

where h. is the sum of all the achievable workspace
volume elements. Oi min is the minimum singular value of
the stiffness matrix K at the specified posture i. Normally,
the index value GSV is expected to be as large as possible.

4.3 Design Optimization
4.3.1 Decision Variables

For the design optimization of the 2-DOF joint module,
the decision variable ki is the ratio of the radius of the
base disk to the length of the backbone, ie. k=t/L
(0=<<ki<1), which is a very critical design parameter. In
this paper, the backbone length L is set to be one unit
length.

4.3.2 Constraints

For a cable-driven mechanism, the tension of the cables is
required to be positive in order to fully constrain the
moving platform. Therefore, the GSV of the joint module
can be determined by checking the tension conditions of
three cables using the tension analysis. It is seen that the
tension solution 7i in the equation (37) can always be made
positive for all positive homogeneous solutions regardless
of the value of D. This is achieved by changing the
arbitrarily scalar A to compensate the particular solution.
The boundary of the workspace can therefore be purely
based on the null vector N. Hence, the design constraints
for positive cable tension are given as follows [25]:

(49)

3 3
H”i #0 & Z‘”z‘ =
i=1 i=1

3 .
Z(—l)’ n;
i1
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4.4 Optimization Results

The r/L-GSV relationship is plotted in the Figure 6. It is
shown that for the joint module with decision variable
r/Le[0.06,0.637], the GSV is proportional to r/L. This
means that a larger ratio r/L can lead to a larger GSV
index, i.e. better stiffness performance. The largest
GSV=581.3767 is obtained when r/L=0.637. Furthermore,
the attainable workspace volume of the joint module is
6.1119 radians, which is very close to the maximum
orientation workspace volume (2r), as shown in Figure 7.
It is observable that there are three blank spaces (radial
strips) inside the circular area, which indicates that the
workspace cannot be attained when the rotation angle
a=0, 27t/3 and 41t/3, where the positive tension constraint
cannot be satisfied.
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Figure 6. r/L-GSV relationship plot

Figure 7. Orientation workspace in polar coordinate GSV-based
optimized

5. Conclusion

In this paper, the critical kinematic and kinetostatic
modelling and analysis issues pertaining to the design
optimization of a 2-DOF joint module with a flexible
backbone are discussed. It has been shown that the 2-
DOF bending motion of the flexible joint module can be
represented by a rotation about an instantaneous screw
axis, which significantly simplifies the kinematics

www.intechopen.com

analysis. Furthermore, utilizing the Lie bracket method
from the group theory, the instantaneous kinematic
model has been formulated for the 2-DOF joint module.
An effective orientation workspace evaluation method is
proposed based on an equi-volumetric partition in its
parametric domain. The stiffness model of the joint
module is formulated, which includes those contributed
by both the cables and the flexible backbone. A global
singular value (GSV) index, which considers the
minimum singular value of the stiffness matrix of joint
module over the achievable workspace, is employed to
optimize the joint module. The effectiveness of the
proposed optimization algorithm is demonstrated
through a simulation example.
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