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Abstract. Logic puzzles form an excellent set of problems for the teaching of advanced
solution techniques in operations research. They are an opportunity for students to test
their modelling skills on a different style of problem, and some puzzles even require
advanced techniques to become tractable. Fillomino is a puzzle in which the player must
enter integers into a grid to satisfy certain rules. This puzzle is a good exercise in using
lazy constraints and composite variables to solve difficult problems.
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Introduction

Logic puzzles form an excellent set of problems for
the teaching of advanced solution techniques in opera-
tions research. They are an opportunity for students to
test their modelling skills on a different style of prob-
lem, and some puzzles even require advanced tech-
niques to become tractable. Puzzles are also typically
modelled as integer programs (IP), for example, cross-
word construction (Wilson 1989), Su Doku and the Log
Pile puzzle (Chlond 2005), Rummikub (den Hertog and
Hulshof 2006), the Battleship problem (Meuffels and
den Hertog 2010) and more.

The use of composite variables can make the solution
to some problems much easier to obtain, however they
are not widely used. The same can be said for lazy
constraints: they are an extremely powerful technique
and can yield impressive results for difficult integer
and mixed-integer programs, however there are few
publications demonstrating the use of lazy constraints.
This is perhaps because they are not widely known
techniques, and as such should be taught more often in
advanced undergraduate operations research courses.

Fillomino is a puzzle whose creation is credited to
Nikoli Co., Ltd. (2008). The player must enter integers
into a grid to satisfy certain rules. Some cells in the grid
have preset values which cannot change. If two cells
that share an edge have the same number, they become
a tile. If a cell is neighbouring a tile of the same value,
it joins the tile. The grid must be filled with numbers
such that every cell is assigned a number, and every tile
filled with k’s has k cells belonging to it. Two tiles of the
same number cannot share an edge, since they would
merge into one tile which has too many cells. One last
assumption that we make is every tile must contain at
least one preset value, however there are versions of
the puzzle where this is not the case.

85

The solution to each puzzle is a unique layout of
polyominoes “(shapes made by combining individual
squares).” An example of a starting grid and its unique
solution can be seen in Figure 1. Every puzzle can be
solved logically, and an efficient algorithm exists for
solving it in this way (Yen et al. 2011). Constraint pro-
gramming could also be applied to this problem, how-
ever we are interested in solving it using integer pro-
gramming, since this puzzle is an excellent example
of the usefulness of composite variables and lazy con-
straints. First, we will give a brief description of these
two methods.

Lazy Constraints

There are a number of problems which can be for-
mulated using very many constraints, most of which
may not be required (or active) for solving a specific
instance of the problem. Specialist branch-and-cut pro-
cedures have been used to solve some of these prob-
lems (Applegate et al. 2001). However, since 2012, com-
mercial MIP solvers have allowed these constraints
to be added as required during the exploration of
the branch-and-bound tree. The advent of such “lazy
constraints” has made the solution of these problems
much easier in some cases.

The general approach to formulating a problem
using lazy constraints is to remove a complicating part
of the problem. Whenever the solver finds a feasible
integer solution, that solution is checked against the
constraints that were removed. If the solution is actu-
ally infeasible, a new constraint is added to the prob-
lem to cut off that (and possibly other) solutions.

Another common use for lazy constraints is to im-
plement subtour elimination constraints in problems
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Figure 1. Example of Fillomino Starting Grid and Corresponding Solution
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Notes. Underlined numbers are preset values.

like the Travelling Salesman Problem (Gurobi Opti-
mization Inc. 2015). Instead of adding all possible sub-
tour elimination constraints, the problem is formu-
lated only with the degree-2 constraint (every city must
be connected to exactly two other cities). Every time
a candidate solution is found, if a subtour exists, a
constraint eliminating that specific subtour is added
and the branch-and-bound process continues. This can
have a large impact on the solution time for difficult
problems.

The main reason we use lazy constraints for this
problem is to enforce the size of the tiles. It is very
difficult to formulate an integer program which man-
ages to generate tiles of the correct size, however with
the inclusion of lazy constraints the problem becomes
much more simple.

Composite Variables

We use the term composite variables to refer to vari-
ables which represent a collection of decisions in the
underlying model. In this sense, using composite vari-
ables is a column generation technique. While delayed
column generation is a common form of column gen-
eration (Barnhart et al. 1998), the method we present
here involves generating all possible columns initially.
Modern solvers are able to solve even very large com-
posite variable formulations extremely quickly, and so
the majority of time is usually spent generating the
columns. For this problem, the solver is able to solve
the problem in the preprocessing stage, and the gen-
eration of all possible tiles takes only a few seconds,
making composite variables an efficient way of solving
this problem.

Integer Programming Formulation

We can formulate this puzzle as an integer program
and apply lazy constraints to it to find the unique solu-
tion to each grid. We require variables representing the

entries in each cell of the grid. We also use variables
recording how many tiles of each type there are, which
we can use to tighten the formulation by placing upper
and lower bounds on the number of cells of each type.
Since there is a unique solution, we do not require an
objective function. The formulation we present is as
follows:

Sets
N, M: the rows and columns of the grid;
K: the range of valid cell entries;
Neigh,;: the set of cells which share an edge with (i, j).

Data
Preset;;: the given value of cell (i, j). 0 implies cell (7, j)
is empty.
Variables
x5 is 1if cell (i, j) is of type k, 0 otherwise;
Yi: is the number of tiles of type k.

Constraints

injkzll Vi,jENXM, 1)

keK
xijPresefij = 1' v i/ ] eENXM | PrESEtij # 0' (2)
x;=0, Vi, je NXM]|Preset; #1, ®)

Xijp < Z Xk, Vi, JENXM,
(a, b)eNeigh;; VkeK|k>1, (4
DT xgp<1+ (INeigh;;| = 1)(1 = x;5),
(a,b)eNeigh;; Vi, ] eNXM, (5)
>V xjp=ky, Vkek (6)

(i, j)eNxM

Constraint (1) ensures every cell has exactly one
value assigned to it. The next two constraints (2-3) fix
the preset values, and make sure no extra 1’s are added.
Constraint (4) says that a cell can only have a value k if
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at least one neighbouring cell also has a value k. Since
there is only one unique domino (a tile with two cells),
we can add a constraint for the case of 2’s that says
that if a cell is a 2, it has exactly one neighbour which
is of type 2, however if it is not a 2 then there are no
restrictions on how many neighbouring 2’s there are.
This is enforced by constraint (5). Finally, we know that
the number of cells of type k is k times the number of
tiles of type k (6).

This is an incomplete formulation. These are the base
constraints to generate example solutions to the grid,
however there is nothing to prevent tiles of sizes other
than k from occurring. We find it near impossible to
add constraints that enforce the correct size of each tile
and that avoid two tiles of the same type touching or
overlapping.

Use of Lazy Constraints to Enforce

Tile Size

When a potential solution is found by the above imple-
mentation, we must check to make sure all tiles are the
correct size. To do this, we measure the size of each
tile, and if it is not correct, we add one of two lazy
constraints.

Bounding Tile Size from Above

Once we have a potential solution, we check the size
of each tile. If any tiles are too big, then at least one of
the cells in this tile must change its value. Let T be the
set of cells in this tile, which are all numbered k* with
|T| > k*. We then add the lazy constraint:

> xp <ITI-1. 7)

@i, j)eT

We cannot say that the number must be equal to k,
since this one tile may in fact be two tiles which are
joined by one incorrectly numbered cell. Enforcing an
equality constraint would make the unique solution
invalid and the model would become infeasible. This
constraint forbids the current configuration of tiles,
which forces the model to try something different.
Eventually there will be no more tiles which are larger
than they are meant to be. This does not, however, stop
them from being smaller than they need to be.

Bounding Tile Size from Below

If there are no tiles that are larger than they are allowed
to be in a solution, we then check for tiles that are
smaller than required. For each such tile, let T be the
set of cells in this tile, which are all numbered k* and
|T| < k*. Also let TN be the set of cells which are a
neighbour of at least one cell in T, but are not in T, and
whose preset value is 0. If their preset value was k~,

they would already be part of this tile. We then add the
lazy constraint:

Z xijk,+ Z qubk’ < |T|+|TN|_1 (8)

i,j)eT a,b)eTN k’eK
(i, j) (@, DETN kek

This constraint says that either the tile needs to get
smaller and perhaps disappear, or some of the neigh-
bours have to change their value to k*. In other words,
it will either remove the tile or pull at least one neigh-
bour into it. This will eventually bound all tiles from
below. These two lazy constraints, together with the
integer programming formulation above, will find the
unique solution to each puzzle, however it may take a
long time for the larger grids. We can speed it up using
a number of preprocessing techniques.

Preprocessing Techniques

Upper Bound on Number of Tiles

Since every tile has to cover at least one preset value,
we can calculate an upper bound on the number of
tiles of each type. The simplest way would be to count
the number of preset cells of type k, which provides an
upper bound for y,. There is, however, the possibility
that there may be multiple preset cells of the same type
connected to each other, which will be part of the same
tile. Thus, for every value k € K, we count the number
of connected groups of cells of type k and call this
number ;. If k < 3, then the number of tiles is exactly
equal to €, otherwise we add constraints of the form:

Y <6, VkeK k>2. 9)

Lower Bound on Number of Tiles

We can also work out a lower bound on the number
of tiles of each type since every preset value has to be
covered. Because the upper bound on the number of
tiles is an equality for types 1 and 2, we only need to
consider every value k € K greater than 2. For each of
these, we can calculate the geodesic distance of each
cell from the nearest preset value of k. The geodesic
distance is the length of the shortest valid path of cells
from a preset value to the current cell.

For each value k > 2, we calculate the geodesic dis-
tance from each empty cell to the nearest cell with
preset value k. This distance represents the minimum
number of cells of type k that must be added to include
each cell in a tile of type k. If it is possible for two cells
with preset values k to be part of the same tile, there
will be two paths, one from each, of length at most
L(k —1)/2] which will touch. By removing any cells
whose geodesic distance is greater than |(k —1)/2],
we can count the number of connected components
remaining, which gives us the minimum number of
tiles needed to cover all cells with preset values of k.
The constraint is of the same form as above, except it
will be a greater than or equal to constraint.
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Restriction on Location of Cells

Because a cell can only have a value k if it is part of
a tile of type k, and each tile must cover at least one
preset value, if a cell has a geodesic distance of k or
greater from the nearest preset cell of type k, it can not
possibly be part of a tile of type k. We can add con-
straints to reflect this by following a similar procedure
to the other preprocessing techniques. For each value
of k € K greater than 2, we calculate the geodesic dis-
tance from each preset value. Where n preset values
of the same type are connected, we know that all cells
with a geodesic distance of at most k —# could possibly
take the value k. For all cells (7, j) which are not within
k —n of any preset value, we add a constraint x;;; =0,
which removes many unnecessary variables.

Neighbours Around Preset Values

Finally, we know that each preset value belongs to a
tile, so if we consider the set of all cells with geodesic
distance at most k — 1 from a particular preset cell of
type k, there must be at least k cells of type k in this
set. For a connected group of | preset cells of type k,
we find the set S of cells with geodesic distance at most
k —1 from any cell of the connected group, and add the

constraint
D x>k (10)
(i,j)es

Composite Variables Formulation

Another way of formulating this problem is to con-
sider it as a tiling problem. If we can find every
possible placement of tiles of every type, we can
choose which combination of tiles gives us the unique
solution. The method of composite variables is a
column generation approach, but instead of generat-
ing columns during the solution process, all columns
(in this case, valid placements of tiles) are gener-
ated first. We now present our composite variables
formulation.

Sets
N, M: the rows and columns of the grid,
K: the range of valid cell entries,
P: the set of all possible tiles that can be placed
in the grid,
P, C P: the set of all possible tiles of type k that can
be placed in the grid,
.. the set of cells which share an edge with (i, j),
T;:: the set of tuples (k, p) representing all tiles
p € P which cover cell (i, j).

Data
Preset;;: the given value of cell (i, j). 0 implies cell (7, j)
is empty.

Variables
Xy, is 1if tile p € Py is used, 0 otherwise.

Constraints

> x,=1, VY(i,j)e NxM. (11)
(k,p)eTy;

There is one constraint for every cell of the grid
which says that it must be covered by exactly one tile,
with the exception of cells that have a 1 in them. Each
tile is represented as a (k,p) pair, describing which
value of k it covers and which p € P, it is. If all possible
tile placements are known, this will yield the unique
solution to the problem. To find all possible tile place-
ments, we start with the preset cells of each type and
grow them outwards by adding neighbours one by
one, until they are the correct size, being careful to
remove duplicates as we go.

The runtime of this implementation is highly de-
pendent on how quickly one can find all possible tile
placements, as the integer program itself solves in a
fraction of a second. Another possible concern is that
two tiles of the same type may touch in a solution.
If this is the case, we can use a modified version of
the lazy constraints described above. By following the
same procedure, checking each tile to see if any one is
larger than k cells, we look at all the cells in this over-
sized tile and note which tiles p € P they belong to in
the current solution. Where T is the set of tiles in this
violation, we add the constraint

D x, <IT|-1. (12)

(k,p)eT

This will ensure we find the unique solution.

Results

We tested both implementations using Python 2.7 and
the Gurobi 6.5 (2016) solver package. We sourced four
randomly-generated puzzles from the Puzzle Baron
website (2016), all of which are 20 x 20 and follow our
assumptions. Table 1 shows that, when implemented
efficiently, the composite variables implementation is
significantly faster. The majority of time is spent gen-
erating the tiles, and once completed, the IP solves in
a fraction of a second. For the lazy constraints imple-
mentation, less than one second is spent preprocessing
the grid and adding initial constraints.

Table 2 shows the number of variables and con-
straints for both implementations, as well as the num-
ber of nodes explored and lazy cuts generated for
the lazy constraints implementation. For the compos-
ite variables implementation, the number of variables
reflects the number of potential tiles which can be
legally placed in the grid, and the number of con-
straints is 400 minus the number of squares that
contain 1’s. This is because there are no options for
placing 1’s outside the preset locations, so no tiles will
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Table 1. Comparison of Runtimes for the Composite Variables and Lazy Constraints

Implementations

Composite variables Lazy constraints
Instance P Total P Total
1 0.09 2.28 25.38 25.73
2 0.11 241 11.42 11.76
3 0.13 1.64 8.37 8.73
4 0.13 2.08 4.05 4.41

Notes. All times are in seconds. The times spent solving the IP and the whole problem are reported

separately.

Table 2. Comparison Between the Composite Variables and Lazy Constraints

Implementations

Composite variables

Lazy constraints

Instance Variables Constraints Variables Constraints Lazy cuts Nodes
1 5,219 325 755 862 244, 535 48,932
2 6,979 324 536 618 136, 393 26,269
3 4,348 326 612 676 153, 322 28,428
4 4,842 329 648 702 43,341 10,301

Notes. The number of variables and constraints used in solving the IP, number of lazy constraints
added and number of nodes explored in the branch-and-bound tree are shown. The Lazy Cuts column

is separated into (upper, lower) cuts.

cover those squares and as such they do not require
constraints.

For the lazy constraints implementation, the number
of variables reported is the number left after Gurobi’s
presolve stage. Initially, the number is always 3,609:
20x20x9 for the x;; variables, and 9 for the y, vari-
ables. With our preprocessing, most of those variables
will be fixed to 0 (or 1 in the case of cells whose values
have been preset), so the number remaining reflects the
actual number of possibilities for cell values. Since we
know that there are around 325 cells which are not 1,
and there are usually 600 variables remaining, this sug-
gests that on average a blank cell only has two choices
for which number it could be.

The number of lazy constraints added is also inter-
esting. The number of times tiles have to be bounded
from below is always higher than, and usually at least
double, the number of times they are bounded from
above. This may be because both constraints can be sat-
isfied by moving a cell of the tile to a neighbouring
blank cell, thus maintaining the same size of the tile in
a different location, however it is much easier for this to
occur with tiles that are smaller than needed compared
to those which are larger.

Conclusion
This problem is an excellent demonstration of how
lazy constraints and composite variables can be used

to solve problems which are difficult to implement
as straight MIPs, or where the naive implementa-
tion is intractable. There are many other puzzles and
industrial problems which can benefit from similar
approaches.
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