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Abstract. We construct families of curves which provide counterexamples for a
uniform boundedness question. These families generalize those studied previ-
ously by several authors in [Ulm14b], [BHP+15], and [CUV12]. We show,
in detail, what fails in the argument of Caporaso, Harris, Mazur that uniform
boundedness follows from the Lang conjecture. We also give a direct proof
that these curves have �nitely many rational points and give explicit bounds
for the heights and number of such points.

1. Unboundedness of Rational Points

The question of whether there is a uniform bound for the number of rational
points on curves of �xed genus greater than one over a �xed number �eld has been
considered by several authors. In particular, in [CHM97] Caporaso et al. showed
that this would follow from the Bombieri-Lang conjecture that the set of rational
points on a variety of general type over a number �eld is not Zariski dense. In
[CUV12], Conceição and the present authors gave examples over function �elds
of families of smooth curves of �xed genus whose number of rational points is
unbounded. Our �rst point is that these examples are part of a more general
family.

Fix a prime p and a power q of p, let Fq be the �eld of q elements, and let
Fq(t) be the rational function �eld over Fq. Choose an integer r > 1 and prime
to p, and let h(x) ∈ Fq[x] be a polynomial of positive degree which is not the e-th
power of another element of Fq(t) for any divisor e > 1 of r. We also assume that
h(0) 6= 0. For a ∈ Fq(t) \ Fq, let X = Xh,r,a be the smooth projective curve over
Fq(t) associated to the equation

X : yr = h(x)h(a/x).

Our hypotheses imply that X is absolutely irreducible and its genus is independent
of a. In the case where h has distinct roots and degree s with (r, s) = 1, the
Riemann-Hurwitz formula shows that X has genus g = (r − 1)s.

Theorem 1.1. Assume that r divides qf + 1 for some f ≥ 1. Then as a varies

through Fq(t) \ Fq, the number of rational points of the curve Xh,r,a over Fq(t) is
unbounded.

Proof. We �rst note that if d = qn + 1, r divides d, and a = td, then we have a
rational point (x, y) = (t, h(t)d/r) on X. Second, if m divides n and n/m is odd,
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then d′ = qm + 1 divides d. If r divides d′, setting e = d/d′, we have another
rational point (x, y) = (te, h(te)d

′/r) on X. Thus if we take n to be a multiple of f
such that n/f is odd and has many factors, we have many points. �

Examples 1.2. Up to change of coordinates, the case r = 2, h(x) = x + 1 is the
elliptic curve studied in [Ulm14b], the case r > 1, h(x) = x+1 is the curve of genus
r−1 whose Jacobian is the subject of [BHP+15], and the case r = 2, h(x) = xs+1
with s odd is the curve of genus s studied in [CUV12].

Remark 1.3. Fixing h and r, here we consider a family of curvesXa over a �xed �eld
Fq(t). It is sometimes more convenient to consider the �xed curve yr = h(x)h(t/x)
over extensions Fq(u)/Fq(t) where t is a varying rational function of u.

Consider the case r = 2, h(x) = xs + 1 with s odd. Let X be the smooth
projective surface with a�ne model

y2 = x(xs + 1)(xs + ts)

and consider the �bration X → P1, (x, y, t) 7→ t. Its generic �ber is isomorphic to
Xh,r,t over Fq(t). As remarked in [CUV12], the results of [CHM97] show that the
�bration has a �bered power which covers a variety of general type. However, since
this �bration is de�ned over a �nite �eld, the variety of general type will also be
de�ned over a �nite �eld. Moreover it may have a Zariski dense set of Fp(t)-rational
points, so the rest of the argument of [CHM97] does not apply. (See [AV96] for
a general discussion, including the function �eld case).

We can be more speci�c: In the next section, we will see that for many choices
of h and r, Xh,r,t has a model over P1

t which is already a variety of general type.

2. Geometry of a Regular Proper Model of X

When a curve X over Fq(t) has a model X → P1
t such that X is dominated by

a product of curves, many questions about X become much simpler. For example,
the Tate conjecture on divisors holds for X , the conjecture of Birch and Swinnerton-
Dyer holds for the Jacobian of X, and it is often possible to compute or estimate
the rank of the Néron-Severi group of X and the rank of group of rational points
on the Jacobian. (This observation is mainly due to Shioda [Shi86] with further
elaboration in [Ulm07].)

Fix a polynomial h(x) ∈ Fq[t] and an integer r with hypotheses as in the �rst
section. Fix also an integer d prime to p, and let X = Xh,r,td be the smooth
projective curve over Fq(t) associated to the equation

yr = h(x)h(td/x).

Let X be a smooth projective surface equipped with a morphism to P1 whose generic
�ber is isomorphic to X. (The construction is elementary; see [Ulm14a, Ch. 2] for
details.) In this section, we will show that X is dominated by a product of curves
and give two applications: X is often of general type, and X is non-isotrivial.

Let C = Ch,r,d be the smooth projective curve over Fq associated to

wr = h(zd).

Our hypotheses on h and r imply that C is absolutely irreducible. Note that C
admits an action (over Fq) of the group G := µr × µd.
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Proposition 2.1. The surface X is birational to the quotient of C×C by the action
of G, where G acts �anti-diagonally,� i.e., by the action above on the �rst factor

and by its inverse on the second factor.

Proof. The surface X is birational to the (quasi-) a�ne surface given by

Y : yr = h(x)h(td/x).

We de�ne a rational map φ from C × C to Y by setting

φ∗(x) = zd1 ,

φ∗(y) = w1w2,

φ∗(t) = z1z2.

It is evident that φ factors through (C × C)/G where G acts anti-diagonally, and a
consideration of degrees shows that the induced rational map from (C × C)/G to Y
is birational. �

We note that (C × C)/G, and therefore X , contains in�nitely many rational
curves. Indeed the images in the quotient of the graphs of qn-power Frobenius
maps C → C and their transposes are rational curves. This gives a Zariski dense
set of rational curves on X .

Note that when d = qn + 1, the image of the graph of the qn-power Frobenius
C → C in X is the section of X → P1 corresponding to the point (t, h(t)d/r), and
the image of the transpose of Frobenius corresponds to the point (td−1, h(t)d/r). In
some sense, this �explains� these points.

Our next result shows that X has general type as soon as C has genus > 1. (See
also [Gra07, �7.1] for another proof of this fact.) If h has degree s with (r, s) = 1
and distinct, non-zero roots, and if r|d, then the genus of C is (r − 1)(ds − 2)/2
which is > 1 for large d as soon as r > 1 and s ≥ 1.

Lemma 2.2. Let C be a curve of genus g(C) > 1 over a �eld k. Let G be a �nite

abelian group of automorphisms of C with the order of G prime to the characteristic

of k. Let Y = C×C and let G act on Y �anti-diagonally": g(y1, y2) = (gy1, g
−1y2).

Then the quotient Y/G is of general type.

Note that Y/G is normal with isolated singular points, so it makes sense to speak
of the canonical bundle and the plurigenera of Y/G.

Proof. We will show that Y/G has Kodaira dimension 2, i.e., that the plurigenera
of Y/G grow quadratically. Let Vn = H0(C,K⊗nC ). Since g(C) > 1,dimVn grows
linearly with n : dimVn ≥ cn for some c > 0.

Decompose Vn into eigenspaces for the action of G. At least one of them has
dimension ≥ dim(Vn)/|G|. Call it Vn,ρ (where ρ is the character by which G acts
on this subspace).

Since G acts anti-diagonally, the image of Vn,ρ ⊗ Vn,ρ → H0(Y,K⊗nY ) (via pull-
back and wedge product) lands in the G-invariant subspace, which we denote
H0(Y,K⊗nY )G. The map is injective, so

dimH0(Y,K⊗nY )G ≥ (dim(Vn)/|G|)2.

This last expression is ≥ c′n2 for some c′ > 0.
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Since |G| is prime to the characteristic of k, we have

H0(Y/G,K⊗nY/G) = H0(Y,K⊗nY )G.

Thus dimH0(Y/G,K⊗nY/G) ≥ c
′n2, as required. �

Now we show that X is not isotrivial, i.e., there does not exist a curve X0 de�ned
over a �nite �eld k and an isomorphism

X ×Fq(t) Fq(t) ∼= X0 ×k Fq(t).

Proposition 2.3. The curve X = Xh,r,a is not isotrivial for any a ∈ Fq(t) \ Fq.

Proof. From the de�nition of isotrivial, it clearly su�ces to prove that Xh,r,t is not
isotrivial, so we assume a = t for the rest of the proof. We will use the domination
of a regular proper model X of X by C × C where C is the curve associated to
wr = h(z).

Let Z ⊂ C × C be the locus where z1z2 = 0. Since h(0) 6= 0, this is the union of
2r curves each isomorphic to C meeting transversally at r2 points.

Let C̃ × C be the blow up of C ×C at the closed points where either (z1 = 0, z2 =

∞) or (z1 =∞, z2 = 0). Let Z̃ be the strict transform of Z in C̃ × C.
The anti-diagonal action of G := µr on C ×C lifts uniquely to C̃ × C, it preserves

Z̃, and it has no �xed points on Z̃. (Again we use that h(0) 6= 0.) It follows that
Z̃/G is the union of two copies of C meeting transversally at r points. In particular,

Z̃/G is a semistable curve. It also follows that C̃ × C/G is regular in a neighborhood
of Z̃/G.

Let C×C99KP1
t be the rational map de�ned by t = z1z2. This induces a morphism

C̃ × C → P1 which factors through π : C̃ × C/G → P1
t . Moreover, the generic �ber

of π is X, and π−1(0) is precisely Z̃/G.
We have thus constructed a regular proper model of X in a neighborhood of

t = 0 such that the special �ber is a non-smooth, semi-stable curve. This proves
that the moduli map P1

t → Mg associated to X is non-constant, and so X is
non-isotrivial. �

3. Height Bounds

The �niteness of X(Fq(t)) when X has genus > 1 is of course a consequence of
the Mordell conjecture for function �elds. We will use the ABC theorem to give a
direct, e�ective proof of this fact for a subclass of the curves studied above, namely
a common generalization of the curves in [CUV12] and [BHP+15].

For the rest of the paper, we �x positive integers r and s prime to one another
and to p, we let h(x) = xs + 1, and we study the curve

X : yr = h(x)h(td/x) =
(xs + 1)(xs + tds)

xs

over Fq(t) where d is prime to p. As noted above, the genus g of X is (r − 1)s.
Note that if (x, y) is an Fq(t)-rational point on X and x is a p-th power, then

(td/x, y) is another point and td/x is not a p-th power.
In this section, we prove the following height bound.
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Theorem 3.1. Suppose that the genus g of X is > 2. Let (x, y) be an Fq(t)-
rational point on X, write x = u/v with u, v ∈ Fq[t], (u, v) = 1, and let δ =
max{deg u,deg v}. If x is not a p-th power, then

δ ≤ dg − 1

g − 2

and if x is a p-th power, then

δ ≤ 2d(g − 1)− 1

g − 2
.

Proof. The case when x is a p-th power follows immediately from the case when
x is not a p-th power after replacing x with td/x, so we may assume x is not a p-th
power.

We write a for td. The hypotheses imply that

(us + vs)(us + asvs)

usvs

is an r-th power in Fq(t). Since u and v are relatively prime, we have

gcd(us, us + asvs)| as

and
gcd(us + vs, us + asvs)| (as − 1),

and all of the other terms in the displayed quantity are pairwise relatively prime,
i.e.,

gcd(us, vs) = gcd(us, us + vs) = gcd(vs, us + vs) = gcd(vs, us + asvs) = 1.

Therefore, v is an r-th power, tiu is an r-th power for some i ∈ {0, . . . , r − 1}, and
f(us + vs) is an r-th power for some f dividing (as − 1)r−1.

Next, we recall the ABC theorem in the following form (a special case of [Mas84,
Chapter 6, Lemma 10]).

ABC Theorem. If A,B ∈ Fq[t] are not both p-th powers, (A,B) = 1, and C =
A+B, then we have

max{degA,degB, degC} ≤ degN(ABC)− 1,

where N(P ) is the product of irreducible factors of P .

Apply this with A = us, B = vs. We have degN(A) ≤ (δ+r−1)/r, degN(B) ≤
δ/r, and

degN(C) ≤ (δs+ deg f)/r ≤ (δs+ ds(r − 1))/r.

Since A and B are relatively prime, N(ABC) = N(A)N(B)N(C) and we �nd that

δs ≤ δ(s+ 2) + ds(r − 1)− 1

r
and so

δ((r − 1)s− 2)

r
≤ ds(r − 1)− 1

r
.

Assuming that g − 2 = (r − 1)s− 2 > 0, we �nd that

δ ≤ ds(r − 1)− 1

(r − 1)s− 2
=
dg − 1

g − 2

as desired. �
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We note that when d = pn + 1, we have points on X(Fp(t)) with x coordi-
nate equal to t(p

n+1)/(pm+1), which are not p-th powers, and for m|n, with n/m
odd, equal to t(p

n+1)pm/(pm+1), which are p-th powers. This shows that no major
improvement of the inequality of the theorem can be expected.

4. Cardinality Bounds

We continue to study the curve

X : yr =
(xs + 1)(xs + tds)

xs

over Fq(t) where p, r, and s are pairwise relatively prime and d is prime to p.
Theorem 3.1 yields an explicit bound on the number of points on X(Fq(t)) which
is independent of q:

Corollary 4.1. There is a constant C depending only on r and s, such that, for

any power q of p and any d prime to p, we have #X(Fq(t)) ≤ Cd.

Proof. Theorem 3.1 shows that the x coordinate of any a�ne point has degree O(d)
and likewise the y coordinate. A curve that has in�nitely many points of bounded
height (with coe�cients in the algebraic closure of Fq) is isotrivial by [Lan60,
Proposition 2] and the remark that immediately follows, so we get �niteness this
way without appealing to the Mordell conjecture. But we get more: The conditions
on the O(d) coe�cients of the numerator and denominator of x and y for the point
to lie on X is a system of O(d) equations in O(d) variables and each equation has
degree at most r+2s. We can consider this system over the algebraic closure of Fp
and, by the above argument, it has �nitely many solutions, so by Bézout's theorem
it has at most (r + 2s)O(d) solutions, proving the corollary. �

The main result of [PP13] implies a bound similar to that of the theorem but
with C depending on r, s, and p. The cardinality of the set of points constructed
in [CUV12] (and reviewed in Section 1 above) when d = pn + 1 is bounded by a
multiple of the number of divisors of n, so there is a huge gap between the known
upper bounds for the number of points and the number of points we can produce.
It would be very interesting to narrow this gap or perhaps identify all the rational
points.

Finally, we note that it is possible to improve the exponent when d is large with
respect to q. Indeed, the degree of conductor of the Jacobian of X is O(d) (with
a constant depending only on r and s). It follows from the arguments in [Ulm07,
�11] (generalizing [Bru92]) that the order of vanishing at s = 1 of the L-function
of X, and therefore the rank of the Mordell-Weil group of the Jacobian of X, is
O(d/ log d) (with a constant depending on r, s, and q). Applying [BV96], we �nd
that the number of points on X is at most Cd/ log d1 where C1 depends on r, s, and q.
These bounds, and in particular the exact value of the rank, can in many cases be
determined more precisely using the domination by a product of curves in Section 3
and arguments as in [Ulm13].

Acknowledgements: Both authors thank the Simons Foundation for �nancial
support under grants #359573 and #234591. We also thank Igor Shparlinski for
comments on an earlier version of the paper.



NUMBER OF POINTS 7

References

[AV96] D. Abramovich and J. F. Voloch. Lang's conjectures, �bered powers, and

uniformity. New York J. Math., 2 (1996), 20�34, electronic.
[BHP+15] L. Berger, C. Hall, R. Pannekoek, J. Park, R. Pries, S. Sharif, A. Sil-

verberg, and D. Ulmer. Explicit arithmetic of Jacobians of generalized

Legendre curves over global function �elds. Preprint, arXiv:1505.00021,
(2015).

[Bru92] A. Brumer. The average rank of elliptic curves. I. Invent. Math., 109
(1992), 445�472.

[BV96] A. Buium and J. F. Voloch. Lang's conjecture in characteristic p: an

explicit bound. Compositio Math., 103 (1996), 1�6.
[CHM97] L. Caporaso, J. Harris, and B. Mazur. Uniformity of rational points. J.

Amer. Math. Soc., 10 (1997), 1�35.
[CUV12] R. Conceição, D. Ulmer, and J. F. Voloch. Unboundedness of the number

of rational points on curves over function �elds. New York J. Math., 18
(2012), 291�293.

[Gra07] A. Granville. Rational and integral points on quadratic twists of a given

hyperelliptic curve. Int. Math. Res. Not. IMRN, Art. ID 027 (2007),
1�25.

[Lan60] S. Lang. Integral points on curves. Inst. Hautes Études Sci. Publ. Math.,
6 (1960), 27�43.

[Mas84] R. C. Mason. Diophantine Equations Over Function Fields, volume 96
of London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, Cambridge, 1984.

[PP13] A. Pacheco and F. Pazuki. Bounds for the number of rational points on

curves over function �elds. New York J. Math., 19 (2013), 131�144.
[Shi86] T. Shioda. An explicit algorithm for computing the Picard number of

certain algebraic surfaces. Amer. J. Math., 108 (1986), 415�432.
[Ulm07] D. Ulmer. L-functions with large analytic rank and abelian varieties with

large algebraic rank over function �elds. Invent. Math., 167 (2007), 379�
408.

[Ulm13] D. Ulmer. On Mordell-Weil groups of Jacobians over function �elds. J.
Inst. Math. Jussieu, 12 (2013), 1�29.

[Ulm14a] D. Ulmer. Curves and Jacobians over function �elds. In G. Boeckle et al.,
editor, Arithmetic Geometry over Global Function Fields, Advanced
Courses in Mathematics CRM Barcelona, pages 281�337. Springer,
Basel, 2014.

[Ulm14b] D. Ulmer. Explicit points on the Legendre curve. J. Number Theory,
136 (2014), 165�194.

Douglas Ulmer
School of Mathematics,
Georgia Institute of Technology,
Atlanta, GA 30332,
USA

douglas.ulmer@math.gatech.edu

José Felipe Voloch
School of Mathematics and Statistics,
University of Canterbury,
Private Bag 4800, Christchurch 8140,
New Zealand

felipe.voloch@canterbury.ac.nz


