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Abstract. Let G be a finite centerless group, let π(G) be the set of primes p

such that G contains an element of order p and let np(G) be the number of
Sylow p−subgroup of G, that is, np(G)=|Sylp(G)|. Set NS(G) := {np(G)| p ∈
π(G)}. If NS(G)=NS(M), where M denotes one of the alternating simple
groups A5 or A6, then M ≤ G ≤ Aut(M).

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
Let G be a finite group. Denote by π(G) the set of primes p such that G contains
an element of order p. A finite group G is a simple Kn−group if G is a simple
group with |π(G)| = n. Denote by (a, b) the greatest common divisor of positive
integers a and b. If G is a finite group, then we denote by nq the number of Sylow
q−subgroup of G, that is, nq = nq(G)=|Sylq(G)|. All other notations are standard
and we refer to [10], for example.

In 1992, Bi [5] showed that the group L2(pk) can be characterized just by the
orders of the normalizers of its Sylow subgroups. In other words, if G is a group
and |NG(P )| = |NL2(pk)(Q)|, where P ∈ Sylr(G) and Q ∈ Sylr(L2(pk)) for every

prime r, then G ∼= L2(pk). This type of characterization is known for the following
simple groups: L2(pk) [5], Ln(q) [4], S4(q) [8], the alternating simple groups [7],
Un(q) [9], the sporadic simple groups [2] and 2Dn(pk) [1].

Set NS(G) := {np(G)| p ∈ π(G)}. Let S be one of the above simple groups.
It is clear that if np(G) = np(S) for every prime p and |G| = |S|, then |NG(P )|
= |NS(Q)|, where P ∈ Sylp(G) and Q ∈ Sylp(S). Thus by the above references,
G ∼= S. Now replace the condition NS(G) =NS(S) with the condition np(G) =
np(S) for every prime p and remove the condition |G| = |S|: in this case we can
not conclude that G is isomorphic to S. For example, if G = A5 ×H where H is
a finite nilpotent group such that π(H) ⊆ {2, 3, 5}, then NS(G)=NS(A5)={5, 6,
10}, but G is not isomorphic to A5. So there are many finite groups G such that
NS(G)=NS(A5)={5, 6, 10}.

In this paper, we show that the simple groups A5 and A6 are recognizable by
NS(G), where G is a centerless group.
Main Theorem: Let G be a finite centerless group such that NS(G)=NS(M),
where M denotes one of the simple groups A5 or A6. Then M ≤ G ≤Aut(M).
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2. Preliminary Results

In this section we collect some preliminary lemmas used in the proof of the main
theorem.
Lemma 2.1. [12, Theorem 9.3.1] Let G be a finite solvable group and |G| = m ·n,
where m = pα1

1 · · · pαr
r , (m,n) = 1. Let π = {p1, ..., pr} and let hm be the number

of π−Hall subgroups of G. Then hm = qβ1

1 · · · qβs
s satisfies the following conditions

for all i ∈ {1, 2, ..., s}:
(1) qβi

i ≡ 1 (mod pj), for some pj .

(2) The order of some chief factor of G is divisible by qβi

i .

Lemma 2.2. [13] If G is a simple K3−group, then G is isomorphic to one of the
following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) or U4(2).

Lemma 2.3. [11] Let G be a finite group and M be a normal subgroup of G.
Both the Sylow p−number np(M) and the Sylow p−number np(G/M) of the quo-
tient G/M divide the Sylow p−number np(G) of G and np(M) np(G/M) | np(G).

Lemma 2.4. [14] Let G be a simple group of order 2a · 3b · 5c · 7d, abcd 6= 0.
Then G is isomorphic to one of the following groups: An, n = 7, 8, 9, 10; J2;
L2(49), L3(4), O5(7), O7(2), O+

8 (2), U3(5) and U4(3).

Lemma 2.5. [15] Let G be a simple K4-group. Then G is isomorphic to one
of the following groups:
(1) A7, A8, A9, A10.
(2) M11, M12, J2.
(3) (a) L2(r), where r is a prime and satisfies r2− 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1,
c ≥ 1 and v > 3 is a prime;
(b) L2(2m), where 2m − 1 = u, 2m + 1 = 3tb, where m ≥ 2, u, t are primes, t > 3,
b ≥ 1;
(c) L2(3m), where 3m + 1 = 4t, 3m − 1 = 2uc or 3m + 1 = 4tb, 3m − 1 = 2u, where
m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1;
(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4),
S4(5), S4(7), S4(9), S6(2), O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3),
U5(2), Sz(8), Sz(32), 3D4(2), 2F4(2)′.

Lemma 2.6. [3] Let αi be a positive integer (i = 1, ..., 5), p a prime and p /∈ {2, 3,
5, 7}. If G is a simple group and |G| = 2α1 ·3α2 ·5α3 ·7α4 ·pα5 , then G is isomorphic
to one of the following simple groups: A11, A12, M22, HS, McL, He, L2(q) (q = 26,
53, 74, 29, 41, 71, 251, 449, 4801), L3(9), L4(4), L4(7), L5(2), L6(2), O5(49), O7(3),
O9(2), S6(3), O+

8 (3), G2(4), G2(5), U3(19), U4(5), U4(7), U5(3), U6(2), 2D4(2). If
p = 11, then G is isomorphic to one of the following simple groups: A11, A12, M22,
HS, McL, U6(2).

Sylow’s theorem implies that if p is prime, then np = 1 + pk. If p = 2, then
n2 is odd. If p ∈ π(G), then
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
p | (np − 1)

(∗)
(p, np) = 1

In the proof of the main theorem, we often apply (∗) and the above comments.

3. Proof of the Main Theorem

Case 1. Characterization of the group A5

Let G be a finite centerless group such that NS(G)=NS(A5)={5, 6, 10}. First, we
prove that π(G) = {2, 3, 5}. By Sylow’s theorem, np | |G| for every p, so by NS(G),
we conclude that {2, 3, 5} ⊆ π(G). On the other hand, by (∗) if p ∈ π(G), then
p | (np− 1) and (p, np) = 1, which implies that p ∈ {2, 3, 5}. Therefore π(G) = {2,
3, 5}. Now n2(G) = 5, n3(G) = 10 and n5(G) = 6.

We prove that G is a nonsolvable group. If G is a solvable group, since n5(G) = 6
by Lemma 2.1, 3 ≡ 1 (mod 5), a contradiction. Hence G is a nonsolvable group.

SinceG is a finite group, it has a chief series. Let 1 = N0�N1�...�Nr−1�Nr = G
be a chief series of G. Since G is a nonsolvable group, there exists a maximal
non-negative integer i such that Ni/Ni−1 is a simple group or a direct product of
isomorphic simple groups and Ni−1 is a maximal solvable normal subgroup of G.
Now set Ni := H and Ni−1 := N . Hence G has the following normal series

1 �N �H �G

such that H/N is non-abelian simple or H/N is a direct product of isomorphic
non-abelian simple groups.

Since G is a K3−group, H/N is a simple K3−group or H/N is a direct product
of simple K3−groups. By Lemma 2.2, H/N ∼= A5, A6 or U4(2). On the other hand,
by Lemma 2.3, np(H/N) | np(G) for every prime p ∈ π(G), thus H/N ∼= A5.

Now set H := H/N ∼= A5 and G := G/N . Hence

A5
∼= H ∼= HCG(H)/CG(H) ≤ G/CG(H) = NG(H)/CG(H) ≤Aut(H).

IfK = {x ∈ G| xN ∈ CG(H)}, thenG/K ∼= G/CG(H). SoA5 ≤ G/K ≤Aut(A5) ∼=
S5. Therefore G/K ∼= A5 or G/K ∼= S5.

Suppose that G/K ∼= S5. We know that n2(S5) = 15 and n2(G) = n2(A5) = 5.
On the other hand, by Lemma 2.3, n2(S5) = 15 | n2(G) = 5, a contradiction.
Therefore G/K ∼= A5.

We show that K = N . Suppose that K 6= N . By Lemma 2.3, np(K) = 1 for
every prime p ∈ π(G), so K is a nilpotent subgroup of G. On the other hand,
since CG(H) ∼= K/N and N is a maximal solvable normal subgroup G, K is a
nonsolvable normal subgroup of G, a contradiction. Thus K = N , so G/N ∼= A5.

We claim that N = 1. Suppose N 6= 1, and let Q be a non-trivial Sylow
q−subgroup of N . Since N is nilpotent, Q is normal in G. Now if P ∈Sylp(G), then
P normalizes Q and so if p 6= q, then P ≤ NG(Q) = G. Also NP/N is a Sy-
low p-subgroup of G/N . On the other hand, if R/N = NG/N ( NP/N), then
R = NG(P )N . We know that np(G) = np(G/N), so |G : R| = |G : NG(P )|. Thus
R = NG(P ) and therefore N ≤ NG(P ). So Q ≤ NG(P ). Since P ≤ NG(Q) and
Q ≤ NG(P ), this implies that [P,Q] ≤ P , [P,Q] ≤ Q and so [P,Q] ≤ P ∩ Q = 1.
Thus P ≤ CG(Q) and Q ≤ CG(P ), in other words P and Q centralize each
other. Therefore P ≤ CG(Z) where Z = Z(Q). On the other hand, since
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CG(Z)�NG(Z) = G, CG(Z) is a normal subgroup of G. Also since N is a nilpotent
group, N�CG(Z). So CG(Z)/N�G/N . Since P is not contained in N and G/N is
a simple group, CG(Z)/N = G/N . Hence CG(Z) = G. Therefore Z 6= 1 contained
in the center of G, which is a contradiction. Hence N = 1 and G ∼= A5.

Case 2. Characterization of the group A6

Let G be a finite centerless group such that NS(G)=NS(A6)={10, 36, 45}. First
we prove that π(G) = {2, 3, 5}. By Sylow’s theorem, np(G) | |G| for every p,
so by NS(G), we conclude that {2, 3, 5} ⊆ π(G). On the other hand, by (∗) if
p ∈ π(G), then p | (np − 1) and (p, np) = 1, which implies that p ∈ {2, 3, 5, 7, 11}.
Therefore π(G) ⊆ {2, 3, 5, 7, 11}. Thus n2(G) = 45, n3(G) = 10 and n5(G) = 36.
If 7 ∈ π(G), then n7(G) = 36 and if 11 ∈ π(G), then n11(G) = 45.

We prove that G is nonsolvable group. If G is a solvable group, then since
n3(G) = 10 by Lemma 2.1, 5 ≡ 1 (mod 3), a contradiction. Hence G is a nonsolvable
group.

Since G is finite and nonsolvable, it has the following normal series

1 �N �H �G

such that H/N is non-abelian simple or H/N is a direct product of isomorphic
non-abelian simple groups.

Let H/N = S1 × ... × Sr, where S1 is a simple group and S1
∼= ... ∼= Sr. Since

π(G) ⊆ {2, 3, 5, 7, 11}, S1 is a simple K3− or K4− or K5−group. We consider the
following subcases:
Subcase a. Let π(G) = {2, 3, 5}. Hence H/N is a simple K3−group or H/N is
a direct product of simple K3−groups. On the other hand, np(H/N) | np(G) for
every prime p ∈ π(G), so by Lemma 2.2, H/N ∼= A5 or A6.

If H/N ∼= A5 then, similar to the proof of Case 1, there exists a normal subgroup
K such that N ≤ K and A5 ≤ G/K ≤ S5.

If G/K ∼= A5, then we prove that K = N . Suppose that K 6= N . Since
N < K and N is a maximal solvable normal subgroup G, K is a nonsolvable
normal subgroup of G. On the other hand, n3(K) = 1, n2(K) | 9 and n5(K) | 6,
by Lemma 2.3. Because K is a nonsolvable, it has the following normal series

1 �N1 �H1 �K

such that H1/N1
∼= A5. Since n3(H1/N1) = n3(A5) | n3(K) = 1, we get a

contradiction. Thus N = K. Therefore G/N ∼= A5.
Let P be a Sylow 5-subgroup of G. We know that PN/N is a Sylow 5-subgroup

of G/N = A5 and NG(P )N/N normalizes PN/N and hence has order 10 in G/N .
So |NG(P )N | = 10×|N |. Therefore the number of Sylow 5-subgroup of NG(P )N/N
is 6. Since NG(P )N/N is solvable, by Lemma 2.1 we get a contradiction. Similarly
if G/K ∼= S5, then K = N , a contradiction.

If H/N ∼= A6, then similar to the proof of Case 1, there exists a normal subgroup
K such that N ≤ K and A6 ≤ G/K ≤Aut(A6). So G/K ∼= A6, S6, PGL(2, 9),
M10 or PΓL(2, 9).

Let G/K ∼= A6. By Lemma 2.3, K is a nilpotent group and hence K = N .
We claim that N = 1. Let Q be a non-trivial Sylow q−subgroup of N . Since N

is nilpotent, Q is normal in G. If P ∈Sylp(G), then Q normalizes P ; so if p is not q,
then P and Q centralize each other. Let C = CG(Q), then C contains a full Sylow
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p−subgroup of G for all primes p different from q, and thus |G : C| is a power of
q. Now let S be a Sylow q−subgroup of G. Then G = CS. Also if Q > 1, then
CQ(S) is nontrivial, so CQ(S) ≤ Z(G). Since by assumption Z(G) = 1, it follows
that Q = 1. Since q is arbitrary, N = 1, as claimed. Therefore G ∼= A6.

If G/K ∼= S, where S is one of the groups PGL(2, 9), M10 or PΓL(2, 9), then
from np(S) = np(G) for every prime p we prove K = N and similar to the above
discussion N = 1. Therefore G ∼= S6, PGL(2, 9), M10 or PΓL(2, 9).
Subcase b. Let π(G) = {2, 3, 5, 7}. Hence H/N is a simple K3−group or H/N
is a direct product of simple K3−groups, or H/N is a simple K4−group or H/N is
a direct product of simple K4−groups.

If H/N is a simple K3−group or H/N is a direct product of simple K3−groups,
then by Lemma 2.2, H/N ∼= A5, A6, L2(7), L2(8), U3(3) or U4(2).

If H/N ∼= L2(7), L2(8), U3(3) or U4(2), then by Lemma 2.3, n2(L2(7)) = 21 |
n2(G) = 45, n3(L2(8)) = 28 | n3(G) = 10, n2(U3(3)) = 189 | n2(G) = 45 and
n3(U4(2)) = 160 | n3(G) = 10, a contradiction.

If H/N ∼= A5, then similar to the proof of Case 1, there exists a normal subgroup
K such that N ≤ K and A5 ≤ G/K ≤ S5.

If G/K ∼= A5, then we prove that K = N . Suppose that K 6= N . By Lemma
2.3, n3(K) = 1, n2(K) | 9, n5(K) | 6 and n7(K) | 36. Since N < K and N is a
maximal solvable normal subgroup G, K is a nonsolvable normal subgroup of G.
Therefore K has the following normal series

1 �N1 �H1 �K

such that H1/N1
∼= A5, A6, L2(7), L2(8), U3(3), U4(2) or S, where S is one of

the groups: An for n = 7, 8, 9, 10, J2, L2(49), L3(4), O5(7), O7(2), O+
8 (2), U3(5)

and U4(3), by Lemma 2.4. Since 3 ∈ π(H1/N1) and n3(H1/N1) | n3(K) = 1, we
get a contradiction. Thus N = K. Now G/N ∼= A5. This implies that 7 ∈ π(N)
and the order of a Sylow 7-subgroup in G and N are equal. As N is normal in G,
the number of Sylow 7-subgroups of G and N are equal. Therefore the number of
Sylow 7-subgroups of N is 36. Since N is solvable by Lemma 2.1, 4 ≡ 1 (mod 7),
a contradiction.

Similar to the above discussion if G/K ∼= S5, we get a contradiction. If H/N ∼=
A6, then similar to the above discussion, we get a contradiction.

Now let H/N be a simple K4−group or H/N be a direct product of simple
K4−groups. By Lemma 2.4, H/N ∼= S, where S is one of the groups: An for n = 7,
8, 9, 10, J2, L2(49), L3(4), O5(7), O7(2), O+

8 (2), U3(5) and U4(3). Since 3 ∈ π(S)
and n3(S) | n3(G) = 10, we get a contradiction.
Subcase c. Let π(G) = {2, 3, 5, 11}. Hence H/N is a simple K3−group or H/N
is a direct product of simple K3−groups, or H/N is a simple K4−group or H/N
is a direct product of simple K4−groups.

If H/N is a simple K3−group or H/N is a direct product of simple K3−groups,
then by Lemma 2.2, H/N ∼= A5, A6 or U4(2).

Let H/N ∼= U4(2). By Lemma 2.3, n3(U4(2)) = 160 | n3(G) = 10, a contradic-
tion.

Let H/N ∼= A5. Similar to the proof of Subcase b, we get a contradiction.
Now let H/N be simple K4−group. By Lemma 2.5, if H/N ∼= L2(r), where r

is a prime and satisfies r2 − 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1, c ≥ 1 and v > 3



154 ALIREZA KHALILI ASBOEI

is a prime, then by π(H/N) = {2, 3, 5, 11}, r = 11. So H/N ∼= L2(11); since
n11(L2(11)) = 12 | n11(G) = 45, this is a contradiction.

If H/N ∼= L2(2m), where 2m−1 = u, 2m+1 = 3tb, where m ≥ 2, u, t are primes,
t > 3, b ≥ 1, then u, t ∈ {3, 5, 11}, a contradiction.

If H/N ∼= L2(3m), where 3m + 1 = 4t, 3m − 1 = 2uc or 3m + 1 = 4tb, 3m − 1 =
2u, where m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1, then u, t ∈ {3, 5, 11}, a
contradiction.

For the other case by Lemma 2.5, we get a contradiction.
Subcase d. Let π(G) = {2, 3, 5, 7, 11}. Hence H/N is a simple Kn−group or
H/N is a direct product of simple Kn−groups for n = 3, 4, or 5.

If H/N is a simple K3−group or H/N is a direct product of simple K3−groups
or H/N is a simple K4−group or H/N is a direct product of simple K4−groups,
then similar to the proof of Subcase a or b, we get a contradiction.

LetH/N be a simpleK5−group, orH/N is a direct product of simpleK5−groups.
By Lemma 2.6, H/N ∼= A11, A12, M22, HS, McL or U6(2) and by n3(H/N) |
n3(G) = 10, we get a contradiction. �
We conclude with a conjecture.
Conjecture: Let G be a finite centerless group such that NS(G)=NS(An), then
An ≤ G ≤Aut(An).
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