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Abstract. We present a new definition of a subtemperature, and show that
it unifies the potential theory of the heat operator from the outset, as the
subcaloric functions and the subtemperatures defined earlier, arise as charac-
terizations of the new subtemperatures almost simultaneously.

1. Introduction
The potential theory of the heat operator
~92 9
ox? ot

in R"* is now well developed, but it has been developed in two different ways.
First there was the harmonic space approach of Bauer [2], [3], and second the heat
ball approach of the present author [10], [11]. In [4], Bauer proved the equivalence
of the two approaches. More precisely, he showed that the subsolutions in the two
theories - the subcaloric functions and the subtemperatures - are the same. He used
relatively sophisticated results from both theories. In this paper, we present a new
approach using a new definition of subtemperature. This unifies the theory from
the outset, as the two earlier definitions arise as characterizations of subtempera-
tures, almost simultaneously.

The first thing we need for our new approach is a bounded domain D C R™!
for which it can be proved that, given any real valued, continuous function f on the
appropriate part of the boundary 9D, there is a unique function v € C(D) such
that u is a temperature (solution of the heat equation) on D and u = f where f
is defined. For D, we could take a rectangle (an (n + 1)-dimensional interval), in
view of the work of Hattemer [8], but it fits in better with our overall approach
to take for D a circular cylinder Bx]a,b[, where B is an open euclidean ball in
R™. With this choice of D, the existence of u has been proved using the traditional
method of double layer heat potentials, for example in [7]. This does not give such
an explicit representation as was obtained for a rectangle in [8], but that is nowhere
important.

We present several preliminary results in Section 2. In particular, we state a
well-known theorem on the existence of solutions to the Dirichlet problem for a
circular cylinder in space-time R™™!, reformulate it in terms of caloric measure,
use the caloric measure to define integral mean values, and give some results about
those mean values. In Section 3, we present the new definition of a subtemperature,
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which is given in terms of the mean values defined in Section 2. The remainder of
Section 3, and all the subsequent sections, are devoted to developing the theory of
the newly defined subtemperatures to the point where we can show that they are
the same functions as the old subtemperatures and the subcaloric functions.

2. Notation and Preliminary Results
We denote by W the Fundamental Temperature, defined for all (z,t) € R™™! by
n 22 .
Wz 1) = (47t) "2 exp (—%) it t>0,
0 it ¢<o0.

R™™ and any ¢ > 0, the set

For any point pg = (z0,t0) €
Q(po; ¢) = Qxo, to; ¢) = {(y,5) € R - W (2o —y,t0 — 5) > (4mc) "%}

is called the Heat Ball with centre (xg,to) and radius c¢. The boundary of the heat
ball Q(zo,to; ¢) is called the Heat Sphere (with centre (zg,to) and radius c).

Definition. The fundamental mean value over heat spheres is defined by
Mo, t050) = (470)F [ Qlao mito ~ Hulz.) do
8Q($0,t0,c)

for any function u such that the integral exists. Here o denotes surface area measure
on 9Q(xo, to; ¢), and

lzo — x|?

(120 — a2t — )2 + (|20 — a2 — 2m(t0 — 1)*) "

Q(xo —ZE,tO _t) =

See [5] for details.

Definition. Given a function u on the heat ball Q(zo, to; ¢) for which the integral
exists, we define the volume mean value of u by

C
V(u; xg, to; c) = gc_%/ 137 IM(w; 20, to; 1) dl

2
= (4mc)™ // |x° U (w,t) da dt. (2.1)
Q(:Doﬂfo, tO - t)
See [10] for details.

Given an open set E and a point pg = (x0,t9) € E, we denote by A(po; E) (or
A(zg, to; E)) the set of points p that are lower than pg relative to E, in the sense
that there is a polygonal path v C FE joining pg to p, along which the temporal
variable ¢ is strictly decreasing. By a polygonal path, we mean a path which is a
union of finitely many line segments.

Definition. A family F of functions on F is said to be upward-directed if, for
each pair u,v € F, there exists aw € F such that uVv < w, where uVv = max{u, v}.
Similarly, F is said to be downward-directed if u,v € F implies that there is w € F
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such that u A v > w, where u A v = min{u, v}.

Theorem 1. Let F be an upward-directed family of temperatures on an open set
E, and let w = supF. If there is a point py € E such that u(pg) < 400, then u is
a temperature on A(po; F).

Proof. This simple proof is adapted from that for the harmonic case given in [1].
Let K be any compact subset of A(pp; E). For each positive integer k, we can find
a function ug € F such that

u(po) — ur(po) < %

Since F is upward-directed, given any function v € F and k£ € N, we can find a
temperature wy € F such that up Vv < wg on E. By the Harnack inequality for
temperatures (see, for example, [13]), there is a positive constant x, depending only
on F, pg and K, such that

wi(p) — uk(p) < K(wk(po) — wr(po))
for all p € K and all k. Hence

v(p) — ur(p) < wi(p) — ur(p) < K(wr(po) — ur(po)) < K(u(po) — ur(po)) <

> =

for all p € K. Therefore

K

k

for all p € K, so that the sequence {uy} converges uniformly to v on K. It now

follows that w is a temperature on A(po; E) (see, for example, [10] Theorem 5 Corol-
lary).

u(p) — uk(p) = sup{v(p) — uk(p) : v € I} <

Given any set S € R™™, we denote by C(S) the class of all continuous, real
valued functions on S. We also denote by C?1(S) the set of real valued functions
w on S such that the partial derivatives 8%u/dx;0x; (i,j € {1,...,n}) and du/Ot
all exist and are continuous on S.

We consider an open ball B in R", and a bounded time interval ]a, b[, and denote
by D the circular cylinder D = Bx]a,b[C R™™'. We denote by 9, D the normal
boundary of D, which consists of the union of the lateral surface 9B x]a,b] and the
initial surface B x {a}. The Dirichlet Problem on D consists of showing that, for
any function f € C(9,D), there is a temperature v on D which has a continuous
extension by f to 0, D. It transpires that the function u is actually a temperature
on D\&, D, which means that u € C?1(D\9,D) and satisfies the heat equation
there.

Theorem 2. Let f € C(9,D). Then there is a function uy € C(D) such that
uy 1S a temperature on D\0,D and ur = f on Op,D.
Proof. See, for example, [7].

Theorem 3. Let f € C(9,D), and let us be the temperature on D\O,D asso-
ciated with f by Theorem 2. Then, given any point p € D\O, D, there is a unique
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positive Borel measure p, on 0, D such that

Uf(p)=/a Df dtp.

Proof. We show that the mapping f +— uy(p) is a positive linear functional on
the Banach space C(9,,D) with the supremum norm.

If f >0, then the boundary minimum principle shows that u; > 0.

If o € R, then af is continuous on 9,D, and so there is a temperature uqy
associated with «f by Theorem 2. Furthermore,

lim (u —au = lim wu —a lim wu =0
,im (vas(p) —oup(p)) = lim  uas(p) —a lim  ur(p)
for all ¢ € 0, D, so that the boundary uniqueness principle shows that ua; = auy
on D.

If g is another continuous function on 9, D, then so is f + g, and hence there is
a temperature uyy4 associated with f + g by Theorem 2. Also,

pﬂlqiyrgep (r+9(p) =1z (p) = ug(p))

= lim wu — lim wu — lim wu
p—q,pED f+g(p> p—q,pED f(p) p—q,pED g(p)

=0

for all ¢ € 0, D, so that uyyy —uy —uy = 0 on D, by the boundary uniqueness
principle.

Thus, given any p € D\, D, the mapping f +— us(p) is a positive linear func-
tional on C(9, D). It now follows from the Riesz representation theorem that there
is a unique positive Borel measure p, on d,D such that

uy(p) = : Df dpip.

Definitions. The measure p, in Theorem 3 is called the Caloric Measure at p
for D, and the integral is called the Poisson Integral of f.

Since temperatures are invariant under translation and parabolic dilation, the
caloric measure has similar properties. To see this, let f € C(9,D), and let uy be
the Poisson integral of f. Take a translation of the cylinder D to another cylinder
Do =D+ {po}, and define a function fy on 9, Dy by putting fo(q) = f(¢— po). If
uy, is the Poisson integral of fy, then for p € D\, D we have

0

ug, (p+po) = /

871 DO

fo(@) dpptpo(a) = / J(q—po)dpipip,(q) = f(g)dvy(q),

On Do oD

where v, is the translation of 1, from 9, Dy to 9, D. Putting vy, (p) = uy, (p+po),
we get a temperature vy, on D with continuous boundary values f on 0,D. So
vf,(p) = us(p) by the boundary uniqueness principle, and hence

up(p) = - f(q) dvp(q),
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for any f € C(9,D). So, by the uniqueness of the measure in Theorem 3, y, = vp.
For the parabolic dilation, we can now take

D ={(y,s) : |yl < e, =b<s<0}

without loss of generality, and dilate it to another cylinder
Dy ={(y,s) : ly| < Vac, —ab < s < 0}.
Let uy be as before, and define a function f; on d,D; by putting

fl(y,s>—f(j6,2>.

If uy, is the Poisson integral of fi, then for (z,t) € D\d,D we have

U (JJ\/ZL, ta) = / iy, S) dﬂ(mﬁ,ta) (y7 S)

On Dy

Yy S
= = d z+/a,ta » S
[ 5 (203) gm0
:/ f(y7s) dX(m,t)(y7S)7
O D

where X(;,1) is the parabolic dilation of p(, /744 from 0,D1 to 9,D. Putting
vp (x,t) = uyp (2/a, ta), we get a temperature vy, on D with continuous boundary
values f on 0,D. So vy, = uy, and hence

Uf(.’IJ,t) = oD f(ya S) dX(:E,t) (y7 8)7

for any f € C(9,D). So, by the uniqueness of the measure in Theorem 3, we have

F(z,t) = X(a,t)-
We need some information on the sets of caloric measure zero.

Lemma 1. Let py = (xo,t0) € D\0,D, and let p,, be the caloric measure at pg
for D. Then

(a) upo({(yvs) €0,D:s>t}) =0,
and

(b) if V is any relatively open subset of {(y,s) € 0D : s < to}, then uy, (V) > 0.

Proof. (a) Let D = Bx]a,b[, where B is an open ball in R". We choose a
number b* > b, and put D* = Bx]a,b*[. We also choose a decreasing sequence
{fr} of functions in C(9,D*) such that fi(y,s) = 1if s > to, fr(y,s) = 0 if
s <tg— £(to —a), and fi(y,s) — 0 as k — oo whenever to — +(tg — a) < s < to.
Let uj be the function in C’(E) associated with the restriction of f; to 9,D by
Theorem 2, and uj, be that in C(E*) associated with fj itself. Then u, = fi, = u}
on 0,D, so that up = u} on D by the boundary uniqueness principle. Since
{fx} is a decreasing sequence, so are {u} and {u}}. Consider the restriction of
ui to the set {(x,t) € D :t <ty — +(to — a)}. Since uj = 0 on the normal
boundary, the boundary uniqueness principle shows that u; = 0 throughout that
cylinder. Put «* = limy_,o uj on D*, and let T = {(y,s) € 0,D : s > to}. The
Harnack monotone convergence theorem (see, for example, [13]) can be applied
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to the increasing sequence {uj — u}} of nonnegative temperatures, to show that
uj —u* is a temperature on D*. Hence u* is a temperature also. Since uj(z,t) =0
whenever ¢ < to — ¢ (to — a), we have u*(z,t) = 0 whenever ¢ < to and so, by
continuity, whenever ¢ < to. Since u* = limy_, o ux on D\, D, it now follows from
Lebesgue’s monotone convergence theorem that

0= lim ug(zo,%0) :/ lim fi dpp, = / Apipy = tipo (T).
k—o0 O, D k—o0 T

(b) We choose a function f € C(9,D) such that f > 0 on 9,D, f =0 except on
V, and f(qo) = 1 for some point gy € V. Let u be the function in C(D) associated
with f by Theorem 2, so that u = f on 9, D. Then u > 0 by the minimum principle,
and u(p) — 1 as p — qo. If we had p,, (V) = 0, it would follow from Theorem 3

that
u(po) = / f dyipe = / F dyipy = 0,
On D \%

which implies that u(x,t) = 0 whenever ¢ < ¢y by the strong minimum principle,
contrary to the fact that u(p) — 1 as p — qo-.

We now characterize temperatures in terms of the Poisson Integral.

Theorem 4. Ifu is a temperature on an open set E, and D is a circular cylinder
with D C E, then u has the representation

up) = [ wn,
On D

for all p € D\, D, where p, is the caloric measure at p for D.
Conversely, suppose thatuw € C(E) and that, for each point py € E, there is some
circular cylinder D containing py such that D C E and u has the representation

up) = [ wn,
On D

for all p € D, where i, is the caloric measure at p for D. Then u is a temperature
on E.

Proof. Suppose that u is a temperature on E, and that D is a circular cylinder
with D C E. Let f be the restriction of u to 0,D. By Theorem 2, there is a
function uy € C(D) such that uy is a temperature on D\, D and us = f on 9, D.
By Theorem 3, us has the representation

ur(p) = / [ dpy
On
for all p € D\9,,D. The functions u and uy belong to C(D\d, D), are temperatures
on D, and are equal on 0, D. Therefore u = uy on D and hence, by continuity, on
D. So u has the required representation.
To prove the converse, take any pg € E. Then there is some circular cylinder D
containing pg, such that D C E and

U(p)=/ u dyp
On D
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for all p € D. Let f be the restriction of u to 8, D. Then, by Theorems 2 and 3,
there is a function uy € C(D) such that uys is a temperature on D, and

Uf(p):/a Df dpip

for all p € D. So u = uy on D. Hence u is a temperature on a neighbourhood of
the arbitrary point pg, and therefore on E.

The Poisson integral representation also gives a mean value characterization of
temperatures, as follows.

Definitions. For each (z,t) € R""* and ¢ > 0, we put
A(z,t;c) = Bz, Vo) x|t — e, t],

where B(x,+/c) denotes the open ball in R” with centre x and radius /c. We call
A(z,t;¢) the Heat Cylinder with centre (x,t) and radius c.

The mean value over normal boundary of the heat cylinder is defined, for any
function u such that the integral exists, by

L(uyz, t;c) = / w dpt(g 1,
OnA(z,t;c)

where fi(, 4 is the caloric measure at (x,t) for A(z,t; ¢). Since the caloric measure
is invariant under translation and parabolic dilation, the mean L(u; x,t; ¢) depends
only on u, (z,t) and c.

Note that, by taking v = 1 in Theorem 4, we obtain L(1;x,¢;¢) = 1 for all (z,t)
and c.

The proof of our characterization of temperatures in terms of the means L (u; z, t; ¢),
depends on showing that a continuous function which satisfies a weak mean value
property also satisfies the maximum principle.

Theorem 5. Let D = Bx|a,b[ be an arbitrary circular cylinder in R, and
letwe C(DUO,D). If, given any point (z,t) € D and € > 0, we can find a positive
number ¢ < € such that u(x,t) < L(u;z,t;c) holds, then u satisfies the maximum
principle. That s, if there is a point (xo,tg) € D such that u(xg,to) > u(z,t)
whenever (x,t) € D and t < tg, then u(xo,to) = u(x,t) for all such points (z,t);
consequently

Sup U = maxu.
DUd,, D OnD

Proof. Suppose that there is a point (xg,tg) € D such that u(xg,to) > u(z,t)
whenever (z,t) € D and t < ty. Put M = u(xo,%o), and let (z1,t1) be any point
of D such that t; < tg. Join (zg,to) and (x1,¢1) with a closed line segment ~, and
put

S = {s : there is a point (y, s) € v with u(y, s) = M}.
Then S # @ because tg € S, and S is lower bounded by t;. Put s* = infS.
If A(zo,t0;¢) € E, then because Lemma 1 shows that the caloric measure at
(x0,t0) of OnA(xo,t0;c)\A(xo,t0; E) is zero, we have u < M almost everywhere



204 NEIL A. WATSON

on J,A(xg,to; ¢) with respect to that measure. So, by our hypothesis, there is a
number ¢ < tg — t1 such that

M = U(J]O,to) S L(“;'T(%t();c) S L(M;l‘(ht();C) = M7

and hence u = M on a dense subset of 9, A(zo, to; ¢), by Lemma 1. The continuity
of 4 now implies that « = M on 9, A(zo,to;¢). Since ¢ < tg — t1, the intersection
v N nA(zg,to;c) # 0, so that we can find a point (y1,s1) € v such that s; < tg
and u(y1,s1) = M. Therefore s* < t.

Suppose that t; < s* < tg. Then there is a sequence of points {(zx,7x)} on 7y
such that w(zg, ) = M for all k and r, — s* as k — co. The continuity of u
now implies that there is a point (y*,s*) on v such that u(y*,s*) = M. By our
hypothesis and an argument similar to the one above, we can find ¢ < s* —¢; such
that u = M on 9, A(y*, s*;¢), and therefore a point s2 € S such that sy < s*, so
we have a contradiction. Hence s* = t1, and u(z1,t1) = M.

For the last part, given any « such that a < a < b, we put D, = Bx]a, af and
M, = max{u(p) : p € D,}. Choose a point (2',t') € D, such that u(z’,t') = M,.
If («/,t') € D, then the first part of the theorem shows that u(z,t) = M, for all
(x,t) € D, such that t < #', so we can assume that (z’,t') € D,\D. It follows that

sup u= sup M,
DuUo, D a€la,b]

is attained at some point of 9, D.
We can now give our mean value characterization of temperatures.

Theorem 6. If u is a temperature on an open set E and (x,t) € E, then the
equality u(z,t) = L(u; z,t;¢) holds whenever A(z,t;c) C E.

Conversely, if u € C(E) and, given any point (z,t) € E and € > 0, we can find a
positive number ¢ < e such that u(xz,t) = L(u;xz,t;¢) holds, then u is a temperature
on E.

Proof. If u is a temperature on F, then the first part follows from Theorem 4.

Conversely, suppose that u € C(F), and let D be an arbitrary circular cylinder
such that D C E. Let f denote the restriction of u to d,,D. By Theorem 2, there
is a function uy € C(D) which is a temperature on D and satisfies uy = f on 9, D.
By Theorem 4, whenever A(x,t;c) is a heat cylinder such that A(z,t;¢) C D, the
equality

ug(z,t) = L(us;z,t;c)

holds. Therefore, if v = u — uy on D, then v satisfies the same condition that u
satisfies on F. Hence, by applying Theorem 5 to both v and —v, we obtain

O=minv= inf v< sup v=maxv=0,
On D DU, D DUd,, D On D

so that v = uy on D. Thus u is a temperature on any circular cylinder D such that
D C E, and hence on E.
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3. The New Definition of Subtemperature

We define subtemperatures in terms of the means L.

Definition. Let w be an extended-real valued function on an open set F. We
call w a subtemperature on E if it satisfies the following four conditions.

(01) —o0 < w(p) < +oo for all p € E.
(62) w is upper semicontinuous on E.
(03) w is finite on a dense subset of E.
(04) Given any point p € E and € > 0, there is a positive number ¢ < € such that
A(p;c) € B and w(p) < L(w;p;c).

If w is a subtemperature on E, and V is an open subset of F, then w is a sub-
temperature on V.

We call a function v a supertemperature on E if —v is a subtemperature on E.
Note that v is a temperature on F if and only if it is both a subtemperature and a
supertemperature on F, in view of Theorem 6.

We refer to any function w that satisfies condition (1) as upper finite. If w is
both upper finite and upper semicontinuous, then w is locally upper bounded, so
that the means L(w;p;c) (for A(p;c) C E) always exist and are never +oo.

If w is a subtemperature on F, and a is a positive number, then aw is a subtem-
perature on E.

Note that, if v and w are both subtemperatures on F, we cannot in general con-
clude that v + w is also a subtemperature. The conditions (d3) and (d4) are both
too weak for that. If either v or w is a temperature, then v+w is a subtemperature,
in view of Theorem 6. The general case is given in Theorem 21 Corollary 1 below.

If u is a temperature on F, and ¢ is a convex function defined on an interval
containing w(FE), then ¢ o u is a subtemperature on E. This follows from the fact
that ¢ ou € C(E) and Jensen’s inequality.

Theorem 7. (The Strong Maximum Principle.) Let w be a subtemperature on
an open set E. If there is a point (xo,tg) € E such that w(xg,to) > w(x,t) for all
(x,t) € Ao, to; E), then w(zo,to) = w(z,t) for all such points (x,1).

Proof. Put M = w(zg,ty), and let (z1,t1) be an arbitrary point of A(xg,to; E).
Let v be a polygonal path in E that connects (zg,t0) to (x1,%1), along which the
temporal variable is strictly decreasing. Put

S = {s : there is a point (y, s) € v withw(y,s) = M }.

Then S # 0 because tg € S, and S is lower bounded by ;. Put s* = infS.
If A(zo,t0;¢) € E, then because Lemma 1 shows that the caloric measure at
(20,t0) of OnA(xo,to;c)\A(xo,to; E) is zero, we have w < M almost everywhere
on 0, A(zg, to; ¢) with respect to that measure. So, since w satisfies condition (d4),
there is a number ¢ < ty — 1 such that

M = w(xg,to) < L(w;xo, to;c) < L(M;xg,t0;¢) = M,
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and hence w = M on a dense subset of 9, A(xg, to; ¢), by Lemma 1. Therefore, for
any point (y,s) € 9,A(xo,to; ¢) such that s < ¢,
M = limsup w(z,t) <w(y,s) <M.
(z,t)=(y,s)

Since ¢ < tg — t1, the set v N 9, A(zo,to;c) # 0, so that we can find a point
(y1,81) € v such that s1 < tg and w(y1,s1) = M. Therefore s* < tg.

Suppose that t; < s* < ty. Then there is a sequence of points {(zx,rr)} on v
such that w(zg,ry) = M for all k, and 1, — s* as k — oco. This implies first that
there is a point (y*,s*) € «, and second that, since w is upper semicontinuous,

M= klim w(zg,rr) < w(y*,s*) < M.

Hence s* € S. Therefore, since w satisfies condition (d4), there is ¢ < s* — ¢; such
that

M =w(y*,s") < L(wiy", s"¢) < L(M:y™, s™5¢) = M,
so that w = M on a dense subset of 9, A(y*, s*;c) which, as before, implies that
there is a point (y2, $2) € v N I, A(y*, s*;¢) such that s2 < s* and w(ys, s2) = M.
This contradicts the definition of s*, so it is not possible to have t; < s*. Hence
t; = s*, and w(zy,t1) = M.

Corollary. Let w be a subtemperature on E. Given any point (zo,to) € E, there
is a point (x1,t1) € A(zo,to; F) such that w(xg,to) < w(xy,t1).

Proof. If w(xg,t0) > w(z,t) for all (z,t) € A(zo,to; E), then w(xg,to) = w(z,t)
for all such points (z,t). The only other possibility is that there is a point (z1,¢1) €
A(zo, to; E) such that w(xg,to) < w(z1,t1).

We shall prove a boundary maximum principle for subtemperatures on an arbi-
trary open set, using the Hausdorff Mazimality Theorem [9], as in [12].

Theorem 8. Let w be a subtemperature on an open set E, and suppose that

limsupw(p) < A
k—o0
for every sequence {pr} in E that satisfies pxy1 € A(pr; E) for all k, and which
tends either to a boundary point of E or to the point at infinity. Then w(p) < A
forallp € E.

Proof. Given any number o > A, we put S, = {p € E : w(p) > a}. If
So = 0 for all o, there is nothing to prove. If S, # () for some «, we define a
partial order < on S, by putting p < ¢ if p € A(q; E) U {¢q}. By the Hausdorff
Maximality Theorem, S, contains a maximal totally ordered subset T,. We put
t* = inf{t : there is a point (z,t) € T,}. Since T, is totally ordered, there is a
sequence {p;} = {(z;,t;)} of points of T, such that p;11 € A(p;; E) U {p;} for all 4,
and t; — t* as i — oo.

If the sequence {p;} has a cluster point in OF, or is unbounded, then it contains
infinitely many points. It therefore has a subsequence {p;, } that converges to a
point of JF, or tends to the point at infinity, such that p;, ,, A(ps,; £) for all k.
Hence, by hypothesis,

a <limsupw(p;,) < A< a,

k—oo
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a contradiction. Therefore {p;} is contained in some compact subset of E. Hence
t* > —oo, and {p;} has a subsequence {p;, } that converges to a point p* = (2*,t*)
in ENT,. Put ¢; = (yj,s;) = pi,; for all j. Then g;11 € A(g;; E) U {g;} for all
j. Since p* € ENT, and w > a on T,, the upper semicontinuity of w implies
that w(p*) > «, so that p* € S,. Furthermore, p* is the centre of some euclidean
ball B(p*,d) C E, and there exists some number N such that ¢; € B(p*,d) for
all 7 > N. It follows that p* < ¢; for all j > N. Since T, is totally ordered and
g; — p* = (z*,t*), for each point p € T, there is some j > N such that ¢; < p.
Hence p* < p for all p € T,, so that T, U {p*} is totally ordered. Since T, is
maximal, this shows that p* € T,. By Theorem 7 Corollary, there is some point
p’ € A(p*; E) such that w(p’) > w(p*) > a. This implies first that p’ € S,, then
that p’ € T,. Now we have another contradiction, because t* = inf{t : (z,t) € Ty}
and p’ € A(z*,t*; E).

Thus if S, # 0, we obtain a contradiction in every possible situation. We con-
clude that S, = 0 for all a, so that w(p) < A for all p € E.

For the case of a circular cylinder, Theorem 8 gives a predictable result, as fol-
lows.

Corollary. Let w be a subtemperature on a circular cylinder D. If
limsupw(p) < A forall q€0,D,
p—q
then w(p) < A for allp € D.
Proof. If {py} is a sequence in D that satisfies pr1 € A(pg; D) for all k, and
tends to a point g € 9D, then ¢ € 9, D. Hence
lim sup w(py) < limsupw(p) < A.

k—oo pP—q

Our next theorem characterizes subtemperatures in terms of being majorized by
temperatures on circular cylinders, and strengthens condition (d4). To prove it, we
need a lemma that refines the condition of upper semicontinuity.

Lemma 2. Let w be a subtemperature on an open set E, and let (y, s) be a point

in E. Then
w(y,s) = limsup w(x,t).
(z,t)—(y,5-)

Proof. We put ¢ = (y,s) and | = limsup, 4)_(y,s—) w(x,t). Since w is upper
semicontinuous and upper finite, we have | < w(g) < +oo. Given any number
L > 1, we can find a heat cylinder A(g;co) such that w(p) < L for all p € A(g;co).
Now condition (d4) shows that there is a positive number ¢ < ¢y such that

w(q) < L(wig;e) < L(Ligse) = L

since, in view of Lemma 1, w < L almost everywhere on 9,,A(g; co) with respect to
the caloric measure at g. Thus w(g) < L whenever | < L, so that w(q) <. Hence

w(q) = 1.
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Theorem 9. Let w be an extended-real valued function on an open set E, that
satisfies conditions (81), (02) and (d3) of the definition of a subtemperature. Con-
sider the following property: Whenever D is a circular cylinder such that D C E,
and v is a function in C(D) that is a temperature on D and satisfies v > w on
0,D, then v > w on D.

If w is a subtemperature on E, then the stated property holds.

Conversely, if the stated property holds then w is a subtemperature on E. More-
over, given any point p € E, the inequality w(p) < L(w;p;c) holds whenever the
closed heat cylinder A(p;c) C E.

Proof. Suppose that w is a subtemperature on E, that D is a circular cylinder
such that D C E, and that v € C(D), is a temperature on D, and satisfies v > w on
OpD. Then w — v is a subtemperature on D, in view of Theorem 6. Furthermore,
whenever ¢ € 9, D we have

limsup (w(p) —v(p)) < w(q) —v(q) <0,

p—q,pED
so that w(p) < v(p) for all p € D, by Theorem 8 Corollary. Finally, if ¢ € D but
q ¢ DUO9,D, Lemma 2 shows that

w(q) —v(g) = limsup w(p) — lim w(p) = limsup (w(p) — v(p)) < 0.
p—q,pED p—¢,pED p—q, pED

Conversely, suppose that w has the stated property, and let A(p;c) be a heat
cylinder such that A(p;c) C E. The restriction of w to 9,A(p;c) is upper semi-
continuous and upper finite, and hence upper bounded. Therefore we can find a
sequence {fx} in C(9,A(p;c)) that decreases to w on 9,,A(p; c). For each k, let vy,
be the Poisson integral of fr on A(p;c)\d,A(p;c), and let vy, = fi on 9, A(p;c).
Then vi, € C(A(p;c)), v is a temperature on A(p; c), and vx, > w on 9, A(p;c). So
our hypothesis implies that vy > w on A(p;c). In particular,

w(p) < lim vg(p) = L lim fi; p; ¢) = L(w; p;c)
k—o0 k—o0
by Lebesgue’s monotone convergence theorem.

Corollary 1. If v and w are subtemperatures on E, then so is w V v.
Proof. Conditions (d1), (d2) and (d3) obviously hold for w V v, and (d4) holds
because

(wVv)(p) < L(wip;e) V L(v;p;e) < L(wV v;p;c)
for all values of ¢ such that A(p;c) C E.

Corollary 2. If v and w are subtemperatures on E, and either one is real val-
ued, then v + w is a subtemperature on E.

Proof. Conditions (d1), (d2) and (d3) obviously hold for v + w, and (d4) follows
from Theorem 9.

Theorem 10. Let w be a subtemperature on an open set E, and let D be a
circular cylinder such that D C E. Then the Poisson integral w of the restriction
of w to 0, D exists, and the function Tpw, defined on E by putting
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u on D\0,D,
TpW = —
b w on E\(D\0.D),

has the following properties:

(a) Tpw is a subtemperature on E,

(b) Tpw > w on E,

(¢c) Tpw is a temperature on D\0, D,

(d) mpw = w on 9, D U (E\D),

(e) if v e C(D), v>w on D, and v is a temperature on D, then v > wpw on
D.

Proof. Let D = Bx]a,b[, where B is an open ball in R" and ]a, b[ is a bounded
interval in R. Choose a number b* > b such that the cylinder D* = Bx]a, b*[ also
has its closure contained in F. Since w is upper semicontinuous and upper finite
on the compact set 0, D*, it is upper bounded on 9, D*. Therefore we can find a
decreasing sequence {fi} of functions in C'(9,D*) such that f, — w on 9,D* as
k — oo. For each k, we put uy equal to the Poisson integral of f; on 5*\8HD*, and
uy equal to fr on 0,D*. Then uy € C(E*) and uy is a temperature on D*. Since
{fx} is a decreasing sequence, so is {uy}. We put u = limy_ o ux. By Theorem
9, w < ug on D" for all k, and hence w < u. Since u is the limit of a decreasing
sequence of continuous functions, it is upper semicontinuous on 5*; and since
fr = w on 9,D* u = w there. Lebesgue’s monotone convergence theorem now
shows that u is the Poisson integral of the restriction of w to 0, D*. Furthermore,
u is the limit of the decreasing sequence {uy} of nonnegative temperatures on D*,
so that the Harnack monotone convergence theorem for temperatures shows that
u is a temperature on D*. Hence, in particular, the restriction of v to D is a
temperature on D\, D, is the Poisson integral of the restriction of w to 9, D on
D\0,,D, in view of Lemma 1, and u(p) = L(u; p; c) whenever A(p;c) C D\, D, by
Theorem 6.

We now define the function mpw as in the statement of the theorem, and show
that mpw is a subtemperature on E. Since w < +o0o on E, and w is the limit
of a decreasing sequence of functions in C(D), mpw is upper finite on E. Since
u > w on D, and w satisfies condition (J3), mpw also satisfies that condition, and
mpw > w on E. Furthermore, mpw is certainly upper semicontinuous at points
outside B x {b}; and if ¢ € B x {b}, then

lim  u(p) = u(q) > w(q) > limsup w(p),
p—a.peD p—q,p¢D
which implies that mpw is upper semicontinuous at ¢. It remains to prove that
mpw satisfies condition (d4). If p € E but p ¢ D\9, D, then whenever the closed
heat cylinder A(p;c) C E, we have

mpw(p) = w(p) < L(w;p;c) < L(mpw;p;c).

On the other hand, we have already shown that u(p) = L(u; p; ¢) whenever A(p;c) C
D\0, D, so that mpw(p) = L(mpw;p;c) for such values of p and ¢. Hence mpw is
a subtemperature on F.

It only remains to prove part (e). Suppose that v € C(D), v > w on D, and v
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is a temperature on D. Given any e > 0, the sequence {fj} decreases to the limit
w < v+ € on 9,D. Therefore the sequence of sets {Si}, defined by

Sk ={q€ 0D : fr(q) <v(q) +e}

is expanding to the union 0, D. Both f; and v are continuous on 0, D, so that
each set Sy is relatively open. Therefore, since 9, D is compact, there is a number
 such that Sy = 9, D whenever k > k. Thus fix(q) < v(q) + € for all ¢ € 9,,D if
k > k. This implies, using the maximum principle, that ux(q) < v(q) + € for all
q € D if k > k. Therefore u < v + ¢ on D for any € > 0, and so u < v.

4. The Dirichlet Problem on Convex Domains of Revolution

We need to discuss the Dirichlet problem on the heat ball and some approximat-
ing domains. They are all of the following form, as are circular cylinders.

Let g € R and a,b € R". A Conver Domain of Revolution is any open set that
has the form

R = R(zo;p;a,b) = {(2,t) e R"™ : |x — x| < p(t), a <t < b}

for some continuous concave function p : [a, b] — [0, +o0|.
Corresponding to the normal boundary of a circular cylinder, we define the
normal boundary of a convex domain of revolution R to be

OnR = OR\{(z,b) : |z — mo| < p(b)}.

Note that 9, R is compact.

The Dirichlet Problem on a convex domain of revolution R consists of showing
that, for an arbitrary function f € C(9,R), there is a function uy € C(R U I, R)
that is a temperature on R and coincides with f on 9, R.

We show that this problem has a solution, except when the left hand derivative
p_(b) = —oo. We use the Perron- Wiener-Brelot, or PWB, method.

Definition. A non-empty family F of supertemperatures on an open set F, is
called a saturated family if it satisfies the two conditions:

(a) if v,w € F, then v Aw € F;

(b) if w € F, D is a circular cylinder such that D C E, and mpw is the function
defined in Theorem 10, then mpw € &F.

Theorem 11. If F is a saturated family of supertemperatures on an open set
E, and the function uw = inf F satisfies u(py) > —oo at some point py € E, then u
is a temperature on A(po; E).

Proof. Let gg be any point of E such that u(gg) > —oo. Let D be any circular
cylinder such that ¢o € D and D C E. For each supertemperature w € F, we let
mpw be the function defined in Theorem 10, so that mpw is a supertemperature
on F, and rpw < w on E. Since F saturated, rpw € F. Therefore, on D, we
have u = inf{rpw : w € F}. If v,w € F, then v A w € F because F is saturated,
and so the family F is downward-directed. Furthermore, an application of the
minimum principle on D shows that 7p(v A w) < wpv A Tpw, and therefore the
family {mrpw : w € F} is also downward-directed. Since mpw is a temperature on
D for all w € F, it follows from Theorem 1 that u is a temperature on A(qo; D).
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Now let p. be any point of A(pg; E), and let v be a polygonal path in F that
connects pg to p,, along which the temporal variable is strictly decreasing. For each
point p = (z,t) € v and positive number ¢, we put

D(p;c) = B(z, o)Xt —e,t+¢[ and A(p;c) = B(x,c)x]t — ¢, t[= A(p; D(p; ¢)).

Since v is a compact subset of the open set E, we can find ¢y > 0 such that
D(p;co) C E for all p € v. We now let m be the integer such that the length of
~ lies in the interval Jmcy/2, (m + 1)cg/2]. Since u(pg) > —oo, we know that u is
a temperature on A(pg;co). The length of that portion of v which is contained in
A(po; co) is at least ¢g, and so there is a point p; € yNA(po; ¢o) such that the length
of that portion of  which lies between py and p; is cp/2. Since u(p;) > —o0, u is a
temperature on A(p1;co). The length of v contained in A(p1;co) is at least ¢g, and
so there is a point ps € v N A(p1;co) such that the length of v between p; and po is
¢p/2. Repeating this argument m times, we find that there is a point p,, € v such
that u is a temperature on A(pm,;co) and p. € A(pm;co). Thus u is a temperature
on a neighbourhood of p,, and hence on A(pg; E).

We note that the boundary maximum principle for subtemperatures on a convex
domain of revolution, takes the same form as it does on a circular cylinder (Theo-
rem 8 Corollary), with a similar proof.

Definition. Let R be a convex domain of revolution, and let f € C(9,R). The
Upper Class Uy, determined by f, consists of all upper bounded supertemperatures
v on R that satisfy

liminfo(p) > f(q)

p—q
for all g € 0, R.

Note that, by the boundary minimum principle, v > min f on R. Note also that,
because v A (max f) is also a supertemperature, by Theorem 9 Corollary 1, the
condition that v is upper bounded is no real restriction.

The Lower Class £y, determined by f, consists of all lower bounded subtemper-
atures v on R that satisfy

limsup u(p) < f(q)
p—q
for all ¢ € 0, R.

Note that neither class is empty, because il; contains the constant function
max f, and £¢ contains min f.

The Upper PWB Solution for f on R is the function Uy given by

Us(p) = inf{v(p) : v € Ly},
and the Lower PWB Solution is given by
Ls(p) = sup{u(p) : u € £y}
Both functions are bounded.
If Uy = Ly, and is a temperature on R, then we put Sy = Uy and call it the
PWB Solution for f on R.

We shall show that every f € C(9, R) has a PWB solution on R, then investigate
the boundary values of Sf. First we show that, if the Dirichlet problem for f has
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a solution, then it is given by S¢.

Lemma 3. Let R be a convex domain of revolution, and let f € C(0,R). If
u€ Ly andv € Uy, then u < v on R. Consequently Ly < Uy on R.

Proof. Since u is a bounded subtemperature on R, and v is a bounded su-
pertemperature, the difference u — v is a subtemperature, by Theorem 9 Corollary
2. Furthermore, whenever ¢ € 9,, R we have

limsup(u — v)(p) < limsup u(p) — liminf v(p) <0,
P—q P—q p—q
and so it follows from the boundary maximum principle that © < v on R. Thus
any function v € £ satisfies u < Uy, and therefore Ly < Uy.

Theorem 12. Let R be a convex domain of revolution, and let f € C(0,R). If
there is a temperature uy on R such that
lim us(p) = f(q)
p—q
for all g € Op R, then f has a PWB-solution and it is uy.

Proof. 1t follows from the boundary maximum principle that min f < uy <
max f on R. Therefore uy € £5 N4y, and so Uy < uy < Ly. Since Ly < Uy by
Lemma 3, we deduce that Us = uy = Ly. Since uy is a temperature on R, the
PWB solution for f on R exists and is equal to uy.

Lemma 4. Let R be a convex domain of revolution, and let f € C(0,R). Then
both Ly and Uy are temperatures on R.

Proof. Let v,w € iy. Then v Aw is an upper bounded supertemperature on R,
by Theorem 9 Corollary 1, and

liminf(v A w)(p) = (liminf v(p)) A (liminf w(p)) > f(q)
P—4q p—q p—q

for all ¢ € 9, R. Therefore v Aw € Uy. Next, if v € Uy and D is a circular cylinder
such that D C R, then the function mpv of Theorem 10, is a supertemperature on
R, is upper bounded on R, and satisfies

liminf 7pu(p) = liminf v(p) > f(q)
p—q p—4q

for all ¢ € 0, R. Therefore mpv € ty. Thus 4y is a saturated family of supertem-
peratures on R. Furthermore, since v > min f for every v € iy, it follows from
Theorem 11 that Uy is a temperature on R. Dually, Ly is also a temperature.

Definition. Let R be a convex domain of revolution, and let f € C(9,R). If f
has a PWB solution on R, we say that f is resolutive.

Lemma 5. Let R be a convex domain of revolution, let f,g € C(O,R), and let
a €R.

(a) The constant function « is resolutive, and S, = o on R.

(b)) Upra =Us+a and Lyyo = Ly+o. If f is resolutive, then f+a is resolutive
and Sfiq =S5+ .

(c) If a > 0, then Unyy = aUy and Loy = aLy. If f is resolutive, then of is
resolutive and Sof = aSy.
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(d) If f < g, then Uy <Uy and Ly < L,.

(e) U_y = —Ly. If f is resolutive, then —f is resolutive and S_y = —Sjs.

(f) Upyg <Up+Ug and Ly g > Ly + Ly. If f and g are resolutive, then f + g
is resolutive and Syiq = S§ +Sg.

Proof. (a) This is a special case of Theorem 12.

(b) If v € 4y then v + « € Uy 4, and conversely. So Usyo = Uy + a. Similarly,
Lfio = Ly + . If fis resolutive, then Ly = Uy and is a temperature, so that
Utyoa =Usf+a=Ls+a= L, and is also a temperature.

(c) If v € YUy then av € U,f, and conversely. So Uyy = aUy. Similarly,
Loy = aLy. If f is resolutive, then Ly = U; and is a temperature, so that
Usp = aUy = aLy = L,y and is also a temperature.

(d) If v € U, then v € Uy, so that U, is the infimum over a more inclusive class
of functions, and so Uy < U,. Similarly, if u € £¢ then u € £, so that Ly < L.

(e) If v € YUy then —v € £_5, and conversely. So Uy = —L_;. Similarly,
Ly = —U_y. If f is resolutive, then Ly = Uy and is a temperature, so that
—U_y = —L_y and is also a temperature.

(f) If v € Uy and w € U, then Theorem 9 Corollary 2 implies that v+w € Uy .
So for each function w € U4y we have Uy +w > Uy, 4. Therefore Uy + Uy > Upy .
Now the inequality Ly, > L+ L, follows from part (e). If f and g are resolutive,
then (using Lemma 3)

Sp+8g=Lg+Ly<Lprg <Upyg <Us+ Uy =55+ 5,
which shows that Ly, = Uypyg = Sy + 5.

In order to show that every function in C(9,R) is resolutive, we first obtain a
class of resolutive functions such that every real continuous function can be ob-
tained as the limit of a uniformly convergent sequence in that class, using the
Stone-Weierstrass theorem ([6], Theorem 7.29). Then we show that the limit of a
uniformly convergent sequence of resolutive functions is itself resolutive.

Lemma 6. If R is a conver domain of revolution, and w is a function in
C(R U O, R) that is a subtemperature on R, then the restriction of w to O, R is
resolutive.

Proof. Let f denote the restriction of w to 0, R. By Lemma 4, the lower PWB
solution Ly is a temperature on R. Furthermore u € £y, so that u < Ly on R.
Therefore

liminf L;(p) > lim u(p) = f(q)
pP—q pP—q

for all ¢ € 0, R, so that Ly € iy, and hence Ly > Uy. But we always have Ly < Uy,
by Lemma 3, and so f is resolutive, in view of Lemma 4.

Lemma 7. Let R be a convex domain of revolution, and let {f;} be a sequence of
resolutive functions in C(0,R). If {f;} converges uniformly on 0,R to a function
[, then f is resolutive and the sequence {Sy,} converges uniformly on R to Sy.

Proof. Note that f € C(d,R), so that Uf and Ly are temperatures on R, by
Lemma 4. Given € > 0, we can find a number NN such that f;—e¢ < f < fj+eon 0, R
whenever j > N. Therefore, by Lemma 5, Uy, —e = Uy, < Uy < Uy, = Uy, +€
on R whenever j > N. Hence the sequence {Sy,} = {Uy,} converges uniformly
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on R to Uy. A similar argument with the lower solutions shows that the sequence
{Ss,} = {Ly,} converges uniformly on R to Ly. Hence Uy = Ly, and the lemma is
established.

Theorem 13. If R is a convex domain of revolution, then every function in
C (0, R) is resolutive.

Proof. Let § denote the class of functions in C(R U 9, R) that are supertemper-
atures on R, let D denote the class of differences v — v of functions in G, and let
F denote the class of restrictions to 9, R of the functions in D. Then JF is a linear
subspace of C(9,R) that contains the constant functions. By Lemmas 6 and 5, the
restrictions to 0, R of the functions in G are resolutive, and the functions in F are
all resolutive. Furthermore, for any point (z,to) such that R C R"™ x]tg, +oc], the
class D contains the function (x,t) — W(x — xg,t — tp), and so separates points.
Finally, if w,v € G then the Theorem 9 Corollaries imply that u Av,u+v € G, so
that if w1, us, v1,v2 € G the function

(ul—@l)\/(UQ—vg):ul +’IL2—(’LL2+U1)/\(U1 +1)2) e D.

Thus fV g € F whenever f,g € F. It now follows from the Stone-Weierstrass
theorem that every function in C'(9,R) can be expressed as the uniform limit of
a sequence in F. Since every function in F is resolutive, it follows from Lemma 7
that every function in C(9,R) is resolutive.

5. Boundary Behaviour of the PWB Solution

We now show that, if R is a convex domain of revolution satisfying an auxil-
iary condition, then for any function f € C(9,R), the PWB solution S solves the
Dirichlet problem for f on R. The extra condition cannot be omitted altogether,
although it can be weakened.

Theorem 14. Let R = {(z,t) € R"™" : |z — x| < p(t), a < t < b} be a convex
domain of revolution such that p'_(b) > —oo, and let f € C(0,R). Then the PWB
solution Sy for f on R satisfies

lim Sy (p) = f(q)

p—q

for all g € 0, R.

Proof. Because p is concave, given any point (yo,sg) € 9, R we can find a
hyperplane H such that (yg,s0) € H and RN H = (). On the opposite side of H to
R, we position a reflected heat ball

QO (o, 00 co) = {(z,t) : W(z —no,t — 00) > (dmeg) "2},

with o9 < sg, so that it is tangential to H at (yo, so). This is possible unless sg = b
and H = R" x {b}. Our condition that p’ (b) > —oo implies that, if (yo, s0) € IR
and sg = b, we can find an H that is not equal to R" x {b}. The function w, defined
on R by

w(z,t) = (4mco) "2 — W(z — no,t — 00),
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is a positive temperature on R such that

im  w(x,t) =0,
(@,t)—(yo,50)

and for any neighbourhood N of (yo, so),

inf w > 0.
R\N
Given € > 0, we put A = f(yo, s0) + €. Since f is continuous at (yo, So), we can
find a neighbourhood N of (yo, s0) such that f < A on NN9,R. Since inf g\ y w > 0,
we can choose a > 0 such that ainf\ y w > max f — A. We put u = A+aw on R,
and note that u is a lower bounded temperature on R. Whenever (y, s) € (9, R)\N
we have
liminf w(z,t) > A+ « inf w > max f > ,S);
Jminf u(z,?) inf f=fy.s)
and whenever (y, s) € (9, R) N N we have
liminf w(z,t) > A> f(y,s).
(z,6)—=(y,8)
Therefore the function v = w A (max f), which is a supertemperature on R by
Theorem 9 Corollary 1, belongs to the upper class ;. Hence the upper PWB
solution Uy < v on R, which implies that

limsup Uy(z,t) < limsup wu(z,t)=A+a lim  w(zt)=A
(z,t)—(Y0,50) (z,t)—(yo0,50) (z,t)—(y0,50)

Hence, since f is resolutive by Theorem 13,

limsup Sy(x,t) < f(yo, so)-
(z7t)_>(y0;30)
A similar inequality holds with f replaced by —f, and so it follows from Lemma 5
that

liminf S¢(z,t) =— limsup S_f(z,t) > f(yo, o).
(z,t)—(yo,50) (x,t)—(y0,50)

Hence S¢(x,t) — f(yo,50) as (z,t) — (yo, So0)-

Remark. Theorem 14 shows that, if x € |0, +oo[ and R is the cone with vertex
(x0,b) given by {(z,t) : |z — xo| < k(b —1t), a <t < b}, then the Dirichlet problem
is solvable on R for any function f € C(9,R), even though 9,R = OR. Tt follows
that the class of temperatures satifies the Base Axiom of a harmonic space [2], [3].

Corollary. Let R = {(z,t) € R"™ : [z — x| < p(t), a < t < b} be any convex
domain of revolution, let a < ¢ < b, and let C = {(x,t) : |[x —xo| < p(t), a <t < c}.
If f € C(0nR), then the PWB solution Sy for f on R satisfies

lim S7(p) = f(a)

for all ¢ € 0,C. Furthermore, the restriction to C' of Sy is the PWB solution on
C for the restriction of f to 0,C.

Proof. We choose d such that ¢ < d < b, and let D denote the convex domain
of revolution {(z,t) : | — x| < p(t), a <t < d}. Since p is a concave function on
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a neighbourhood of d, we have p’ (d) > —oo. Therefore, if SfD denotes the PWB
solution on D for the restriction of f to 9, D, Theorem 14 shows that

lim S7(p) =
i S7(p) = f(9)

for all ¢ € 0,,D. Furthermore, min f < S J’? < max f on D. Now we define functions
uw and v on R by putting u(p) = v(p) = Sj?(p) for all p € RNC, and u(p) = min f,
v(p) = max f for all p € R\C. Then u is a bounded subtemperature on R that

satisfies limsup,,_,, u(p) < f(q) for all ¢ € 0, R, so that u € £;. Similarly v € .
Therefore u < Sy < v on R, which implies that

lim _S¢(p) = f(q)

p—q, peC

for all ¢ € 0,C. Since c is arbitrary, it follows that lim,_., S¢(p) = f(g) for all
g € 0,C. So the restriction to C' of Sy solves the Dirichlet problem on C, and
hence is the PWB solution on C for the restriction of f to 9,C, by Theorem 12.

6. Characterizations of Subtemperatures

In this final section, we give several characterizations of subtemperatures. In
particular, we show that these subtemperatures are the same as the subcaloric
functions of harmonic space theory [2], and also the same as the subtemperatures

n [10]. Our characterizations are based on the following variant of Theorem 9, in
which circular cylinders are replaced by convex domains of revolution.

Theorem 15. Let w be an extended-real valued function on an open set E, that
satisfies conditions (81), (02) and (d3) of the definition of a subtemperature. Con-
sider the following property: Whenever R is a convex domain of revolution such
that R C E, and v is a function in C(R) that is a temperature on R and satisfies
v>w on O,R, then v >w on R.

The stated property holds if and only if w is a subtemperature on E.

Proof. The proof of one part is similar to that of the first part of Theorem 9.
The converse follows from Theorem 9.

Another crucial part of our approach is that functions which satisfy the definition
of a subtemperature with £ replaced by M or V, also satisfy the maximum principle.

Theorem 16. Let R = {(z,t) : |zt — zo| < p(t), a <t < b} be a conver domain
of revolution, and let w be an extended-real valued function that satisfies conditions
(61), (62) and (93) on R. If, given any point (x,t) € R and € > 0, we can find a
positive number ¢ < € such that either

(a) w(z,t) < M(w;z,t;c)
or

(b) w(z,t) < V(w;z,t;c)
holds, then w satisfies the mazimum principle on R. That is, if there is a point
(zo,t0) € R such that w(xg,to) > w(xz,t) whenever (x,t) € R and t < ty, then
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w(xo,to) = w(z,t) for all such points (x,t). Consequently, if

limsup w(z,t) < A
(z,t)—(y,s)

for all (y,s) € On R, then w(x,t) < A for all (z,t) € R.

Proof. Suppose that there is a point (xg,tp) € R such that w(xo,to) > w(z,t)
whenever (z,t) € R and t < tg. Put M = w(xo,%o), and let (z1,¢1) be any point of
R such that ¢, < to. Join (z9,t9) and (z1,¢1) with a closed line segment ~, and put

S = {s: there is a point (y, s) € v with w(y, s) = M}.

Then S # ) because to € S, and S is lower bounded by ¢;. Put s* = inf S. If
condition (a) holds, we can find a number ¢ < ty — 1 such that

M = w(xg,to) < M(w;x0,t0;¢) < M(M;x0,t0;¢) = M.

This implies that w = M almost everywhere on 9€Q(zo, to; c), and so the upper
semicontinuity of w shows that w = M on 9Q(zo,to; ¢). Since ¢ < to — t1, the set
7N (0Q(zg, to; ) # 0, so that there is a point s; € S such that s; < tp. A similar
argument is valid if condition (b) is satisfied. Hence s* < .

Suppose that t; < s* < tg. There is a sequence of points {(zx, %)} on v such
that w(zg,ry) = M for all k, and rp — s* as k — oo. The upper semicontinuity
of w now implies that there is a point (y*,s*) on ~ such that u(y*,s*) = M. If
condition (a) holds, we can find ¢ < s* — t; such that w = M on 9Q(y*, s*; ¢), and
therefore a point so € S such that so < s*. A similar argument is valid if condition
(b) is satisfied, so we have a contradiction. Hence s* = ¢1, and w(x1,t;) = M by
similar reasoning to that at the beginning of this paragraph. This proves the first
part of the theorem.

For the second part, we extend w to R U J, R by putting

w(y,s) = limsup w(z,t) <A
(z,t)—(y,s)

for all (y,s) € 9, R. Given any « such that a < a < b, we let R, denote the set
{(z,t) : |z — xo| < p(t), a <t < a}. Then w is upper semicontinuous and upper
finite on R,,, and so has a maximum value M,. We choose a point (2/,t') € R,
such that w(a’,t') = M. If (a/,t') € R, then the first part of the theorem shows
that w(z,t) = M, for all (z,¢) € R such that ¢t < ¢'. So there is no loss of generality
in assuming that (z/,¢') € 9, R, which implies that M, < A. Since this holds for
all a, we have w < A on R, as required.

We now come to our characterization of subtemperatures using the fundamental
means M. A similar characterization using the volume means V follows. We extract
part of the proof as a lemma.

Lemma 8. Let w be an extended-real valued function on an open set E, that
satisfies conditions (01), (d2) and (d3) of the definition of a subtemperature. Let
R denote the class of conver domains of revolution R, for which both 0,R = OR
and the Dirichlet problem on R has a solution for every f € C(OR). Consider the
following property: Whenever R € R is such that R C E, and v is a function in
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C’(R) that is a temperature on R and satisfies v > w on OR, then v > w on R.
If the stated property holds, then the inequalities

w(p) < M(w; p;d) < M(w;p;c)

hold whenever 0 < d < ¢ and Q(p;c) C E.
Proof. Let Q(x0,t0; ¢) be any heat ball whose closure is contained in E. Then

Qzo,t0;¢) = {(z, 1) : | — zo] < P(t), to —c <t < to}

is a convex domain of revolution with

o(t) = \/Qn(to —t)log

to—t
‘We note that .
max{qi)(t):to—c<t<t0}=¢<to—g).

Let k be a positive integer such that 1/k < c/e, let r = A\;(t) be the equation of
the tangent line to the curve r = ¢(¢) at the point ¢t = ¢ — %, and let by denote the
zero of A\p. We put

t) if tg—e<t<ty— i,
pr(t) = olt) Y 1 L
)\k(t) if to — S t S bk,

and let

Ry = {(z,t) : |x — xo] < pr(t), to —c <t < br}.
Since a concave curve lies below its tangent, each domain Ry, contains Q(xq, to; ¢).
Furthermore, for each k we have pj(bx) = ¢/(to — £) > —o0, so that Ry € R in
view of Theorem 14. Note that, if tg —c <t <ty — %, the point (z,t) belongs to
000, to; ¢) if and only if it belongs to ORy,.

The closures R}, form a contracting sequence of sets with intersection Q(xy, to; ¢),
and so there is a number kg such that R, C E for all k > kq. For each k > ko,
the function w is upper semicontinuous and upper bounded on 0Rj, and hence we
can find a decreasing sequence ¢§k) € C(ORy) which tends pointwise to w on ORy.

(k) _ 1/1(k)
J J
on 0Ry. Then each function ugk) € C(Ry), by Theorem 14, and is a temperature

For each j, we put ug.k) equal to the PWB solution for wﬁk) on Ry, and u

on Rj. In particular, each function u§-k) € C(Q(wo,to;¢)) and is a temperature on
Q(zo, to; ¢). Therefore, by [10] (Lemma 7),
k k
Ug (o, to) = M(“E s 20, t; d)
(k)
j
j and k. Since the sequence {@[J§k)} is decreasing on JRj, the maximum principle

whenever 0 < d < ¢. Furthermore, by the stated property, w < u;~’ on Ry for all

shows that the sequence {ugk)} is also decreasing. Put v, = lim;_. u§.k) > w on
Ry, for each k. Then, whenever 0 < d < ¢, we have

vk(20,t0) = lim M(U;k);l‘o,to;d) = M(vk; o, to; d),
j—oo
by Lebesgue’s monotone convergence theorem.

We need to show that the sequence {v.} is decreasing on Q(zg,;c), in order
to apply the monotone convergence theorem again. Let & > ky. Each function
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ug.k) belongs to C(Ry) C C(Rpy1), satisfies ug»k) > w on Ry O Riy1, and is a
temperature on Ry O Rp41. Given any € > 0 and positive integer J, the sequence

{z/1§k+1)} decreases to the limit w < uf,k) + € on ORj41. Therefore the sequence of
sets {S,}, defined by

Sj = {q S 8Rk+1 : 'L/)j(-k+1) (q) < ng) (q) + 6}

is expanding to the union R1. Both 1/1§k and ugk) are continuous on R 1,
so that each set S; is relatively open. Therefore, since Ry is compact, there is
a number jo such that S; = ORy41 whenever j > jo. Thus w;kﬂ)(q) < uf,k)(q) +e
for all ¢ € ORg41 if 7 > jo. This implies, using the maximum principle, that
u§k+1)(q) < ugk) (q)+eforall ¢ € Ryyq if j > jo. Therefore vpyq < u(Jk) +eon Ryyq
for any € > 0 and positive integer J, and so vi4+1 < vg. Hence the sequence {v}
is decreasing on Q(zo,tp;c). Put v = limg_oo vx > w on Q(xg,to;c). Whenever
(x,t) € 00(xo, to;c) and t < tg — %, we have

+1)

or(, ) = Jim 5" (2, 1) = w(a, 1),

so that v(z,t) = w(x,t) for all (x,t) € IN(xg, to; ¢)\{(xo,to)}. Hence the monotone
convergence theorem shows that

w(zo, to) < v(wo,to) = khjgoM(Uk;xo,to;d) = M(v; zo, to; d)

whenever 0 < d < c¢. It follows that
M(w; xo, to; d) < M(v; o, to; d) = v(zo, to) = M(v; 20, t0; c) = M(w; xo, to; ¢)

whenever 0 < d < ¢. This proves the lemma.

Theorem 17. Let w be an extended-real valued function on an open set E,
that satisfies conditions (01), (d2) and (d3) of the definition of a subtemperature.
Suppose that, given any point p € E and € > 0, we can find a positive number ¢ < €
such that the inequality w(p) < M(w;p;c) holds. Then w is a subtemperature on
E.

Conversely, if w is a subtemperature on E and p € E, then the inequality w(p) <
M(w; p; ¢) holds for all ¢ > 0 such that Q(p;c) C E.

Proof. Suppose that, given any point p € E and € > 0, we can find a positive
number ¢ < € such that w(p) < M(w;p;c). Let R be a convex domain of revolution
such that R C E. Then w satisfies the same conditions on R as it does on E. We
use Theorem 15. Let v € C(R), be a temperature on R, and satisfy v > w on 9, R.
Then w — v satisfies the same conditions on R as does w, in view of [13] (Theorem
2 Corollary). Therefore w — v satisfies the maximum principle of Theorem 16.
Furthermore, whenever ¢ € 9,, R we have

plgls i,“e%(w(p) —v(p)) < w(q) —v(g) <0,

so that w(p) < v(p) for all p € R. Hence w is a subtemperature on E, by Theorem
15.

Now suppose, conversely, that w is a subtemperature on E. Then, by Theorem
15, w satisfies the hypotheses of Lemma 8, and the result follows.



220 NEIL A. WATSON

Corollary. Let w € C*Y(E). Then w is a subtemperature on E if and only if
Ow >0 on E.

Proof. If w is a subtemperature on E and p € E, then the inequality w(p) <
M (w; p; ¢) holds for all ¢ > 0 such that Q(p;c) C E, by Theorem 17. So ©w > 0 on
E, by [13] (Theorem 2).

Conversely, if Ow > 0 then w(p) < M(w;p;c) holds whenever Q(p;c) C E, by
[13] (Theorem 2). Therefore w is a subtemperature on E, by Theorem 17.

Our next theorem shows that subtemperatures can be characterized in terms of
the class R of Lemma 8.

Theorem 18. Let w be an extended-real valued function on an open set E, that
satisfies conditions (01), (d2) and (d3) of the definition of a subtemperature. Let
R denote the class of conver domains of revolution R, for which both 0,R = OR
and the Dirichlet problem on R has a solution for every f € C(OR). Consider the
following property: Whenever R € R is such that R C E, and v is a function in
C(R) that is a temperature on R and satisfies v > w on OR, then v > w on R.

The stated property holds if and only if w is a subtemperature on E.

Proof. If w is a subtemperature on E, then the stated property follows from
Theorem 15.

Conversely, if the stated property holds then, by Lemma 8, the inequality w(p) <
M(w; p; ¢) holds whenever Q(p;c) C E. So w is a subtemperature on E, by Theo-
rem 17.

We can now show that a function is subcaloric if and only if it is a subtempera-
ture. Recall that a bounded open set V' C R™ ™! is called regular (in harmonic space
theory) if, for every function f € C(9V), there is a function uy € C(V) which is a
temperature on V' and equal to f on V. A function w on F is called subcaloric if
it satisfies conditions (1), (d2) and (d3) of the definition of a subtemperature, and
in addition has the following property: Whenever V' is a regular, bounded open set
such that V C E, and f € C(9V) with f > w on 9V, then uy > won V.

Theorem 19. Let w be an extended-real valued function on an open set E.
Then w is a subtemperature if and only if it is a subcaloric function.

Proof. Suppose that w is a subtemperature on E, that V' is a regular, bounded
open set such that V C E, and that f is a function in C(0V) with f > w on V.
Then the function w — uy satisfies the maximum principle of Theorem 8 on V, and

lim sup(w — us)(p) = limsup w(p) — lim u;(p) < w(q) — f(g) <0
p—q pP—q p—q

whenever p € V tends to a boundary point ¢ of V. Thus w < uy on V, and hence
w 1s subcaloric.
The converse follows from Theorem 18.

Now we come to our characterization of subtemperatures in terms of the volume
means V.
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Theorem 20. Let w be an extended-real valued function on an open set E,
that satisfies conditions (01), (d2) and (d3) of the definition of a subtemperature.
Suppose that, given any point p € E and € > 0, we can find a positive number ¢ < €
such that the inequality w(p) < V(w;p;c) holds. Then w is a subtemperature on E.

Conversely, if w is a subtemperature on E and p € E, then the inequality w(p) <
V(w;p;¢) holds for all ¢ > 0 such that Q(p;c) C E.

Proof. The proof of the first part is similar to that of the first part of Theorem
17, but uses Theorem 6 Corollary of [13].

Conversely, if w is a subtemperature on F and p € E then, by Theorem 17, the
inequality w(p) < M(w;p;1) holds for all I > 0 such that Q(p;l) C E. It therefore
follows from (2.1) that

V(w;p;C):gc*%/ l%*M(w;p;l)dDg / 12" w(p) di = w(p)
0 0

whenever Q(p;c) C E.

If we use either the fundamental means M or the volume means V, we can
weaken the finiteness condition (d3) in the definition of a subtemperature, as the
next theorem and its second corollary show. The bulk of the proof is contained in
the following lemma.

Lemma 9. Let w be a locally upper bounded, extended-real valued function
on an open set E, and let (xo,to) € E. If w(zo,ty) > —oo, and the inequality
w(y, s) < V(w;y,s;c) holds whenever Q(y, s;c) C A(zo,to; E) U {(z0,t0)}, then w
is locally integrable on A(zg,to; E).

Proof. We prove the contrapositive. If w is not locally integrable on A(zg, to; E),
then we can find a point (x1,t1) € A(xo,to; E) such that w is not integrable on
any neighbourhood of (x1,t1). Join (xg,t0) to (x1,¢1) by a polygonal path v in
Ao, to; E) U {(x0,%0)} along which the temporal variable is strictly decreasing.
Since v is compact, its distance from R"+1\E is positive, and so we can find ¢y > 0
such that Q(z,t;¢o) C E for all (z,t) € . Given (z,t) € 7, we put

P(x,t) ={(y,8) : ly — 2> < 2n(s — t), s —t < cp/e}.

The set P(z,t) is a truncated paraboloid with vertex (z,t), and if (y,s) € P(x,t)
then

ly — x> < 2n(s — t) < 2n(s —t)log (SCO t) ,
so that (x,t) € Q(y, s; co).

Observe that, because 7 is a union of finitely many line segments, there is a
positive number ¢; < ¢g/e, independent of (z,t), such that if (x,t), (y,t +¢1) € v
then (y,t + ¢1) € P(x,t). Choose points (x2,t2), ..., (x;,t;) inductively, such that
t; =t1+(j—1)c1 and (z;,¢;) € v, forall j € {2,...,1}, and such that ¢; < to < t+c¢.
Note that (z;,t;) € P(x;j—1,tj—1) for all j € {2,...,1}. Since (z1,t1) € A(zo, to; E),
we have (z1,t1) € Q(y, s;¢o) for all (y,s) € P(xy1,t1). Therefore

ly — 27
< (4meg)~ // ———w(z,r)dzdr = —c©
o, Qy,si00) 48 —7)? (1)
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for all (y,s) € P(x1,t1) such that y # x;. In particular, w is not integrable on
any neighbourhood of (z3,t3). Proceeding stepwise along ~, we deduce succes-
sively that w is not integrable on any neighbourhood of (xg,ts), ..., (z;,t;). Since
t; < to < t; + c1, we have (z1,t;) € Q(wg,t0;¢0). Now w(y,s) = —oo for all
(y,8) € P(ay, ;) such that y # x;, so that w(zo, tg) < V(w;xg,to;co) = —00.

Theorem 21. Let w be an extended-real valued function on an open set E. Then
w is a subtemperature on E if and only if it satisfies the following four conditions:

(a) —co < w(p) < oo forallp € E;

(b) w is upper semicontinuous on E;

(c) given any point p € E, we can find a point ¢ € E such that p € A(¢; E) and
w(Q) > —00; o

(d) the inequality w(p) < V(w;p;c) holds whenever Q(p;c) C E.
Furthermore, every subtemperature on E is locally integrable on E.

Proof. Theorem 20 shows that any subtemperature on E satisfies the four con-
ditions.

To prove the remainder of the theorem, it suffices to show that any function w
which satisfies the four conditions is locally integrable on FE, in view of Theorem
20. Given condition (c), this follows from Lemma 9.

Corollary 1. If v and w are subtemperatures on the open set E, then v+ w is
also a subtemperature on E.

Proof. Conditions (41) and (d2) are obviously satisfied by v+ w, and (d,4) follows
from Theorem 9. For (d3), Theorem 21 shows that each of v and w is finite outside
a set of full measure, so that v + w is too, and hence v + w is finite on a dense
subset of E.

Corollary 2. Let w be an extended-real valued function on an open set E. Then
w s a subtemperature on E if and only if it satisfies the following four conditions:

(a) —oo < w(p) < oo forallp € E;

(b) w is upper semicontinuous on E;

(c) given any point p € E, we can find a point ¢ € E such that p € A(g; E) and
w(q) > —oo;

(d) the inequality w(p) < M(w;p;c) holds whenever Q(p;c) C E.

Proof. If w satisfies the conditions in the corollary, then it also satisfies those in
the theorem, because of formula (2.1). So w is a subtemperature on E.

Conversely, if w is a subtemperature on E, then Theorem 17 shows that it sat-
isfies the conditions of the present corollary.

Theorem 21 Corollary 2 shows that w is a subtemperature by our current defi-
nition if and only if it is a subtemperature by the definition in [10].
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