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Tuning P-PI and PI-PI controllers for electrical servos

T. �ABI�SKI� and L. TRYBUS

Department of Computer and Control Engineering, Rzeszów University of Technology, 2 Pola St., 35-959 Rzeszów, Poland

Abstract. Tuning rules for position and velocity controllers in P-PI and PI-PI electrical servomechanisms are developed using the root locus
design method. P-PI controller is equivalent to PID controller with a set-point �lter. PI-PI servo provides zero steady-state error for linear
disturbances, which may be important for some tracking tasks. Three design data are needed to calculate the tunings, i.e. drive gain, settling
time and control cycle. The development begins with continuous controllers for better understanding. Closed-loop transfer functions involve
real multiple poles, so the responses are smooth, without overshoot. Upper limits on control cycles as fractions of settling times are given.
Some experimental results are presented.
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1. Introduction

Control structures applied in electrical servomechanisms of
machine tools and industrial robots involve controllers for po-
sition, velocity and torque [1{5]. Tuning parameters of torque
controllers are set by manufacturers and cannot be changed
later, whereas the tunings of two other controllers must be
selected by the user. This is typically done by trial-and-error
during commissioning [1, 2], i.e. when the servo is being set
in motion. Lack of simple rules seems one of the reasons that
experimental tuning prevails.

The purpose of this paper is to present development of
tuning rules for standard P-PI servo-controller (P for position,
PI for velocity) and for more advanced PI-PI. The P-PI servo
provides high accuracy of positioning and tracking, but only
if disturbances, primarily load, are constant. On the contrary,
the PI-PI servo can cope with linearly varying disturbances
as well, which appear for instance, if a robot stretches loaded
arm while tracking an object on conveyer.

Tuning rules, to be practical, must involve small number
of design parameters. Here we need three of them, so servo
gain, settling time and control cycle. The gain characterizes
the e�ect of torque (current) on position in the transfer func-
tion k=s2. Such \double integrator" is commonly used to de-
scribe DC, AC and BLM (brush-less) drives [1{4, 6], with or
without gears. If k is not available from technical data, it can
be easily identi�ed by applying a pulse. The assumed model
does not include motor ampli�er dynamics what is justi�ed in
case of properly designed systems with high quality ampli�ers
[1{4]. Settling time ts is determined from general speci�-
cations of machine tool or robot and must be adjusted to
the system sti�ness and to the motor ampli�er capability.
Sometimes it requires iterative and trial-and-error procedure
to obtain the shortest appropriate ts level for a particular de-
vice.

If we neglect the e�ect of sampling and treat the con-
trollers as continuous, than the P-PI servo is a feedback system
of 3rd order and PI-PI of 4th. Imposing some restrictions on
closed-loop poles (real, multiple) and controller zeroes (dou-
ble), by applying Evans root locus design method (e.g. [7]),
one can analytically �nd all controller parameters in terms of
k and ts. This was initially demonstrated in 1992 [8] for P-PI
controller. Here we repeat that development and extend it to
PI-PI to make the reader familiar with details. In the discrete
case the order increases by one, so to 4th order for P-PI and
5th for PI-PI. Now a little of symbolic processing is needed
(see Ph.D. [9]), although the approach remains basically the
same. Besides k and ts, the control step � appears in the tun-
ing rules. To keep the poles real, � must be su�ciently small

(less than � <
1

45
ts for P-PI, even smaller for PI-PI). Concise

form of the �nal tuning rules can also be found in [10].
Experimental results presented at the end involve linear

stage with DC drive and 3 DOF robot with BLM motors. Re-
sulting settling times correspond to design speci�cations. The
PI-PI servo perfectly compensates linear disturbance (emulat-
ed in DC drive by strained springs). Industrial PID and P-PI
controllers are now manufactured as dedicated chips. Imple-
mentation of PI-PI structure is not so simple, so in typical
PLC systems requires cascade connection of main CPU (po-
sition PI) and servo drive (velocity PI).

2. Continuous P-PI controller

Block diagram of a servomechanism with P-PI controller is
shown in Fig. 1a. The controller consists of P component for
position feedback and PI for velocity. They are described by

Pp(s) = kp;

P Iv(s) = kpv +
kiv

s
:

(1)
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Double integrator k=s2 represents servo drive, i.e. motor with
a torque controller.

a)

b)

Fig. 1. Block diagrams of continuous P-PI servo with: a) position
and velocity loops; b) position loop only; yr { desired position, y {

actual position, v { velocity

Design problem. Given settling time ts �nd controller para-
meters kp, kpv , kiv to get smooth, critically damped respons-
es. Since the feedback system is of 3rd order, two of its three
poles must be the same.

Equivalent diagram involving single loop is shown in
Fig. 1b. Here we have a controller R(s) (regulator) and a set-
point �lter F (s), such that

R(s) = (kpkpv + kiv) +
kpkiv

s
+ kpvs;

F (s) =
kp

s + kp

:

(2)

Notice that R(s) is of PID type. As in the well-known
Ziegler-Nichols tuning rules, we assume that the controller
has double zero, so

R(s) = kr

(s + �)2

s
(3a)

with
� = kp; kr = kpv; �kr = kiv: (3b)

Characteristic equation of the system takes the form
1 + KG(s) = 0, where

G(s) =
(s + �)2

s3
; K = krk: (4)

Root locus plot is shown in Fig. 2.

Fig. 2. Root locus plot for the continuous P-PI servo with double
zero

Breakpoint. The breakpoint sb = s1 = s2 determines
critically damped responses. Here the breakpoint condition
d

ds
G(s) = 0 can be written as s + 3� = 0, so sb = �3�.

Hence we have the gain

K(�) = � 1

G(sb)

�

�

�

�

�3�

=
27

4
�: (5)

Settling time ts is determined by the root s3, closest to
the origin. Using K = 27

4 � in the characteristic equation
1 + KG(s) = 0, dividing it by (s + 3�)2 (double root), we

get s3 = �3

4
�. \Three time constants" estimate of ts yields

ts =
3

js3j =
3

3

4
�

=
4

�
: (6)

Tuning rules. Given ts we have � = 4=ts and K = 27=ts.
Using the substitutions (3b) and K of (4) gives the following
rules

kp =
4

ts

; kpv =
27

kts

; kiv =
108

kt2
s

: (7)

Recall that k denotes the drive gain.

3. Discrete P-PI controller

Figure 3a shows block diagram of the discrete servo with

Pp(z) = kp;

P Iv(z) = kpv + kiv

z�

z � 1
;

(8)

� denotes control cycle (discretization step). The third block
represents the double integrator k=s2 driven by zero-order
hold. Equivalent diagram in Fig. 3b involves discrete PID
controller R(z) and set-point �lter F (z), such that

R(z) =
[kpkiv�2 + (kpkpv + kiv)� + kpv]z2

�z(z � 1)
�

� [(kpkpv + kiv)� + 2kpv]z + kpv

�z(z � 1)

F (z) =
kp�z

(kp� + 1)z � 1
:

a)

b)

Fig. 3. Block diagrams of discrete P-PI servo: a) position and ve-
locity loops; b) position loop only; yr { desired position, y { actual

position, v { velocity
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As before, by taking kpv = kiv=kp we get the controller
with double zero � (now in z-domain), so

R(z) = kr

(z � �)2

z(z � 1)
;

kr =
kiv(�kp + 1)2

�kp

;

� =
1

�kp + 1
;

(9)

(� < 1). The characteristic equation 1+KG(z) = 0 involving

G(z) =
(z � �)2(z + 1)

z(z � 1)3
;

K = krk
�2

2

(10)

can be written as

z(z � 1)3 + K(z � �)2(z + 1) = 0: (11)

This equation for appropriate � (see below) has three
breakpoints zb1, zb2, zb3 as in Figs. 4a, b. Of those three,
zb1 has practical meaning only.

a)

b)

Fig. 4. Root locus plot of discrete P-PI servo: a) large range of K;
b) neighborhood of the zero �

Interval for �. The breakpoint condition
d

dz
G(z) = 0 can

be reduced to the equation

z3 + (4 � 3�)z2 + (1 � 4�)z + � = 0: (12)

In sections on algebra in math handbooks (e.g. [11], see
Appendix) one can �nd a condition on coe�cients of 3rd

order equation, for which the equation has three real roots.
Applying that condition to (12) yields the following inequal-
ity

63�4 � 104�3 + 118�2 � 72� + 3 > 0; (13)

for the zero �. In addition however (see Figs. 4a, b), two of
the roots must be positive (zb1, zb2) and one negative (zb3).
By applying Routh stability criterion one can write conditions
for the coe�cients, so as to have two roots of (12) in the right
half-plane and one in the left. This yields � > 0:23. Finally,
the interval for �, for which the inequality (13) holds in (0.23,
1), is

� 2 (0:91; 1): (14)

Gain K. The breakpoint zb1(�) is obtained by solving (12)
and used to get

K(�) = � 1

G(z)

�

�

�

�

zb1(�)

�= 2:8(1 � �): (15)

K(�) is pretty well approximated by the straight line 2:8(1 �
�) (Fig. 5).

Fig. 5. Nomogram K(�) and the approximation K = 2:8(1 � �)

Zero �. As in continuous case, settling time ts is deter-

mined by the dominant pole z3, so ts
�= 4�

jz3 � 1j (expla-

nation below). Since z3 and � are close (Fig. 4b) we may

write ts
�= 4�

j� � 1j and get

� �= 1 � 4�

ts

: (16)

Here we have used multiplier 4, not 3 as in contin-
uous case, due to the additional z3

�= � approximation
�

before we had s3 = �3

4
�

�

.

Tunings. Given settling time ts and control cycle � we calcu-

late � as 1� 4�

ts

, K as 2:8(1��) and the original parameters

from

kp =
1 � �

��
;

kpv =
2K�2

k�
;

kiv =
2K�(1 � �)

k�2

(17)

(see (9) and K in (10)). If � does not belong to (0:91; 1), the
data ts and � must be modi�ed accordingly. Using the limit
0.91 in (16) yields

� <
1

45
ts: (18)
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One may wonder for what � the continuous tunings (7)

may be used instead of (17). It turns out that for � =
1

200
ts

di�erences of the parameters do not exceed 26% (8% without
nomogram approximation) and step responses are practically
the same. If the drive gain k is going to change, the design
must be carried out for the lowest value kmin to keep the roots
real.

4. Continuous PI-PI controller

As mentioned in the introduction the PI-PI controller is more
e�cient in suppressing varying disturbances. Its two compo-
nents (Fig. 6) are described by

P Ip(s) = kp +
ki

s
;

P Iv(s) = kpv +
kiv

s
:

(19)

Fig. 6. Continuous PI-PI servo with position and velocity loops; yr

{ desired position, y { actual position, v { velocity

The feedback system is of 4th order now so, as we shall
see, critically damped responses are obtained for two pairs of
equal real roots. Single loop structure (as in Fig. 1b) involves

R(s) =
(s2 + kps + ki)(kpvs + kiv)

s2
;

F (s) =
kps + ki

s2 + kps + ki

:

a)

b)

Fig. 7. Root locus plot of continuous PI-PI servo: a) � di�ers sig-
ni�cantly from � and 
; b) one single and one double zero

Let the controller R(s) have three real zeros �, �, 
, so

R(s) = kpv

(s + �)(s + �)(s + 
)

s2
; (20a)

where � � � � 
, and

kp = � + �; ki = ��; kiv = 
kpv: (20b)

The root locus plot for the system whose � di�ers signif-
icantly from � and 
 is shown in Fig. 7a. Here the dynamics
depend primarily on �, so we may take � = 
 and have the
controller with one single and one double zero (Fig. 7b).

Breakpoints. The characteristic equation 1 + KG(s) = 0
involves

G(s) =
(s + �)(s + �)2

s4
;

K = kkpv:

(21)

The breakpoint condition
d

ds
G(s) = 0 yields the equation

s2 + (3� + 2�)s + 4�� = 0 that de�nes two breakpoints

sb1;2 = �1

2
(2� + 3� �

p

4�(� � �) + 9�2): (22)

Critically damped responses are obtained when the two break-
points are reached simultaneously. So we must have G(sb1) =
G(sb2). Solving this yields very simple formula

� = 2�; (23)

relating controller zeroes. Using (23) in (22) gives the break-
points

sb1 = �2(2 �
p

2)� � �1:17�;

sb2 = �2(2 +
p

2)� � �6:83�;
(24)

and the gain

K(�) = � s4

(s + �)(s + 2�)4

�

�

�

�

sb1;2

= 16�: (25)

Due to the double pole sb1, this time we may take six time

constants to evaluate settling time from above, i.e. ts =
6

jsb1j .
Since jsb1j �= 1:17�, so

� =
5

ts

; (26)

what is quite similar to � =
4

ts

in (6) (taking ts
�= 5

jsb1j
would make the two alphas almost the same).

Tunnings. Collecting (20b), K of (21), (23), (25) and (26)
we get

kp =
15

ts

; ki =
50

t2
s

;

kpv =
80

kts

; kiv =
800

kt2
s

:

(27)

For such tunings however, the servo of standard PI-PI
structure (Fig. 6) exhibits overshoot of about 12% (Fig. 8a).
The overshoot is eliminated by splitting the �rst PI component
into I and P, as shown in Fig. 8b.
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a)

b)

Fig. 8. a) Step responses for two structures of the controller; b) rec-
ommended I-P-PI structure; yr { desired position, y { actual position,

v { velocity

5. Discrete PI-PI controller

For the servo of Fig. 9 we have

P Ip(z) = kp + ki

z�

z � 1
;

P Iv(z) = kpv + kiv

z�

z � 1
:

(28)

Fig. 9. Discrete PI-PI servo with position and velocity loops; yr {
desired position, y { actual position, v { velocity

The single loop structure (Fig. 3b) consists of

R(z) =
[(kpv + kiv�)z � kpv]

z�(z � 1)2
�

� [(�
2ki + �kp + 1)z2 + (�kp + 2)z + 1]

z�(z � 1)2
;

F (z) =
z�[(kp + ki�)z � kp]

(�2ki + �kp + 1)z2 � (�kp + 2)z + 1
:

Let R(z) be of the form

R(z) = kr

(z � �)(z � �)(z � 
)

z�(z � 1)2
;

kr = (kpv + kiv�)(�2ki + �kp + 1):

(29a)

with �, �, 
 in (0; 1), and such that

� + � =
�kp + 2

�2ki + �kp + 1
;

�� =
1

�2ki + �kp + 1
;


 =
kpv

kpv + kiv�
:

(29b)

For � = 
 the characteristic equation 1+KG(z) involves

G(z) =
(z � �)(z � �)2(z + 1)

z(z � 1)4
;

K =
kkr�

2

(30)

Root locus plot for appropriate � and � is shown in
Figs. 10a,b.

a)

b)

Fig. 10. Root locus plot for discrete PI-PI servo: a) large range of
K; b) neighborhood of the zero � and � = 


� and �. To simplify the development assume that the z-
domain zeros � and � emulate s-domain zeroes �s, �s of
Sec. 4. For su�ciently small � we may write

� = e��s� �= 1 � �s�;

� = e��s� �= 1 � �s�:
(31)

Using the condition �s = 2�s from continuous case (see (23))
we get the equivalent condition � = 2� � 1 in discrete case.
Now

G(z) =
(z + 1)(z � �)[z � (2� � 1)]2

z(z � 1)4
: (32)

Breakpoints. This time essential part of the breakpoint con-

dition
d

dz
G(z) = 0 is of 4th order, i.e.
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