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Abstract This paper proposes a novel chattering free
neuro-sliding mode controller for the trajectory
tracking control of two degrees of freedom (DOF)
parallel manipulators which have a complicated
dynamic model, including modelling uncertainties,
frictional uncertainties and external disturbances. A
feedforward neural network (NN) is combined with an
error estimator to completely compensate the large
nonlinear uncertainties and external disturbances of
the parallel manipulators. The online weight tuning
algorithms of the NN and the structure of the error
estimator are derived with the strict theoretical
stability proof of the Lyapunov theorem. The upper
bound of uncertainties and the upper bound of the
approximation errors are not required to be known in
advance in order to guarantee the stability of the
closed-loop system. The example simulation results
show the effectiveness of the proposed control strategy
for the 2-DOF  parallel
manipulator. It results in its being chattering-free, very

tracking control of a

small tracking errors and its robustness against
uncertainties and external disturbances.
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1. Introduction

Parallel manipulators are closed-loop kinematic chain
mechanisms which have such advantages as high
accuracy, high stiffness, high payload capability and low
moving inertia, etc. They are widely used in numerous
applications, such as humanoid robots, simulators,
medical robots and micro-robots, and they are becoming
increasingly popular in the machine-tool industry [1].
Compared to serial manipulators, the dynamic model of
parallel manipulators is significantly complicated by the
presence of multiple closed-loop chains and singularities.
As a result, the control of parallel manipulators needs
more advanced control techniques than that of serial
manipulators.

The motion control of parallel manipulators has attracted
many researchers in studying its potential performance.
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A proportional derivative (PD) controller [2], a nonlinear
PD controller [3] and an adaptive switching learning PD
control method (ASL-PD) [4] were proposed for the
motion control of parallel manipulators. All of these
controllers are simple and easy to implement but they do
not perform well because the full dynamics of the robots
are not considered and compensated for. In [5-7], the
synchronization controllers were presented for parallel
manipulators. This kind of controller - also only based on
the parallel manipulator’s kinematics - can improve the
performances of the trajectory tracking further, but it
requires more complicated computation. Some other
advanced controllers were proposed, such as the
computed torque controller [8-11], the model-based
iterative learning controller [12] and the adaptive
controller [13]. These approaches are based on having full
knowledge of the dynamic model of the robot and require
heavy computational power. However, it is impossible to
obtain a precise dynamic model of the parallel
manipulators, due to the presence of multiple closed-loop
chains, singularities,
uncertainties and external disturbances. Hence, there is a
need for control strategies for parallel manipulators with
robustness, adaptive capability, fast convergence and a
simple structure.

structured and unstructured

Sliding mode control (SMC) has received much attention
in the last few decades as a useful and powerful, robust
control method in overcoming uncertainties, bounded
external disturbances and unpredictable parameter
variations [14, 15]. The theory of SMC has been
successfully applied to serial manipulators [14, 16, 17]
and parallel manipulators [18-21]. The main characteristic
of SMC is the inclusiveness of a discontinuous control
input which drives the control system towards a sliding
surface S(x,t)=0 whereby the sliding mode happens along
this surface. For handling large uncertainties (such as in
the case of parallel manipulators) and external
disturbances, a large gain of the discontinuous control
input must be applied. For choosing the value of this
gain, the upper bound of the uncertainties has to be
known in advance. It is, however, not easy to estimate
this bound of the uncertainties. In addition, a large
switching gain is undesirable for the increased chance of
input chattering, which leads to the high wear of the
mechanism and the excitation of un-modelled high-
frequency dynamics. The most common approach for
chattering reduction is to define a boundary layer around
the sliding surface and then use a continuous
approximation of the switching control input within the
boundary layer [14]. This approach can reduce the
chattering effectively, but there is a tradeoff between
asymptotic tracking and the elimination of chattering for
the width of the boundary layer. A thicker boundary
layer would reduce the chattering but make the tracking
error bigger, and vice versa. Therefore, when applying
the SMC for parallel manipulators, the issue of how to
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eliminate chattering while achieving small tracking errors
becomes an important topic.

In recent years, intelligent methods such as neural
networks and fuzzy logic systems have been successfully
applied in order to universally approximate the unknown
dynamics and uncertainties of robotic manipulators.
Many important adaptive NN-based and fuzzy logic-
based SMC schemes have been proposed in which the
discontinuous control of the conventional SMC is
replaced by a NN or fuzzy compensators. These
controllers consist of an equivalent continuous feedback
control component and a component derived from the
intelligent compensators for the compensation of
uncertainties and external disturbances. If the
uncertainties and external disturbances are sufficiently
compensated, there is no need to use the discontinuous
feedback control law to achieve the sliding mode and,
therefore, the chattering phenomenon can be eliminated.
For example, in [16] and [22], two similar adaptive fuzzy
sliding mode controllers for serial robotic manipulators
were proposed in which an adaptive single-input single-
output (SISO) fuzzy logic system (FLS) or SISO radial
basic function networks (RBFNs) were used to
approximate the discontinuous part of the control signal.
These controllers can eliminate the chattering
phenomenon and they do not need knowledge of the
upper boundary of the uncertainties. However, the
typical SISO, FLS or SISO RBFN cannot approximate
precisely the complicated, highly nonlinear uncertainties
and external disturbances of robotic manipulators.
Therefore, the bounds of the approximation errors have
to be known for the chosen control gains of an auxiliary
controller for enhancing the stability of the control
system. In another paper, two kinds of adaptive SMC
schemes for a serial robotic manipulator using a fuzzy
compensator were proposed [23]. In these SMC schemes,
the decomposition of the uncertainties” function is
introduced and the properties of the uncertainties and the
dynamics of the serial manipulators are considered.
However, these schemes are still complicated and the
number of fuzzy rules of each FLS is big. Moreover, in
[24], an adaptive fuzzy SMC for affine nonlinear systems
was developed and successfully applied to control a four-
bar linkage system. A FLS is combined with a switching
control to compensate the large uncertainties of the
control system. However, this control method can only be
applied to SISO dynamic systems and it seems that the
chattering phenomenon still exists in their experimental
results. Furthermore, an adaptive control of robot
manipulators with the NN-based compensation of
frictional uncertainties was proposed in [25]. The friction
dynamic which is usually the cause of performance
degradation at low velocities in the motion control of
robotic manipulators is successfully modelled and
compensated for. However, the control scheme did not
consider the compensation of any modelling errors and
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external disturbances of the robotic control system. On
the other hand, a neuro-sliding mode control of robotic
manipulators was presented in [26]. The controller used
two parallel NNs - one for learning the continuous
equivalent control and the other for the discontinuous
control computation. Although the experimental studies
of the paper showed good results, there is a lack of
mathematical proof of stability. In addition, it is difficult
to implement this controller with robotic manipulators,
which have a complicated structure due to the large size
of NNs and the enormous number of calculations.

Unlike serial manipulators, the dynamic behaviour of
parallel manipulators is strongly nonlinear due to the
highly dynamic coupling between the links. In addition,
the number of links in parallel manipulators is often
double or triple the number of links in serial
manipulators with the same number of degrees of
freedom. Therefore, the modelling errors and
uncertainties in parallel manipulators are significantly
larger and more complicated than in the case of serial
manipulators. This makes it difficult to apply the above
mentioned method which as proposed for serial
manipulators to parallel ones. In this paper, we propose a
novel SMC method for a tracking controller of 2-DOF
parallel manipulators. First, the dynamic model of the 2-
DOF parallel manipulators is analysed to build a
continuous equivalent control. Next, a feedforward NN is
combined with an error estimator to sufficiently
compensate the modelling errors, uncertainties and
external disturbances of the parallel manipulator system.
The weights of the NN are adapted online and the
proposed controller can guarantee the stability of the
closed-loop system, overcome the chattering problem and
improve the robustness of the control system. Compared
with the existing controllers, the advantages of the
control strategy proposed in this paper are twofold:

1. By using a NN combined with an error estimator, the
large model uncertainties and external disturbances
in the parallel manipulators’ control system can be
sufficiently compensated for. This is different from
the existing methods using only a NN or a FLS for
compensating the perturbation and ignoring the
approximation errors or higher-order terms of
Taylor’s series expansion. This feature means that the
proposed control method is suitable for application
to the tracking control of parallel manipulators
which have a complicated dynamic model and huge
uncertainties.

2. The control strategy does not need to know the
upper bound of any uncertainties and also does not
need to know the bound of any approximation
errors. The condition of the chosen control gains in
the proposed controller is simple (it just needs a
positive parameter and it does not need to know any
threshold) but can guarantee the stability of the
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closed-loop system. The structure of the NN and the
error estimator, as well as the online learning
algorithm of the NN in the proposed controller of
this paper, are simple and easy to implement but
lead to the acquisition of good results.

The rest of the paper is organized as follows. In section 2,
the dynamic model of the 2-DOF planar parallel
manipulators is formulated in the active joint space based
on Lagrange-D'Alembert and the virtual work approach.
In section 3, the architecture of the feedforward NN
which is used in the proposed controller is presented. The
proposed neuro-sliding mode controller for the trajectory
tracking of 2-DOF planar parallel manipulators is
presented in section 4. In section 5, simulations of
trajectory tracking are carried out in order to verify the
effectiveness of the proposed controller. Finally, several
important remarks are concluded in section 6.

2. Dynamic model of 2-DOF planar parallel manipulators

In this section, we develop a dynamic model for a class of
2-DOF planar parallel manipulators acting on a
horizontal plane and a reference frame is established in
the workspace, as depicted in Figure 1. This kind of
parallel manipulator consists of two active joints and
three passive joints. The active joints are actuated by
actuators while the passive joints are free to move.

® Active joints

% y
E(xy)

Q Passive joints

Figure 1. The 2-DOF planar parallel manipulator.

By 6. = (61,62)" and 6, = (61,62)" we denote the
corresponding active joint vector and passive joint vector,
respectively; X = (x,y)T as the Cartesian coordinates; and
E(x,y) as the end-effector of the parallel manipulators. The
link lengths of the parallel manipulators are l11= AiP1, [12=
P1E, l21= A2P2, 2= P2E and lo= A1A-.

The 2-DOF planar parallel manipulators have one closed-
loop. Suppose that this closed-loop is virtually cut at the
common point E and forms an equivalent tree-structure
open kinematic chain, including two independent 2-DOF
serial manipulators, as shown in Figure 2. It is assumed
that in this open kinematic chain all of the passive joints
are actuated by virtual actuators. Suppose that the
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equivalent tree-structure makes the same motion as the
original closed-chain without force or moment interaction
at the virtually cut joint.

The dynamic model of each planar 2-DOF serial
manipulator in the tree-structure is given by Lagrange's
equation [27]:

L) oL
a0l O g, -1, (1)
dt\ 06, ) o8,

where Li is the Lagrangian function; & = (i, &) is the
joint vector; @ = (i, )7 is the joint torque vector; and Fi =
(fai, fri)T is the vector of the active and passive joint friction
torques of the i" serial chain.

y @ Active joints
Z} Virtually

% cut

Q Passive joints

Figure 2. Tree-structure system of the cutting joint.

As the parallel manipulator operates on a horizontal
planar plane, the Lagrangian functions only contain the
kinetic energy of the mechanism:

1 1 g
L'72 11(x11+y11)+ Izzlg

1
+2m12(x12 +y12)+ 121282 (2)

where mi1 and mi2 are the masses of the links of the serial
chain i; Ii1, L2 are the inertia tensors of the links of the
serial chain i (i=1,2).

Letting ri1 and ri2 be the distance from the joints to the
centre of mass for each link, we have:

Xj =T smﬂmﬁm,

Y1 = 1;p cOs0, 0

ai’ai’

, =—1;sing, 0. ~1;,8in0 0 .

ai”ai pi~pi’

Yi2 = lzl cos Huzerzz +1jp COS szgpz

By substituting the above equations into
Lagrangian function becomes:

@), the
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1
L= @02 + 25,0080, ~0,)0,6,+ 5% | 3)
in which o = minr?in + it + miol?i, i = mailiari, and & = mizr2i
+ L2 correspond to the dynamic parameters, i = 1,2.

Substituting the Lagrange function (3) into Lagrange’s
equation (1), we have the dynamic equations of each
serial chain of a tree-structure as:
M;(0,)8; +C;(0,,6,)0, +F =1, i=12 )
where Mi € R?? is the inertia matrix and Ci € R?? is the
Coriolis and centrifugal force matrix, which are defined as:

a: C .
Mi(ei) = { CT 1§ap1‘|/ (5)
i-api i
. Bis 0.
C;(6;,6,) = .o (6)
- isapigrzi 0

where the symbols cyi and sqi are, respectively, defined
as: Capi = COS(6hi- Gpi), Sapi= SIn(hi- Gyi), i =1,2.

Combining the dynamic models of two open serial chains
together, the dynamic model of the equivalent tree-
structure mechanism is obtained as:

M,0+C,0+F =r, @)

in which 6 = (8,0,)T € R* is the vector of the joint angles;
Tt = (Ta,Tp)T € R* is the joint vector; and Fr = (Fo, Fp)T € Rt is
the friction torque vector of the equivalent tree-structure
open chain system. . = (z1,72)" and T = (%1, 52)" = (0,0)T
are the input torque vectors of the active joints and
passive joints respectively. Fo = (fu1,fa2)T and Fy = (fp1,fp2)T =
(0,0)T are the friction force vectors of the active joints and
passive joints respectively. Here, we assume that the
effect of the friction force on the passive joints is much
smaller than that on the active joints. Thus, in order to
simplify the dynamic model, only the disturbances on the
active joints are considered.

The inertia matrix M: € R¥“4 and the Coriolis and
centrifugal force matrix Cr € R**“ in (7) are expressed by:

a, 0 Bic a1 0
0 % 0 PoCaps
p
M, , 8)
ﬁl apl 0 61 0
0 B,c a2 0 S,
0 0 BiS O 0
0 0 0 By5,,0
p27p2
C = . 9)
7181511;71 al 0 0 0
0 ﬁzsapZ a2 0 0
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Next, the loop constraints are taken into account using a
Jacobian matrix. From D’Alembert’s principle and the
principle of virtual work, the active joint torques 1. and
the generalized torques 1 satisfy the following equation
[28]:

t,=Wr, (10)

where ¥ = 00/00. € R¥? is the Jacobian matrix of all the
joints with respect to the active joints. We have: ¥ =[I, J]”
where I € R?? is identity matrix and J = 60p/08. € R¥? is

computed from theloop constraint equations:

-1
9 oh | | oh

N A -

=% {aep} {aej (H)

a
h= hel i€ +laCp1 =l = la1€aa = 1oaCpo (12)
hy h18a + 1281 = 182 = 1082
where the symbols cu, s« and cpi, spi are, respectively,

defined as: cai = coS@hi, Sai = SiNGhi, Cpi = COS i, Spi= SiNbhi, 1 =
1,2.

Taking the constraint (10) into the tree-structure by
multiplying both sides of equation (7) by ¥7T, we
obtain:

wiM,0+Ww'C,H+W'F =w'r, (13)
In addition, we have the following relationships:

.00 -
0=—-o- 14
a9, ? (1)

0=wo,+wo, (15)

By substituting (10), (14) and (15) into (13), we obtain the

dynamic model of the 2-DOF planar parallel
manipulators in the active joints space:
M0, +C.0,+F, =1, (16)

where Mg =\I/TMt‘l/ e R¥? is the inertia matrix and
C,=V'M#+WV'C,We %2 is the Coriolis and
centrifugal matrix.

The dynamic model (16) has the following properties,
which are proved in [29]:

Property 1: M . is symmetric and positive definite.

Property 2: Ma - Zéa is skew-symmetric.

Because of the presence of the highly nonlinear
uncertainties, the exact dynamic model of the parallel
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robot will never be known. If the modelling errors
caused by the uncertainties are bounded, we can
express the actual dynamics by combining the
estimated dynamics with the modelling errors as the
following equation:

M,0,+C0,+F =1, (17)

where M = 1\7[ﬂ +AM, and C, = éu +AC, are the actual
dynamic parameters of the parallel manipulators; and
AM. and AC: are the bounded modelling errors.

Consider the external disturbances which affect the active
joints; we define the vector of unknown uncertainties and
external disturbances as:

At,=AM,0, +AC,0, +F, +d(t) (18)

where d(t) € 9R? is the vector of the external
disturbances.

From (17) and (18), we obtain the actual dynamic
equation of the 2-DOF planar parallel manipulators in the
active joint space:

M8, +C0, +At, =1, (19)

The dynamic equation (19) is very useful for the analysis,
simulation study and control design of the 2-DOF planar
parallel manipulators.

Although the dynamic model (19) of the 2-DOF
parallel manipulators in the active joint space has a
model (4) of the
manipulators, its dynamic behaviour is much more

similar form to the serial
complicated and strongly nonlinear due to the highly
dynamic coupling between the links. We can see that
the nominal parameter matrices in equation (16) are
much more complicated in comparison with the
dynamic model of serial manipulators. In addition, the
uncertainties At. in the dynamic model (18) are huge
and highly nonlinear due to the large number of links,
the loop constraints, the friction and the variation of
the parameters. Thus, it is difficult to reuse the existing
control strategies which were proposed for serial
manipulators in the literature for improving the
performance of the tracking control of the parallel
manipulators.

3. The feedforward neural network architecture

The NN used in this paper has the structure indicated in
Figure 3. The architecture of the NN includes the input
layer, the hidden layer and the output layer. The NN has
2 outputs corresponding to the 2 active joints of the
parallel manipulators considered.

Tien Dung Le, Hee-Jun Kang and Young-Soo Suh:

Chattering-Free Neuro-Sliding Mode Control of 2-DOF Planar wParallel Manipulators



ouTPUT
LAYER LAYER LAYER

INPUT HIDDEN

Figure 3. Structure of the feedforward neural network.

The input layer: The input vector of the NN is denoted by:

X = [xl,xz,...,xNi]T (20)

where Ni represents the number of components of the
input vector.

The hidden layer: By denoting the number of neurons in
the hidden layer as Ni, the weight matrix connecting the

input and the hidden layers is expressed by:

N.xN
—_ <] i h
V —(01,02,...,01\”1)631 ,

T _
0, =(01,050 0, ) €X'V i=1N, @1)

The inputs and outputs of the hidden layer are,
respectively, presented as:

N;
net; = Z].:'1 ;. (22)

G; =g(net;), i=1,N, . (23)

The transfer function in the hidden layer is used as a
sigmoid function:

(24)

The output layer: The weight matrix connecting the hidden
and output layers is expressed by:

T
W = (wl,wz,...,wM ) e jN2 ,
wi:(wil,wiz)eﬂ%z,izl,Nh (25)
The outputs of the NN are expressed by:

Nh
Y =2 wy Gy k=12 (26)
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The outputs of the NN can be represented in a vector
form:

y=W'G(x,V) e % 7)
T N, x1
where G=|G;,G,,..,Gy, | eR™M™.
4. The proposed controller

4.1 Traditional Sliding Mode Controller

Let 04 = (G, Oia2)™ be the desired state vector and e = 0. -
0u be the tracking error vector of the parallel
manipulators. The first step in the design of the sliding
mode control for the system (19) is to design the sliding
surface function as:

s=é+Ae=0,-(0,,-Ae)=0, -0, (28)

where A = diag(A1,A42), A1 and A2 are positive constants
which determine the motion feature in the sliding surface;
and 6, =0, —Ae is defined as the reference velocity
vector.

In the second step, a control law 1. € R?is designed such
that the system state trajectories are driven to the sliding
surface and kept on the sliding surface. The reaching
condition is expressed by [14]:

14d ,
——s7 <—gs;

,1=1,2 29
2 dt (@9)

where i is a strictly positive constant. Equation (29)
indicates that the energy of s should decay so long as s is
not zero.

In general, the control input . consists of two
components:

Ty = Tog T Teo (30)
where the first term teq € R?is the equivalent control which
keeps the trajectory of the system state on the sliding
surface; and the second term tsw € R2is the discontinuous
control which drives the system states toward the sliding

surface when they are deviating from this surface.

The equivalent control is considered for the nominal
system in the absence of the uncertainties and external
disturbances:

Ty =M,0,, +C,6,, (1)
The discontinuous control is designed as:

= —Ksign(s) (32)

TSZU

where K = diag(ki,k2), k1 and kz are positive constants.
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Now, by substituting (31) and (32) into (30), the
conventional sliding mode controller for the parallel
manipulators’” dynamic model (19) is presented by:

1, =M,0,, +C,0,, —Ksign(s) (33)

It has been proven in [19] that by considering the
Lyapunov function candidate as:

V==s"Ms (34)

and choosing the switching gain matrix K such that

k; Z‘Arai‘bomd, where ‘Arai‘bou”d
‘Arm-

, the overall system is asymptotically stable. Thus,

is the upper boundary of

the decay of the energy of s - as long as s # 0 - is
guaranteed and the reaching condition (29) is satisfied.

4.2 Chattering Free Neuro-Sliding Mode Controller

The sign function in the discontinuous control term of the
SMC (33) leads to the chattering problem. Therefore, in
this section we propose a new controller in which the
discontinuous control is replaced by a NN combined with
an error estimator. The connection weights of the NN are
adapted online and the structure of the error estimator fest
is designed with the strict theoretical stability proof of the
Lyapunov theorem. The structure of the overall system is
presented in Figure 4.

7

» Neural Network

eda H edzz

Desired
Trajectory

.| Sliding surface
s=¢é+ Ae

>0

Online weight
tuning algorithm

. .
0.0

L T Parallel a>"a

X manipulator

1
\4

a

Teq :Mléar + éaéar

Figure 4. Block diagram of the proposed controller.

The proposed controller is expressed by the following
equation:

1, =M, +C0,, +fyy +hy, ~Ts (35)

where fun € R?is the output of the NN whose structure is
described in section 3 for the online approximation of the
unknown vector Ata € R2. Since the output of the NN is
not able to approximate Ata accurately, the error
estimator fet € N2 in (56) is used to attenuate the
approximation errors. The term Ts is used in enhancing
the robustness of the control system. Moreover, T =
diag(T:, T2) is a diagonal positive definite matrix in which
T1 and T are positive constants.

The inputs of the NN are chosen as the errors and
derivative of errors: x=[el,é1,62,é2]T eR*. The NN is
used to approximate the unknown uncertainties Ata
online. The approximation error is denoted as:

At —~fgy =W TGOV ) -WIG(x V) +ey  (36)
where W' € RN 2and V' € R*¥Nhare the optimal values of

the weight matrices W and V; W e RWW2and V e R&Nh
are the estimates of the optimal weight matrices (W" and

www.intechopen.com

V"), ex € R2is the bounded reconstruction error due to the
inadequate number of neurons in the hidden layer of the
NN.

For convenience, equation (36) is rewritten as:

At —fyy =WIG+W G+ey 37)
where the symbols G*, é, G and W are, respectively,
defined as G =G(x,V') e R G=G(x,V) e R\,

G=G -G eRMand W=W" - W e ®\w2,

The Taylor series expansion of G for a given x can be
written as follows:

G, oG, JovT
. |G oG, JovT . & -
G=| 2| + 2/: (V' -V]+0vTy
G = T
Ny |Gy, JoV e
=G, VIx+0(VTx) (38)
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where:

_| 961 9G, %,

T
Y _{avTx'avTx'” ,6VTX} :
V=V

c iRNhXNh

V=V -VertMN

O(VTx) e RN is a vector of higher-order terms and it is
assumed to be bounded.

By substituting (38)
equation (37), we have:

into the approximation error

At~y = W*TGVVTX +WIG+WTOV x) + ey
=WIG, VIx+ WG+ (39)
where:
0=WIG, VIx+WTOVx) + ey (40)

Next, we design an error estimator fist to estimate and
compensate for the error vector 6 € %2 The online
learning algorithms of the NN and the structure of the
error estimator fit are derived in the next section
following the Lyapunov method.

4.3 Stability analysis

According to the Lyapunov stability analysis, the system
is stable if the Lyapunov function candidate is positive
definite and its derivative is negative semidefinite.

Consider the Lyapunov function candidate:

V=V +V,+V3+V, (41)
where:
1 1

Vi=osM,s (42)
D P

v, —Etr(W n w) 43)
(T,

V,= ztr(V P v) (44)
1% —16%-16 (45)

47

in which 7 and u are the positive learning rates; £ is a
diagonal positive constant matrix of the error estimator
(56); and d=d- f; is the estimated error.

Obviously, Vi, V2, V3 and Vi are positive definite
functions. Therefore, V is a positive definite function.

Int J Adv Robotic Sy, 2013, Vol. 10, 22:2013

The derivative of Vi is computed as follows:
v, = %(éTMus +sTML s+ sTMﬂs) (46)
Properties 1 and 2 in section 2 give us:
STMas = sTMaS (47)
sTM s =25"C_s (48)
By substituting (47) and (48) into (46) we obtain:
Vl =sT [éus + Mﬂs}
T8, N6,
=s"[Cs 41, ~C,0, ~ A, ~NLD, | (49)

Now, substituting the proposed controller (35) into (49)
we obtain:

Vy=s' [fyy —At, +£,, —Ts] (50)
From (39) and (50), we have:
Vy=s'[-WIG, Vix-WG-0+£,-Ts| (1)

From (41) and (51), we have the derivative of the
Lyapunov candidate function:

V=V, +V,+V;+V,
=7 [—VAVTGVVTX -WIG-3% —Ts} -

A

—tr(VVTr]_1W) _— (\7%‘1\7) S

As Vis desired to be at least negative semidefinite, we
choose the online update laws for the NN and design the
estimator as follows:

W = —Gs” (53)

A A AT
V=- yx(Gst) (54)
£, =—ts (55)
fo =—E[sdt+T (56)

where equation (56) is derived from equation (55).
Moreover, the constant matrix £ is eliminated from the
integration in (56) since the recursive estimation algorithm
can recover it. The constant vector Iis chosen as zero.
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Next, by substituting (53)-(56) into (52), we have:
V=gl [—WTGVVTX ~WTG-5- Ts} -
+tr (WTGST ) + tr[VTx(Gst)T) +0ls

=st [—WTGVVTX ~WIG-5- Ts] -
+sTWIG+sTWIG, VTx+8Ts

=—ITs < 0 (57)

In (57), since T is a diagonal positive definite matrix,
V=0 only when s = 0. Therefore, we can see that the
control system is asymptotically stable with respect to s.
This means that:

lims = lim (é+ Ae) =0 (58)

t—o0 t—>0
Or, equivalently:

lime=0=1im06,=0,,
t—o0 t—o0 . (59)
lime=0=1im6,=0,,
t—ow t—o
Thus, it is proved that, with the proposed controller (35), the
actual active joint positions converge on their desired values.

5. Simulation study

Simulation studies were conducted on Matlab-Simulink and
the mechanical model of the 2-DOF planar parallel
manipulator was built in SimMechanics toolbox. The link
parameters in the mechanical model are set as follows: [11 =
1 = 0.102(m), l12 = 2 = 0.18(m) and lo = 0.132(m) are the link
lengths; r11 = 0.05(m), r21 = 0.055(m), r12 = r2 = 0.09(m) are the
distances from the joint to the centre of mass of the links; m1
= 0.8(kg), m21 = 0.78(kg), m1z = 1.17(kg), m22 = 1.2(kg) are the
masses of the links; Lu = 0.0027(kg.m?), L1 = 0.0031(kg.m?),
L1 = L2 = 0.0013(kg.m?) are the inertia tensors of the links.

i i i i i i
02— =4 -~ - -~ A AT
0

0.2

0.18
T |
E o016
> ]
|
0.14 -
|
|
0.12 -
|
| | | | | |
0'17777777!’777777!’77777777
1 1 1 1 1 1
0 002 004 006 008 0.1 0.12
X[m]

--------- Desired trajectory
= Conventional SMC using BLM method
------- Adaptive Fuzzy SMC

Proposed controller

Figure 5. Results of circular trajectory tracking control in case 1.
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Tracking error X-direction [m]

Tracking error Y-direction [m]

Time [s]
(b)

Conventional SMC using BLM
Adaptive Fuzzy SMC
Proposed controller

Figure 6. Tracking errors of the end-effector in case 1: (a) X-
direction and (b) Y-direction.

In practice, it is difficult to measure the distances from the
joint to the centre of mass and the inertia tensors of the
links. As such, we conducted the simulations with
different parameters, both in the mechanical model of the
robot and in the controllers, as follows:

7 =097, and 7, =09r,,i=12  (60)

where 7, and 7, were used for calculating M, and C
in the controllers.

a

The friction models of the system, including the viscous
friction and the Coulomb friction torques, are defined as
follows:

fyi = Esign(0,)+ F,;0,., i=1,2 (61)

where the coefficients are chosen as Feo = F2=0.3 and Fu1 =
FUZ = 2

The simulations were carried out with respect to those

situations when the end-effector of
manipulator is driven to track a circular trajectory on the
XY plane under different initial conditions. To illustrate
the improvement in performance, the proposed controller

(35) is compared with two other controllers:

the parallel

+ A conventional SMC using the boundary layer method
(BLM) which was proposed in [14]:
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T, =I\A/Iaéar+éa9m—Ksat(s/CD) (62)

where K is a diagonal positive matrix of switching gains
chosen as K = diag{10, 10}; sat(s/®@) = [sat(si/ @),
sat(s2/@)]" is a vector of saturation functions which is
defined in [14]; and @ and @ are the boundary layer
thicknesses, chosen as @1 = @ =0.15.

i ; ; ; ; ; ; ; ; ;
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Figure 7. Case 1 when applying the conventional SMC using
BLM: (a) Control input of the active joint 1; (b) Control input of
the active joint 2; (c) Enlargement of the localized region in (a);
(d) Enlargement of the localized region in (b).

+ An adaptive fuzzy sliding mode controller which was
proposed in [22]:

T = IQIaém' + éaear —As— Kfuzzy (63)

where A is the diagonal positive parameter matrix chosen
as A= dlag{lO, 10}, and Kfuzzy = [kfuzzyl, kfuzzyZ]T in which each
Kfizzyi is estimated by an individual SISO fuzzy system (i =
1, 2).
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Figure 8. Case 1 when applying the adaptive fuzzy SMC: (a)
Control input of the active joint 1; (b) Control input of the active
joint 2; (c) Enlargement of the localized region in (a); (d)
Enlargement of the localized region in (b).

The parameters in the proposed controller are set as: T =
diag{10, 10}; the number of neurons in the hidden layer of
the NN is 10; the learning rates are chosen as p = 10 and
n = 2x107%; the initial weight matrices are W(0) = 0.001 x
Is,0 and V(0) = 0.001 x Tio,; the constant matrix in the
error estimator (50) is chosen as & = diag{5000, 5000}.

In simulations, the 2-DOF parallel manipulator is
disturbed by step external disturbance forces du(t) = [2,
0]" at t = 2.5s (on active joint 1) and periodic external
disturbance forces de(f) = [0, 2sin(1.7xt)]T at t = 5s (on
active joint 2).

First, in case 1, we conduct the simulation when the initial
position of the end-effector E(x,y) of the parallel
manipulator lies on the top of the reference circular
trajectory Ao(0.066, 0.21). The centre coordinates of the
reference circular trajectory are (0.066, 0.16) and the
radius is 0.05. The end-effector is driven to track the

www.intechopen.com



circular trajectory 5 times over 10 seconds. Figure 5 shows
the results of the tracking control of the 2-DOF parallel
manipulator in case 1.

Control input active joint 1 [Nm]

o

(5]

Control input active joint 2 [Nm]

Time [s]

(b)
_ T 3.6
£
Z Z 35
= <
-1 =1
- 8 34
¢ 2
£ £ 33
o o
e 2 32
£ £
3 T 31
= =
S S 3
Time [s] Time [s]
(c) (d)

Figure 9. Case 1 when applying the proposed controller: (a)
Control input of the active joint 1; (b) Control input of the active
joint 2; (c) Enlargement of the localized region in (a); (d)
Enlargement of the localized region in (b).

Figure 6 shows the tracking errors of the end-effector in
the X-direction and in the Y-direction in case 1. As can
be seen from the figure, the tracking errors caused by
the adaptive fuzzy SMC are a little bit smaller than the
errors associated with the conventional SMC using
BLM. In particular, the proposed controller brings about
the smallest tracking errors (almost converging on zero)
compared with the conventional SMC using BLM and
the adaptive fuzzy SMC. In addition, it can be seen that
the large model uncertainties and external disturbances
are greatly compensated for using the proposed
controller.
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Desired trajectory

- Conventional SMC using BLM method
------ Adaptive Fuzzy SMC
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Figure 10. Results of the circular trajectory tracking control in
case 2.
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Figure 11. Tracking errors of the end-effector in case 2: (a) X-
direction and (b) Y-direction.

The control inputs of the active joints 1 and 2 in case 1
of the conventional SMC using BLM are shown in
Figure 7. From the enlargements of the localized
regions, it can clearly be seen that the chattering
phenomenon remains. If we increase the boundary
layer thickness or decrease the switching gains for
reducing greater reduction of the chattering, the
tracking errors will be increased and the robustness of
the system will not be guaranteed.
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Figure 12. Sliding surfaces of (a) active joint 1 and (b) active joint
2 in case 2.
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Figure 13. Case 2 with the conventional SMC using BLM: (a)
Control input of the active joint 1; (b) Control input of the active
joint 2; (c) Enlargement of the localized region in (a); (d)
Enlargement of the localized region in (b).
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Figure 14. Case 2 with the adaptive fuzzy SMC: (a) Control input
of the active joint 1; (b) Control input of the active joint 2; (c)
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Enlargement of the localized region in (a); (d) Enlargement of the
localized region in (b).

Figures 8 and 9 show the control inputs of the active
joints 1 and 2 in case 1 using the adaptive fuzzy SMC and
the proposed controller, respectively. Compared with the
conventional SMC using BLM, it can be seen that the
chattering is removed. However, the proposed controller
can completely compensate for the uncertainties and any
external disturbances; hence, the tracking errors in the
case of using the proposed controller are almost reduced
to zero, as shown in Figure 6.

Next, a simulation is carried out to investigate the control
performance when the end-effector E(x,y) of the parallel
manipulator does not lie on the reference circle. In this
case, we can demonstrate the convergence of the tracking
errors and sliding functions. Figure 10 shows the
comparison of the trajectory tracking among the
conventional SMC using BLM, the adaptive fuzzy SMC
and the proposed controller. The centre coordinates of the
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reference circular trajectory are (0.066, 0.16) and the
radius is 0.05. The initial position of the end-effector
E(x,y) of the parallel manipulator is Ao (0.071,0.215). The
values of the parameters in the controllers for case 2 are
set to be the same as with case 1 of the simulations.
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Figure 15. Case 2 with the proposed controller: (a) Control input
of the active joint 1; (b) Control input of the active joint 2; (c)

Enlargement of the localized region in (a); (d) Enlargement of
the localized region in (b).

The results of the tracking errors of the end-effector in
case 2 on the X-direction and the Y-direction - which are
shown in Figure 11 - prove the excellence of the control
performance of the proposed controller in comparison
with the conventional SMC using BLM and the adaptive
fuzzy SMC. It can be seen that the proposed controller
brings about the smallest and the fastest convergence of
tracking errors.

Figure 12 shows the comparison of the convergence of the

sliding functions among all three controllers. As can be
seen from the figure, the sliding functions in the case
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using the proposed controller converge on the smallest
values (almost equal to zero).

Figures 13-15 show the control inputs of the active joints 1
and 2 in case 2 for the conventional SMC using BLM, the
adaptive fuzzy SMC and the proposed controller,
respectively. From the enlargements of the localized
regions, it can clearly be seen that the chattering
phenomenon remains in the case of the conventional
SMC using BLM but that it is eliminated in the cases of
the adaptive fuzzy SMC and the proposed controller.

It can be concluded from the above-mentioned simulation
results that the proposed controller is highly efficient in
the control of the 2-DOF planar parallel manipulators.

6. Conclusions

In this paper, we have presented a novel chattering-free
neuron sliding mode controller for tracking the control of
2-DOF parallel manipulators. The proposed controller is
based on the combination of three ingredients. The first
ingredient is the equivalent control, which is derived
from the dynamic model of the 2-DOF parallel
manipulators. The second one is a feedforward NN used
to adaptively learn the large nonlinear uncertainties and
external disturbances of the parallel manipulators. The
final part is an error estimator for compensating the
approximation errors of the NN and the higher-order
terms in Taylor series expansion. The online weight
tuning algorithms of the NN and the structure of the
error estimator are derived with the strict theoretical
stability proof of the Lyapunov theorem. The connection
weights of the NN can be adapted online during the
trajectory tracking control of the parallel manipulators
without any offline training phase. The main advantages
of the proposed controller in comparison with the
existing SMC methods are as follows: (1) The proposed
controller can completely compensate the large nonlinear
disturbances of parallel
manipulators. (2) The proposed control strategy does not
need to know either the upper bounds of any
uncertainties or the bound of any approximation errors.
Its structure is simple, easy to implement and yet leads to
the acquisition of good results. These advantages mean
that the proposed controller is suitable in application to
those tracking control parallel manipulators which have a
complicated dynamic model and huge uncertainties.

uncertainties and external

Simulation results demonstrated the effectiveness of the
proposed controller in the trajectory tracking control of a
2-DOF parallel manipulator. It has been shown that the
proposed controller brings about the smallest tracking
errors compared with the conventional SMC using BLM
and the adaptive fuzzy SMC. The chattering in the control
inputs is eliminated and the control system is highly
robust against uncertainties and external disturbances.
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