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Abstract. We present a new definition of a subtemperature, and show that

it unifies the potential theory of the heat operator from the outset, as the
subcaloric functions and the subtemperatures defined earlier, arise as charac-

terizations of the new subtemperatures almost simultaneously.

1. Introduction

The potential theory of the heat operator

Θ =
n∑

i=1

∂2

∂x2
i

− ∂

∂t

in Rn+1, is now well developed, but it has been developed in two different ways.
First there was the harmonic space approach of Bauer [2], [3], and second the heat
ball approach of the present author [10], [11]. In [4], Bauer proved the equivalence
of the two approaches. More precisely, he showed that the subsolutions in the two
theories - the subcaloric functions and the subtemperatures - are the same. He used
relatively sophisticated results from both theories. In this paper, we present a new
approach using a new definition of subtemperature. This unifies the theory from
the outset, as the two earlier definitions arise as characterizations of subtempera-
tures, almost simultaneously.

The first thing we need for our new approach is a bounded domain D ⊆ Rn+1

for which it can be proved that, given any real valued, continuous function f on the
appropriate part of the boundary ∂D, there is a unique function u ∈ C(D) such
that u is a temperature (solution of the heat equation) on D and u = f where f
is defined. For D, we could take a rectangle (an (n + 1)-dimensional interval), in
view of the work of Hattemer [8], but it fits in better with our overall approach
to take for D a circular cylinder B×]a, b[, where B is an open euclidean ball in
Rn. With this choice of D, the existence of u has been proved using the traditional
method of double layer heat potentials, for example in [7]. This does not give such
an explicit representation as was obtained for a rectangle in [8], but that is nowhere
important.

We present several preliminary results in Section 2. In particular, we state a
well-known theorem on the existence of solutions to the Dirichlet problem for a
circular cylinder in space-time Rn+1, reformulate it in terms of caloric measure,
use the caloric measure to define integral mean values, and give some results about
those mean values. In Section 3, we present the new definition of a subtemperature,
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which is given in terms of the mean values defined in Section 2. The remainder of
Section 3, and all the subsequent sections, are devoted to developing the theory of
the newly defined subtemperatures to the point where we can show that they are
the same functions as the old subtemperatures and the subcaloric functions.

2. Notation and Preliminary Results

We denote by W the Fundamental Temperature, defined for all (x, t) ∈ Rn+1 by

W (x, t) =

{
(4πt)−

n
2 exp

(
− |x|2

4t

)
if t > 0,

0 if t ≤ 0.

For any point p0 = (x0, t0) ∈ Rn+1 and any c > 0, the set

Ω(p0; c) = Ω(x0, t0; c) = {(y, s) ∈ Rn+1 : W (x0 − y, t0 − s) > (4πc)−
n
2 }

is called the Heat Ball with centre (x0, t0) and radius c. The boundary of the heat
ball Ω(x0, t0; c) is called the Heat Sphere (with centre (x0, t0) and radius c).

Definition. The fundamental mean value over heat spheres is defined by

M(u;x0, t0; c) = (4πc)−
n
2

∫
∂Ω(x0,t0;c)

Q(x0 − x, t0 − t)u(x, t) dσ

for any function u such that the integral exists. Here σ denotes surface area measure
on ∂Ω(x0, t0; c), and

Q(x0 − x, t0 − t) =
|x0 − x|2(

4|x0 − x|2(t0 − t)2 +
(
|x0 − x|2 − 2n(t0 − t)

)2
)1/2

.

See [5] for details.

Definition. Given a function u on the heat ball Ω(x0, t0; c) for which the integral
exists, we define the volume mean value of u by

V(u;x0, t0; c) =
n

2
c−

n
2

∫ c

0

l
n
2−1M(u;x0, t0; l) dl

= (4πc)−
n
2

∫ ∫
Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2
u(x, t) dx dt. (2.1)

See [10] for details.
Given an open set E and a point p0 = (x0, t0) ∈ E, we denote by Λ(p0;E) (or

Λ(x0, t0;E)) the set of points p that are lower than p0 relative to E, in the sense
that there is a polygonal path γ ⊆ E joining p0 to p, along which the temporal
variable t is strictly decreasing. By a polygonal path, we mean a path which is a
union of finitely many line segments.

Definition. A family F of functions on E is said to be upward-directed if, for
each pair u, v ∈ F, there exists a w ∈ F such that u∨v ≤ w, where u∨v = max{u, v}.
Similarly, F is said to be downward-directed if u, v ∈ F implies that there is w ∈ F
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such that u ∧ v ≥ w, where u ∧ v = min{u, v}.

Theorem 1. Let F be an upward-directed family of temperatures on an open set
E, and let u = supF. If there is a point p0 ∈ E such that u(p0) < +∞, then u is
a temperature on Λ(p0;E).

Proof. This simple proof is adapted from that for the harmonic case given in [1].
Let K be any compact subset of Λ(p0;E). For each positive integer k, we can find
a function uk ∈ F such that

u(p0)− uk(p0) <
1
k
.

Since F is upward-directed, given any function v ∈ F and k ∈ N, we can find a
temperature wk ∈ F such that uk ∨ v ≤ wk on E. By the Harnack inequality for
temperatures (see, for example, [13]), there is a positive constant κ, depending only
on E, p0 and K, such that

wk(p)− uk(p) ≤ κ(wk(p0)− uk(p0))

for all p ∈ K and all k. Hence

v(p)− uk(p) ≤ wk(p)− uk(p) ≤ κ(wk(p0)− uk(p0)) ≤ κ(u(p0)− uk(p0)) <
κ

k

for all p ∈ K. Therefore

u(p)− uk(p) = sup{v(p)− uk(p) : v ∈ F} ≤ κ

k

for all p ∈ K, so that the sequence {uk} converges uniformly to u on K. It now
follows that u is a temperature on Λ(p0;E) (see, for example, [10] Theorem 5 Corol-
lary).

Given any set S ∈ Rn+1, we denote by C(S) the class of all continuous, real
valued functions on S. We also denote by C2,1(S) the set of real valued functions
u on S such that the partial derivatives ∂2u/∂xi∂xj (i, j ∈ {1, ..., n}) and ∂u/∂t
all exist and are continuous on S.

We consider an open ball B in Rn, and a bounded time interval ]a, b[, and denote
by D the circular cylinder D = B×]a, b[⊆ Rn+1. We denote by ∂nD the normal
boundary of D, which consists of the union of the lateral surface ∂B×]a, b] and the
initial surface B × {a}. The Dirichlet Problem on D consists of showing that, for
any function f ∈ C(∂nD), there is a temperature u on D which has a continuous
extension by f to ∂nD. It transpires that the function u is actually a temperature
on D\∂nD, which means that u ∈ C2,1(D\∂nD) and satisfies the heat equation
there.

Theorem 2. Let f ∈ C(∂nD). Then there is a function uf ∈ C(D) such that
uf is a temperature on D\∂nD and uf = f on ∂nD.

Proof. See, for example, [7].

Theorem 3. Let f ∈ C(∂nD), and let uf be the temperature on D\∂nD asso-
ciated with f by Theorem 2. Then, given any point p ∈ D\∂nD, there is a unique
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positive Borel measure µp on ∂nD such that

uf (p) =
∫

∂nD

f dµp.

Proof. We show that the mapping f 7→ uf (p) is a positive linear functional on
the Banach space C(∂nD) with the supremum norm.

If f ≥ 0, then the boundary minimum principle shows that uf ≥ 0.
If α ∈ R, then αf is continuous on ∂nD, and so there is a temperature uαf

associated with αf by Theorem 2. Furthermore,

lim
p→q, p∈D

(
uαf (p)− αuf (p)

)
= lim

p→q, p∈D
uαf (p)− α lim

p→q, p∈D
uf (p) = 0

for all q ∈ ∂nD, so that the boundary uniqueness principle shows that uαf = αuf

on D.
If g is another continuous function on ∂nD, then so is f + g, and hence there is

a temperature uf+g associated with f + g by Theorem 2. Also,

lim
p→q, p∈D

(
uf+g(p)−uf (p)− ug(p)

)
= lim

p→q, p∈D
uf+g(p)− lim

p→q, p∈D
uf (p)− lim

p→q, p∈D
ug(p)

= 0

for all q ∈ ∂nD, so that uf+g − uf − ug = 0 on D, by the boundary uniqueness
principle.

Thus, given any p ∈ D\∂nD, the mapping f 7→ uf (p) is a positive linear func-
tional on C(∂nD). It now follows from the Riesz representation theorem that there
is a unique positive Borel measure µp on ∂nD such that

uf (p) =
∫

∂nD

f dµp.

Definitions. The measure µp in Theorem 3 is called the Caloric Measure at p
for D, and the integral is called the Poisson Integral of f .

Since temperatures are invariant under translation and parabolic dilation, the
caloric measure has similar properties. To see this, let f ∈ C(∂nD), and let uf be
the Poisson integral of f . Take a translation of the cylinder D to another cylinder
D0 = D + {p0}, and define a function f0 on ∂nD0 by putting f0(q) = f(q − p0). If
uf0 is the Poisson integral of f0, then for p ∈ D\∂nD we have

uf0(p+p0) =
∫

∂nD0

f0(q)dµp+p0(q) =
∫

∂nD0

f(q−p0)dµp+p0(q) =
∫

∂nD

f(q)dνp(q),

where νp is the translation of µp+p0 from ∂nD0 to ∂nD. Putting vf0(p) = uf0(p+p0),
we get a temperature vf0 on D with continuous boundary values f on ∂nD. So
vf0(p) = uf (p) by the boundary uniqueness principle, and hence

uf (p) =
∫

∂nD

f(q) dνp(q),
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for any f ∈ C(∂nD). So, by the uniqueness of the measure in Theorem 3, µp = νp.
For the parabolic dilation, we can now take

D = {(y, s) : |y| <
√
c, −b < s < 0}

without loss of generality, and dilate it to another cylinder

D1 = {(y, s) : |y| <
√
ac, −ab < s < 0}.

Let uf be as before, and define a function f1 on ∂nD1 by putting

f1(y, s) = f

(
y√
a
,
s

a

)
.

If uf1 is the Poisson integral of f1, then for (x, t) ∈ D\∂nD we have

uf1(x
√
a, ta) =

∫
∂nD1

f1(y, s) dµ(x
√

a,ta)(y, s)

=
∫

∂nD1

f

(
y√
a
,
s

a

)
dµ(x

√
a,ta)(y, s)

=
∫

∂nD

f(y, s) dχ(x,t)(y, s),

where χ(x,t) is the parabolic dilation of µ(x
√

a,ta) from ∂nD1 to ∂nD. Putting
vf1(x, t) = uf1(x

√
a, ta), we get a temperature vf1 on D with continuous boundary

values f on ∂nD. So vf1 = uf , and hence

uf (x, t) =
∫

∂nD

f(y, s) dχ(x,t)(y, s),

for any f ∈ C(∂nD). So, by the uniqueness of the measure in Theorem 3, we have
µ(x,t) = χ(x,t).

We need some information on the sets of caloric measure zero.

Lemma 1. Let p0 = (x0, t0) ∈ D\∂nD, and let µp0 be the caloric measure at p0

for D. Then
(a) µp0({(y, s) ∈ ∂nD : s ≥ t0}) = 0,

and
(b) if V is any relatively open subset of {(y, s) ∈ ∂nD : s < t0}, then µp0(V ) > 0.
Proof. (a) Let D = B×]a, b[, where B is an open ball in Rn. We choose a

number b∗ > b, and put D∗ = B×]a, b∗[. We also choose a decreasing sequence
{fk} of functions in C(∂nD

∗) such that fk(y, s) = 1 if s ≥ t0, fk(y, s) = 0 if
s ≤ t0 − 1

k (t0 − a), and fk(y, s) → 0 as k → ∞ whenever t0 − 1
k (t0 − a) < s < t0.

Let uk be the function in C(D) associated with the restriction of fk to ∂nD by
Theorem 2, and u∗k be that in C(D

∗
) associated with fk itself. Then uk = fk = u∗k

on ∂nD, so that uk = u∗k on D by the boundary uniqueness principle. Since
{fk} is a decreasing sequence, so are {uk} and {u∗k}. Consider the restriction of
u∗k to the set {(x, t) ∈ D

∗
: t ≤ t0 − 1

k (t0 − a)}. Since u∗k = 0 on the normal
boundary, the boundary uniqueness principle shows that u∗k = 0 throughout that
cylinder. Put u∗ = limk→∞ u∗k on D∗, and let T = {(y, s) ∈ ∂nD : s ≥ t0}. The
Harnack monotone convergence theorem (see, for example, [13]) can be applied
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to the increasing sequence {u∗1 − u∗k} of nonnegative temperatures, to show that
u∗1−u∗ is a temperature on D∗. Hence u∗ is a temperature also. Since u∗k(x, t) = 0
whenever t ≤ t0 − 1

k (t0 − a), we have u∗(x, t) = 0 whenever t < t0 and so, by
continuity, whenever t ≤ t0. Since u∗ = limk→∞ uk on D\∂nD, it now follows from
Lebesgue’s monotone convergence theorem that

0 = lim
k→∞

uk(x0, t0) =
∫

∂nD

lim
k→∞

fk dµp0 =
∫

T

dµp0 = µp0(T ).

(b) We choose a function f ∈ C(∂nD) such that f ≥ 0 on ∂nD, f = 0 except on
V , and f(q0) = 1 for some point q0 ∈ V . Let u be the function in C(D) associated
with f by Theorem 2, so that u = f on ∂nD. Then u ≥ 0 by the minimum principle,
and u(p) → 1 as p → q0. If we had µp0(V ) = 0, it would follow from Theorem 3
that

u(p0) =
∫

∂nD

f dµp0 =
∫

V

f dµp0 = 0,

which implies that u(x, t) = 0 whenever t < t0 by the strong minimum principle,
contrary to the fact that u(p) → 1 as p→ q0.

We now characterize temperatures in terms of the Poisson Integral.

Theorem 4. If u is a temperature on an open set E, and D is a circular cylinder
with D ⊆ E, then u has the representation

u(p) =
∫

∂nD

u dµp

for all p ∈ D\∂nD, where µp is the caloric measure at p for D.
Conversely, suppose that u ∈ C(E) and that, for each point p0 ∈ E, there is some

circular cylinder D containing p0 such that D ⊆ E and u has the representation

u(p) =
∫

∂nD

u dµp

for all p ∈ D, where µp is the caloric measure at p for D. Then u is a temperature
on E.

Proof. Suppose that u is a temperature on E, and that D is a circular cylinder
with D ⊆ E. Let f be the restriction of u to ∂nD. By Theorem 2, there is a
function uf ∈ C(D) such that uf is a temperature on D\∂nD and uf = f on ∂nD.
By Theorem 3, uf has the representation

uf (p) =
∫

∂nD

f dµp

for all p ∈ D\∂nD. The functions u and uf belong to C(D\∂nD), are temperatures
on D, and are equal on ∂nD. Therefore u = uf on D and hence, by continuity, on
D. So u has the required representation.

To prove the converse, take any p0 ∈ E. Then there is some circular cylinder D
containing p0, such that D ⊆ E and

u(p) =
∫

∂nD

u dµp
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for all p ∈ D. Let f be the restriction of u to ∂nD. Then, by Theorems 2 and 3,
there is a function uf ∈ C(D) such that uf is a temperature on D, and

uf (p) =
∫

∂nD

f dµp

for all p ∈ D. So u = uf on D. Hence u is a temperature on a neighbourhood of
the arbitrary point p0, and therefore on E.

The Poisson integral representation also gives a mean value characterization of
temperatures, as follows.

Definitions. For each (x, t) ∈ Rn+1 and c > 0, we put

∆(x, t; c) = B(x,
√
c)×]t− c, t[,

where B(x,
√
c) denotes the open ball in Rn with centre x and radius

√
c. We call

∆(x, t; c) the Heat Cylinder with centre (x, t) and radius c.
The mean value over normal boundary of the heat cylinder is defined, for any

function u such that the integral exists, by

L(u;x, t; c) =
∫

∂n∆(x,t;c)

u dµ(x,t),

where µ(x,t) is the caloric measure at (x, t) for ∆(x, t; c). Since the caloric measure
is invariant under translation and parabolic dilation, the mean L(u;x, t; c) depends
only on u, (x, t) and c.

Note that, by taking u = 1 in Theorem 4, we obtain L(1;x, t; c) = 1 for all (x, t)
and c.

The proof of our characterization of temperatures in terms of the means L(u;x, t; c),
depends on showing that a continuous function which satisfies a weak mean value
property also satisfies the maximum principle.

Theorem 5. Let D = B×]a, b[ be an arbitrary circular cylinder in Rn+1, and
let u ∈ C(D∪∂nD). If, given any point (x, t) ∈ D and ε > 0, we can find a positive
number c < ε such that u(x, t) ≤ L(u;x, t; c) holds, then u satisfies the maximum
principle. That is, if there is a point (x0, t0) ∈ D such that u(x0, t0) ≥ u(x, t)
whenever (x, t) ∈ D and t < t0, then u(x0, t0) = u(x, t) for all such points (x, t);
consequently

sup
D∪∂nD

u = max
∂nD

u.

Proof. Suppose that there is a point (x0, t0) ∈ D such that u(x0, t0) ≥ u(x, t)
whenever (x, t) ∈ D and t < t0. Put M = u(x0, t0), and let (x1, t1) be any point
of D such that t1 < t0. Join (x0, t0) and (x1, t1) with a closed line segment γ, and
put

S = {s : there is a point (y, s) ∈ γ with u(y, s) = M}.
Then S 6= ∅ because t0 ∈ S, and S is lower bounded by t1. Put s∗ = inf S.
If ∆(x0, t0; c) ⊆ E, then because Lemma 1 shows that the caloric measure at
(x0, t0) of ∂n∆(x0, t0; c)\Λ(x0, t0;E) is zero, we have u ≤ M almost everywhere
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on ∂n∆(x0, t0; c) with respect to that measure. So, by our hypothesis, there is a
number c < t0 − t1 such that

M = u(x0, t0) ≤ L(u;x0, t0; c) ≤ L(M ;x0, t0; c) = M,

and hence u = M on a dense subset of ∂n∆(x0, t0; c), by Lemma 1. The continuity
of u now implies that u ≡ M on ∂n∆(x0, t0; c). Since c < t0 − t1, the intersection
γ ∩ ∂n∆(x0, t0; c) 6= ∅, so that we can find a point (y1, s1) ∈ γ such that s1 < t0
and u(y1, s1) = M . Therefore s∗ < t0.

Suppose that t1 < s∗ < t0. Then there is a sequence of points {(zk, rk)} on γ
such that u(zk, rk) = M for all k and rk → s∗ as k → ∞. The continuity of u
now implies that there is a point (y∗, s∗) on γ such that u(y∗, s∗) = M . By our
hypothesis and an argument similar to the one above, we can find c < s∗ − t1 such
that u ≡ M on ∂n∆(y∗, s∗; c), and therefore a point s2 ∈ S such that s2 < s∗, so
we have a contradiction. Hence s∗ = t1, and u(x1, t1) = M .

For the last part, given any α such that a < α < b, we put Dα = B×]a, α[ and
Mα = max{u(p) : p ∈ Dα}. Choose a point (x′, t′) ∈ Dα such that u(x′, t′) = Mα.
If (x′, t′) ∈ D, then the first part of the theorem shows that u(x, t) = Mα for all
(x, t) ∈ Dα such that t < t′, so we can assume that (x′, t′) ∈ Dα\D. It follows that

sup
D∪∂nD

u = sup
α∈]a,b[

Mα

is attained at some point of ∂nD.

We can now give our mean value characterization of temperatures.

Theorem 6. If u is a temperature on an open set E and (x, t) ∈ E, then the
equality u(x, t) = L(u;x, t; c) holds whenever ∆(x, t; c) ⊆ E.

Conversely, if u ∈ C(E) and, given any point (x, t) ∈ E and ε > 0, we can find a
positive number c < ε such that u(x, t) = L(u;x, t; c) holds, then u is a temperature
on E.

Proof. If u is a temperature on E, then the first part follows from Theorem 4.
Conversely, suppose that u ∈ C(E), and let D be an arbitrary circular cylinder

such that D ⊆ E. Let f denote the restriction of u to ∂nD. By Theorem 2, there
is a function uf ∈ C(D) which is a temperature on D and satisfies uf = f on ∂nD.
By Theorem 4, whenever ∆(x, t; c) is a heat cylinder such that ∆(x, t; c) ⊆ D, the
equality

uf (x, t) = L(uf ;x, t; c)

holds. Therefore, if v = u − uf on D, then v satisfies the same condition that u
satisfies on E. Hence, by applying Theorem 5 to both v and −v, we obtain

0 = min
∂nD

v = inf
D∪∂nD

v ≤ sup
D∪∂nD

v = max
∂nD

v = 0,

so that u = uf on D. Thus u is a temperature on any circular cylinder D such that
D ⊆ E, and hence on E.
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3. The New Definition of Subtemperature

We define subtemperatures in terms of the means L.

Definition. Let w be an extended-real valued function on an open set E. We
call w a subtemperature on E if it satisfies the following four conditions.

(δ1) −∞ ≤ w(p) < +∞ for all p ∈ E.
(δ2) w is upper semicontinuous on E.
(δ3) w is finite on a dense subset of E.
(δ4) Given any point p ∈ E and ε > 0, there is a positive number c < ε such that

∆(p; c) ⊆ E and w(p) ≤ L(w; p; c).

If w is a subtemperature on E, and V is an open subset of E, then w is a sub-
temperature on V .

We call a function v a supertemperature on E if −v is a subtemperature on E.
Note that v is a temperature on E if and only if it is both a subtemperature and a
supertemperature on E, in view of Theorem 6.

We refer to any function w that satisfies condition (δ1) as upper finite. If w is
both upper finite and upper semicontinuous, then w is locally upper bounded, so
that the means L(w; p; c) (for ∆(p; c) ⊆ E) always exist and are never +∞.

If w is a subtemperature on E, and a is a positive number, then aw is a subtem-
perature on E.

Note that, if v and w are both subtemperatures on E, we cannot in general con-
clude that v + w is also a subtemperature. The conditions (δ3) and (δ4) are both
too weak for that. If either v or w is a temperature, then v+w is a subtemperature,
in view of Theorem 6. The general case is given in Theorem 21 Corollary 1 below.

If u is a temperature on E, and φ is a convex function defined on an interval
containing u(E), then φ ◦ u is a subtemperature on E. This follows from the fact
that φ ◦ u ∈ C(E) and Jensen’s inequality.

Theorem 7. (The Strong Maximum Principle.) Let w be a subtemperature on
an open set E. If there is a point (x0, t0) ∈ E such that w(x0, t0) ≥ w(x, t) for all
(x, t) ∈ Λ(x0, t0;E), then w(x0, t0) = w(x, t) for all such points (x, t).

Proof. Put M = w(x0, t0), and let (x1, t1) be an arbitrary point of Λ(x0, t0;E).
Let γ be a polygonal path in E that connects (x0, t0) to (x1, t1), along which the
temporal variable is strictly decreasing. Put

S = {s : there is a point (y, s) ∈ γ with w(y, s) = M}.

Then S 6= ∅ because t0 ∈ S, and S is lower bounded by t1. Put s∗ = inf S.
If ∆(x0, t0; c) ⊆ E, then because Lemma 1 shows that the caloric measure at
(x0, t0) of ∂n∆(x0, t0; c)\Λ(x0, t0;E) is zero, we have w ≤ M almost everywhere
on ∂n∆(x0, t0; c) with respect to that measure. So, since w satisfies condition (δ4),
there is a number c < t0 − t1 such that

M = w(x0, t0) ≤ L(w;x0, t0; c) ≤ L(M ;x0, t0; c) = M,



206 NEIL A. WATSON

and hence w = M on a dense subset of ∂n∆(x0, t0; c), by Lemma 1. Therefore, for
any point (y, s) ∈ ∂n∆(x0, t0; c) such that s < t0,

M = lim sup
(x,t)→(y,s)

w(x, t) ≤ w(y, s) ≤M.

Since c < t0 − t1, the set γ ∩ ∂n∆(x0, t0; c) 6= ∅, so that we can find a point
(y1, s1) ∈ γ such that s1 < t0 and w(y1, s1) = M . Therefore s∗ < t0.

Suppose that t1 < s∗ < t0. Then there is a sequence of points {(zk, rk)} on γ
such that w(zk, rk) = M for all k, and rk → s∗ as k → ∞. This implies first that
there is a point (y∗, s∗) ∈ γ, and second that, since w is upper semicontinuous,

M = lim
k→∞

w(zk, rk) ≤ w(y∗, s∗) ≤M.

Hence s∗ ∈ S. Therefore, since w satisfies condition (δ4), there is c < s∗ − t1 such
that

M = w(y∗, s∗) ≤ L(w; y∗, s∗; c) ≤ L(M ; y∗, s∗; c) = M,

so that w = M on a dense subset of ∂n∆(y∗, s∗; c) which, as before, implies that
there is a point (y2, s2) ∈ γ ∩ ∂n∆(y∗, s∗; c) such that s2 < s∗ and w(y2, s2) = M .
This contradicts the definition of s∗, so it is not possible to have t1 < s∗. Hence
t1 = s∗, and w(x1, t1) = M .

Corollary. Let w be a subtemperature on E. Given any point (x0, t0) ∈ E, there
is a point (x1, t1) ∈ Λ(x0, t0;E) such that w(x0, t0) ≤ w(x1, t1).

Proof. If w(x0, t0) ≥ w(x, t) for all (x, t) ∈ Λ(x0, t0;E), then w(x0, t0) = w(x, t)
for all such points (x, t). The only other possibility is that there is a point (x1, t1) ∈
Λ(x0, t0;E) such that w(x0, t0) < w(x1, t1).

We shall prove a boundary maximum principle for subtemperatures on an arbi-
trary open set, using the Hausdorff Maximality Theorem [9], as in [12].

Theorem 8. Let w be a subtemperature on an open set E, and suppose that

lim sup
k→∞

w(pk) ≤ A

for every sequence {pk} in E that satisfies pk+1 ∈ Λ(pk;E) for all k, and which
tends either to a boundary point of E or to the point at infinity. Then w(p) ≤ A
for all p ∈ E.

Proof. Given any number α > A, we put Sα = {p ∈ E : w(p) ≥ α}. If
Sα = ∅ for all α, there is nothing to prove. If Sα 6= ∅ for some α, we define a
partial order ≺ on Sα by putting p ≺ q if p ∈ Λ(q;E) ∪ {q}. By the Hausdorff
Maximality Theorem, Sα contains a maximal totally ordered subset Tα. We put
t∗ = inf{t : there is a point (x, t) ∈ Tα}. Since Tα is totally ordered, there is a
sequence {pi} = {(xi, ti)} of points of Tα such that pi+1 ∈ Λ(pi;E) ∪ {pi} for all i,
and ti → t∗ as i→∞.

If the sequence {pi} has a cluster point in ∂E, or is unbounded, then it contains
infinitely many points. It therefore has a subsequence {pik

} that converges to a
point of ∂E, or tends to the point at infinity, such that pik+1Λ(pik

;E) for all k.
Hence, by hypothesis,

α ≤ lim sup
k→∞

w(pik
) ≤ A < α,
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a contradiction. Therefore {pi} is contained in some compact subset of E. Hence
t∗ > −∞, and {pi} has a subsequence {pij

} that converges to a point p∗ = (x∗, t∗)
in E ∩ Tα. Put qj = (yj , sj) = pij for all j. Then qj+1 ∈ Λ(qj ;E) ∪ {qj} for all
j. Since p∗ ∈ E ∩ Tα and w ≥ α on Tα, the upper semicontinuity of w implies
that w(p∗) ≥ α, so that p∗ ∈ Sα. Furthermore, p∗ is the centre of some euclidean
ball B(p∗, δ) ⊆ E, and there exists some number N such that qj ∈ B(p∗, δ) for
all j ≥ N . It follows that p∗ ≺ qj for all j ≥ N . Since Tα is totally ordered and
qj → p∗ = (x∗, t∗), for each point p ∈ Tα there is some j ≥ N such that qj ≺ p.
Hence p∗ ≺ p for all p ∈ Tα, so that Tα ∪ {p∗} is totally ordered. Since Tα is
maximal, this shows that p∗ ∈ Tα. By Theorem 7 Corollary, there is some point
p′ ∈ Λ(p∗;E) such that w(p′) ≥ w(p∗) ≥ α. This implies first that p′ ∈ Sα, then
that p′ ∈ Tα. Now we have another contradiction, because t∗ = inf{t : (x, t) ∈ Tα}
and p′ ∈ Λ(x∗, t∗;E).

Thus if Sα 6= ∅, we obtain a contradiction in every possible situation. We con-
clude that Sα = ∅ for all α, so that w(p) ≤ A for all p ∈ E.

For the case of a circular cylinder, Theorem 8 gives a predictable result, as fol-
lows.

Corollary. Let w be a subtemperature on a circular cylinder D. If

lim sup
p→q

w(p) ≤ A for all q ∈ ∂nD,

then w(p) ≤ A for all p ∈ D.
Proof. If {pk} is a sequence in D that satisfies pk+1 ∈ Λ(pk;D) for all k, and

tends to a point q ∈ ∂D, then q ∈ ∂nD. Hence

lim sup
k→∞

w(pk) ≤ lim sup
p→q

w(p) ≤ A.

Our next theorem characterizes subtemperatures in terms of being majorized by
temperatures on circular cylinders, and strengthens condition (δ4). To prove it, we
need a lemma that refines the condition of upper semicontinuity.

Lemma 2. Let w be a subtemperature on an open set E, and let (y, s) be a point
in E. Then

w(y, s) = lim sup
(x,t)→(y,s−)

w(x, t).

Proof. We put q = (y, s) and l = lim sup(x,t)→(y,s−) w(x, t). Since w is upper
semicontinuous and upper finite, we have l ≤ w(q) < +∞. Given any number
L > l, we can find a heat cylinder ∆(q; c0) such that w(p) ≤ L for all p ∈ ∆(q; c0).
Now condition (δ4) shows that there is a positive number c < c0 such that

w(q) ≤ L(w; q; c) ≤ L(L; q; c) = L

since, in view of Lemma 1, w ≤ L almost everywhere on ∂n∆(q; c0) with respect to
the caloric measure at q. Thus w(q) ≤ L whenever l < L, so that w(q) ≤ l. Hence
w(q) = l.
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Theorem 9. Let w be an extended-real valued function on an open set E, that
satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature. Con-
sider the following property: Whenever D is a circular cylinder such that D ⊆ E,
and v is a function in C(D) that is a temperature on D and satisfies v ≥ w on
∂nD, then v ≥ w on D.

If w is a subtemperature on E, then the stated property holds.
Conversely, if the stated property holds then w is a subtemperature on E. More-

over, given any point p ∈ E, the inequality w(p) ≤ L(w; p; c) holds whenever the
closed heat cylinder ∆(p; c) ⊆ E.

Proof. Suppose that w is a subtemperature on E, that D is a circular cylinder
such that D ⊆ E, and that v ∈ C(D), is a temperature on D, and satisfies v ≥ w on
∂nD. Then w − v is a subtemperature on D, in view of Theorem 6. Furthermore,
whenever q ∈ ∂nD we have

lim sup
p→q, p∈D

(w(p)− v(p)) ≤ w(q)− v(q) ≤ 0,

so that w(p) ≤ v(p) for all p ∈ D, by Theorem 8 Corollary. Finally, if q ∈ D but
q /∈ D ∪ ∂nD, Lemma 2 shows that

w(q)− v(q) = lim sup
p→q, p∈D

w(p)− lim
p→q, p∈D

v(p) = lim sup
p→q, p∈D

(w(p)− v(p)) ≤ 0.

Conversely, suppose that w has the stated property, and let ∆(p; c) be a heat
cylinder such that ∆(p; c) ⊆ E. The restriction of w to ∂n∆(p; c) is upper semi-
continuous and upper finite, and hence upper bounded. Therefore we can find a
sequence {fk} in C(∂n∆(p; c)) that decreases to w on ∂n∆(p; c). For each k, let vk

be the Poisson integral of fk on ∆(p; c)\∂n∆(p; c), and let vk = fk on ∂n∆(p; c).
Then vk ∈ C(∆(p; c)), vk is a temperature on ∆(p; c), and vk ≥ w on ∂n∆(p; c). So
our hypothesis implies that vk ≥ w on ∆(p; c). In particular,

w(p) ≤ lim
k→∞

vk(p) = L( lim
k→∞

fk; p; c) = L(w; p; c)

by Lebesgue’s monotone convergence theorem.

Corollary 1. If v and w are subtemperatures on E, then so is w ∨ v.
Proof. Conditions (δ1), (δ2) and (δ3) obviously hold for w ∨ v, and (δ4) holds

because

(w ∨ v)(p) ≤ L(w; p; c) ∨ L(v; p; c) ≤ L(w ∨ v; p; c)

for all values of c such that ∆(p; c) ⊆ E.

Corollary 2. If v and w are subtemperatures on E, and either one is real val-
ued, then v + w is a subtemperature on E.

Proof. Conditions (δ1), (δ2) and (δ3) obviously hold for v + w, and (δ4) follows
from Theorem 9.

Theorem 10. Let w be a subtemperature on an open set E, and let D be a
circular cylinder such that D ⊆ E. Then the Poisson integral u of the restriction
of w to ∂nD exists, and the function πDw, defined on E by putting
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πDw =

{
u on D\∂nD,

w on E\(D\∂nD),

has the following properties:
(a) πDw is a subtemperature on E,
(b) πDw ≥ w on E,
(c) πDw is a temperature on D\∂nD,
(d) πDw = w on ∂nD ∪ (E\D),
(e) if v ∈ C(D), v ≥ w on D, and v is a temperature on D, then v ≥ πDw on

D.
Proof. Let D = B×]a, b[, where B is an open ball in Rn and ]a, b[ is a bounded

interval in R. Choose a number b∗ > b such that the cylinder D∗ = B×]a, b∗[ also
has its closure contained in E. Since w is upper semicontinuous and upper finite
on the compact set ∂nD

∗, it is upper bounded on ∂nD
∗. Therefore we can find a

decreasing sequence {fk} of functions in C(∂nD
∗) such that fk → w on ∂nD

∗ as
k →∞. For each k, we put uk equal to the Poisson integral of fk on D

∗\∂nD
∗, and

uk equal to fk on ∂nD
∗. Then uk ∈ C(D

∗
) and uk is a temperature on D∗. Since

{fk} is a decreasing sequence, so is {uk}. We put u = limk→∞ uk. By Theorem
9, w ≤ uk on D

∗
for all k, and hence w ≤ u. Since u is the limit of a decreasing

sequence of continuous functions, it is upper semicontinuous on D
∗
; and since

fk → w on ∂nD
∗, u = w there. Lebesgue’s monotone convergence theorem now

shows that u is the Poisson integral of the restriction of w to ∂nD
∗. Furthermore,

u is the limit of the decreasing sequence {uk} of nonnegative temperatures on D∗,
so that the Harnack monotone convergence theorem for temperatures shows that
u is a temperature on D∗. Hence, in particular, the restriction of u to D is a
temperature on D\∂nD, is the Poisson integral of the restriction of w to ∂nD on
D\∂nD, in view of Lemma 1, and u(p) = L(u; p; c) whenever ∆(p; c) ⊆ D\∂nD, by
Theorem 6.

We now define the function πDw as in the statement of the theorem, and show
that πDw is a subtemperature on E. Since w < +∞ on E, and u is the limit
of a decreasing sequence of functions in C(D), πDw is upper finite on E. Since
u ≥ w on D, and w satisfies condition (δ3), πDw also satisfies that condition, and
πDw ≥ w on E. Furthermore, πDw is certainly upper semicontinuous at points
outside B × {b}; and if q ∈ B × {b}, then

lim
p→q, p∈D

u(p) = u(q) ≥ w(q) ≥ lim sup
p→q, p/∈D

w(p),

which implies that πDw is upper semicontinuous at q. It remains to prove that
πDw satisfies condition (δ4). If p ∈ E but p /∈ D\∂nD, then whenever the closed
heat cylinder ∆(p; c) ⊆ E, we have

πDw(p) = w(p) ≤ L(w; p; c) ≤ L(πDw; p; c).

On the other hand, we have already shown that u(p) = L(u; p; c) whenever ∆(p; c) ⊆
D\∂nD, so that πDw(p) = L(πDw; p; c) for such values of p and c. Hence πDw is
a subtemperature on E.

It only remains to prove part (e). Suppose that v ∈ C(D), v ≥ w on D, and v
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is a temperature on D. Given any ε > 0, the sequence {fk} decreases to the limit
w < v + ε on ∂nD. Therefore the sequence of sets {Sk}, defined by

Sk = {q ∈ ∂nD : fk(q) < v(q) + ε}
is expanding to the union ∂nD. Both fk and v are continuous on ∂nD, so that
each set Sk is relatively open. Therefore, since ∂nD is compact, there is a number
κ such that Sk = ∂nD whenever k > κ. Thus fk(q) < v(q) + ε for all q ∈ ∂nD if
k > κ. This implies, using the maximum principle, that uk(q) < v(q) + ε for all
q ∈ D if k > κ. Therefore u < v + ε on D for any ε > 0, and so u ≤ v.

4. The Dirichlet Problem on Convex Domains of Revolution

We need to discuss the Dirichlet problem on the heat ball and some approximat-
ing domains. They are all of the following form, as are circular cylinders.

Let x0 ∈ R and a, b ∈ Rn. A Convex Domain of Revolution is any open set that
has the form

R = R(x0; ρ; a, b) = {(x, t) ∈ Rn+1 : |x− x0| < ρ(t), a < t < b}
for some continuous concave function ρ : [a, b] → [0,+∞[.

Corresponding to the normal boundary of a circular cylinder, we define the
normal boundary of a convex domain of revolution R to be

∂nR = ∂R\{(x, b) : |x− x0| < ρ(b)}.
Note that ∂nR is compact.

The Dirichlet Problem on a convex domain of revolution R consists of showing
that, for an arbitrary function f ∈ C(∂nR), there is a function uf ∈ C(R ∪ ∂nR)
that is a temperature on R and coincides with f on ∂nR.

We show that this problem has a solution, except when the left hand derivative
ρ′−(b) = −∞. We use the Perron-Wiener-Brelot, or PWB, method.

Definition. A non-empty family F of supertemperatures on an open set E, is
called a saturated family if it satisfies the two conditions:

(a) if v, w ∈ F, then v ∧ w ∈ F;
(b) if w ∈ F, D is a circular cylinder such that D ⊆ E, and πDw is the function

defined in Theorem 10, then πDw ∈ F.

Theorem 11. If F is a saturated family of supertemperatures on an open set
E, and the function u = inf F satisfies u(p0) > −∞ at some point p0 ∈ E, then u
is a temperature on Λ(p0;E).

Proof. Let q0 be any point of E such that u(q0) > −∞. Let D be any circular
cylinder such that q0 ∈ D and D ⊆ E. For each supertemperature w ∈ F, we let
πDw be the function defined in Theorem 10, so that πDw is a supertemperature
on E, and πDw ≤ w on E. Since F saturated, πDw ∈ F. Therefore, on D, we
have u = inf{πDw : w ∈ F}. If v, w ∈ F, then v ∧ w ∈ F because F is saturated,
and so the family F is downward-directed. Furthermore, an application of the
minimum principle on D shows that πD(v ∧ w) ≤ πDv ∧ πDw, and therefore the
family {πDw : w ∈ F} is also downward-directed. Since πDw is a temperature on
D for all w ∈ F, it follows from Theorem 1 that u is a temperature on Λ(q0;D).
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Now let p∗ be any point of Λ(p0;E), and let γ be a polygonal path in E that
connects p0 to p∗, along which the temporal variable is strictly decreasing. For each
point p = (x, t) ∈ γ and positive number c, we put

D(p; c) = B(x, c)×]t− c, t+ c[ and Λ(p; c) = B(x, c)×]t− c, t[= Λ(p;D(p; c)).

Since γ is a compact subset of the open set E, we can find c0 > 0 such that
D(p; c0) ⊆ E for all p ∈ γ. We now let m be the integer such that the length of
γ lies in the interval ]mc0/2, (m + 1)c0/2]. Since u(p0) > −∞, we know that u is
a temperature on Λ(p0; c0). The length of that portion of γ which is contained in
Λ(p0; c0) is at least c0, and so there is a point p1 ∈ γ∩Λ(p0; c0) such that the length
of that portion of γ which lies between p0 and p1 is c0/2. Since u(p1) > −∞, u is a
temperature on Λ(p1; c0). The length of γ contained in Λ(p1; c0) is at least c0, and
so there is a point p2 ∈ γ ∩Λ(p1; c0) such that the length of γ between p1 and p2 is
c0/2. Repeating this argument m times, we find that there is a point pm ∈ γ such
that u is a temperature on Λ(pm; c0) and p∗ ∈ Λ(pm; c0). Thus u is a temperature
on a neighbourhood of p∗, and hence on Λ(p0;E).

We note that the boundary maximum principle for subtemperatures on a convex
domain of revolution, takes the same form as it does on a circular cylinder (Theo-
rem 8 Corollary), with a similar proof.

Definition. Let R be a convex domain of revolution, and let f ∈ C(∂nR). The
Upper Class Uf , determined by f , consists of all upper bounded supertemperatures
v on R that satisfy

lim inf
p→q

v(p) ≥ f(q)

for all q ∈ ∂nR.
Note that, by the boundary minimum principle, v ≥ min f on R. Note also that,

because v ∧ (max f) is also a supertemperature, by Theorem 9 Corollary 1, the
condition that v is upper bounded is no real restriction.

The Lower Class Lf , determined by f , consists of all lower bounded subtemper-
atures u on R that satisfy

lim sup
p→q

u(p) ≤ f(q)

for all q ∈ ∂nR.
Note that neither class is empty, because Uf contains the constant function

max f , and Lf contains min f .
The Upper PWB Solution for f on R is the function Uf given by

Uf (p) = inf{v(p) : v ∈ Uf},

and the Lower PWB Solution is given by

Lf (p) = sup{u(p) : u ∈ Lf}.

Both functions are bounded.
If Uf = Lf , and is a temperature on R, then we put Sf = Uf and call it the

PWB Solution for f on R.
We shall show that every f ∈ C(∂nR) has a PWB solution on R, then investigate

the boundary values of Sf . First we show that, if the Dirichlet problem for f has
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a solution, then it is given by Sf .

Lemma 3. Let R be a convex domain of revolution, and let f ∈ C(∂nR). If
u ∈ Lf and v ∈ Uf , then u ≤ v on R. Consequently Lf ≤ Uf on R.

Proof. Since u is a bounded subtemperature on R, and v is a bounded su-
pertemperature, the difference u− v is a subtemperature, by Theorem 9 Corollary
2. Furthermore, whenever q ∈ ∂nR we have

lim sup
p→q

(u− v)(p) ≤ lim sup
p→q

u(p)− lim inf
p→q

v(p) ≤ 0,

and so it follows from the boundary maximum principle that u ≤ v on R. Thus
any function u ∈ Lf satisfies u ≤ Uf , and therefore Lf ≤ Uf .

Theorem 12. Let R be a convex domain of revolution, and let f ∈ C(∂nR). If
there is a temperature uf on R such that

lim
p→q

uf (p) = f(q)

for all q ∈ ∂nR, then f has a PWB-solution and it is uf .
Proof. It follows from the boundary maximum principle that min f ≤ uf ≤

max f on R. Therefore uf ∈ Lf ∩ Uf , and so Uf ≤ uf ≤ Lf . Since Lf ≤ Uf by
Lemma 3, we deduce that Uf = uf = Lf . Since uf is a temperature on R, the
PWB solution for f on R exists and is equal to uf .

Lemma 4. Let R be a convex domain of revolution, and let f ∈ C(∂nR). Then
both Lf and Uf are temperatures on R.

Proof. Let v, w ∈ Uf . Then v ∧w is an upper bounded supertemperature on R,
by Theorem 9 Corollary 1, and

lim inf
p→q

(v ∧ w)(p) = (lim inf
p→q

v(p)) ∧ (lim inf
p→q

w(p)) ≥ f(q)

for all q ∈ ∂nR. Therefore v ∧w ∈ Uf . Next, if v ∈ Uf and D is a circular cylinder
such that D ⊆ R, then the function πDv of Theorem 10, is a supertemperature on
R, is upper bounded on R, and satisfies

lim inf
p→q

πDv(p) = lim inf
p→q

v(p) ≥ f(q)

for all q ∈ ∂nR. Therefore πDv ∈ Uf . Thus Uf is a saturated family of supertem-
peratures on R. Furthermore, since v ≥ min f for every v ∈ Uf , it follows from
Theorem 11 that Uf is a temperature on R. Dually, Lf is also a temperature.

Definition. Let R be a convex domain of revolution, and let f ∈ C(∂nR). If f
has a PWB solution on R, we say that f is resolutive.

Lemma 5. Let R be a convex domain of revolution, let f, g ∈ C(∂nR), and let
α ∈ R.

(a) The constant function α is resolutive, and Sα = α on R.
(b) Uf+α = Uf +α and Lf+α = Lf +α. If f is resolutive, then f+α is resolutive

and Sf+α = Sf + α.
(c) If α > 0, then Uαf = αUf and Lαf = αLf . If f is resolutive, then αf is

resolutive and Sαf = αSf .
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(d) If f ≤ g, then Uf ≤ Ug and Lf ≤ Lg.
(e) U−f = −Lf . If f is resolutive, then −f is resolutive and S−f = −Sf .
(f) Uf+g ≤ Uf + Ug and Lf+g ≥ Lf + Lg. If f and g are resolutive, then f + g

is resolutive and Sf+g = Sf + Sg.
Proof. (a) This is a special case of Theorem 12.
(b) If v ∈ Uf then v + α ∈ Uf+α, and conversely. So Uf+α = Uf + α. Similarly,

Lf+α = Lf + α. If f is resolutive, then Lf = Uf and is a temperature, so that
Uf+α = Uf + α = Lf + α = Lf+α and is also a temperature.

(c) If v ∈ Uf then αv ∈ Uαf , and conversely. So Uαf = αUf . Similarly,
Lαf = αLf . If f is resolutive, then Lf = Uf and is a temperature, so that
Uαf = αUf = αLf = Lαf and is also a temperature.

(d) If v ∈ Ug, then v ∈ Uf , so that Uf is the infimum over a more inclusive class
of functions, and so Uf ≤ Ug. Similarly, if u ∈ Lf then u ∈ Lg, so that Lf ≤ Lg.

(e) If v ∈ Uf then −v ∈ L−f , and conversely. So Uf = −L−f . Similarly,
Lf = −U−f . If f is resolutive, then Lf = Uf and is a temperature, so that
−U−f = −L−f and is also a temperature.

(f) If v ∈ Uf and w ∈ Ug, then Theorem 9 Corollary 2 implies that v+w ∈ Uf+g.
So for each function w ∈ Ug we have Uf + w ≥ Uf+g. Therefore Uf + Ug ≥ Uf+g.
Now the inequality Lf+g ≥ Lf +Lg follows from part (e). If f and g are resolutive,
then (using Lemma 3)

Sf + Sg = Lf + Lg ≤ Lf+g ≤ Uf+g ≤ Uf + Ug = Sf + Sg,

which shows that Lf+g = Uf+g = Sf + Sg.

In order to show that every function in C(∂nR) is resolutive, we first obtain a
class of resolutive functions such that every real continuous function can be ob-
tained as the limit of a uniformly convergent sequence in that class, using the
Stone-Weierstrass theorem ([6], Theorem 7.29). Then we show that the limit of a
uniformly convergent sequence of resolutive functions is itself resolutive.

Lemma 6. If R is a convex domain of revolution, and w is a function in
C(R ∪ ∂nR) that is a subtemperature on R, then the restriction of w to ∂nR is
resolutive.

Proof. Let f denote the restriction of w to ∂nR. By Lemma 4, the lower PWB
solution Lf is a temperature on R. Furthermore u ∈ Lf , so that u ≤ Lf on R.
Therefore

lim inf
p→q

Lf (p) ≥ lim
p→q

u(p) = f(q)

for all q ∈ ∂nR, so that Lf ∈ Uf , and hence Lf ≥ Uf . But we always have Lf ≤ Uf ,
by Lemma 3, and so f is resolutive, in view of Lemma 4.

Lemma 7. Let R be a convex domain of revolution, and let {fj} be a sequence of
resolutive functions in C(∂nR). If {fj} converges uniformly on ∂nR to a function
f , then f is resolutive and the sequence {Sfj

} converges uniformly on R to Sf .
Proof. Note that f ∈ C(∂nR), so that Uf and Lf are temperatures on R, by

Lemma 4. Given ε > 0, we can find a number N such that fj−ε < f < fj+ε on ∂nR
whenever j > N . Therefore, by Lemma 5, Ufj

− ε = Ufj−ε ≤ Uf ≤ Ufj+ε = Ufj
+ ε

on R whenever j > N . Hence the sequence {Sfj} = {Ufj} converges uniformly
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on R to Uf . A similar argument with the lower solutions shows that the sequence
{Sfj

} = {Lfj
} converges uniformly on R to Lf . Hence Uf = Lf , and the lemma is

established.

Theorem 13. If R is a convex domain of revolution, then every function in
C(∂nR) is resolutive.

Proof. Let G denote the class of functions in C(R ∪ ∂nR) that are supertemper-
atures on R, let D denote the class of differences u − v of functions in G, and let
F denote the class of restrictions to ∂nR of the functions in D. Then F is a linear
subspace of C(∂nR) that contains the constant functions. By Lemmas 6 and 5, the
restrictions to ∂nR of the functions in G are resolutive, and the functions in F are
all resolutive. Furthermore, for any point (x0, t0) such that R ⊆ Rn×]t0,+∞[, the
class D contains the function (x, t) 7→ W (x − x0, t − t0), and so separates points.
Finally, if u, v ∈ G then the Theorem 9 Corollaries imply that u ∧ v, u + v ∈ G, so
that if u1, u2, v1, v2 ∈ G the function

(u1 − v1) ∨ (u2 − v2) = u1 + u2 − (u2 + v1) ∧ (u1 + v2) ∈ D.

Thus f ∨ g ∈ F whenever f, g ∈ F. It now follows from the Stone-Weierstrass
theorem that every function in C(∂nR) can be expressed as the uniform limit of
a sequence in F. Since every function in F is resolutive, it follows from Lemma 7
that every function in C(∂nR) is resolutive.

5. Boundary Behaviour of the PWB Solution

We now show that, if R is a convex domain of revolution satisfying an auxil-
iary condition, then for any function f ∈ C(∂nR), the PWB solution Sf solves the
Dirichlet problem for f on R. The extra condition cannot be omitted altogether,
although it can be weakened.

Theorem 14. Let R = {(x, t) ∈ Rn+1 : |x− x0| < ρ(t), a < t < b} be a convex
domain of revolution such that ρ′−(b) > −∞, and let f ∈ C(∂nR). Then the PWB
solution Sf for f on R satisfies

lim
p→q

Sf (p) = f(q)

for all q ∈ ∂nR.
Proof. Because ρ is concave, given any point (y0, s0) ∈ ∂nR we can find a

hyperplane H such that (y0, s0) ∈ H and R∩H = ∅. On the opposite side of H to
R, we position a reflected heat ball

Ω∗(η0, σ0; c0) = {(x, t) : W (x− η0, t− σ0) > (4πc0)−
n
2 },

with σ0 < s0, so that it is tangential to H at (y0, s0). This is possible unless s0 = b
and H = Rn ×{b}. Our condition that ρ′−(b) > −∞ implies that, if (y0, s0) ∈ ∂nR
and s0 = b, we can find an H that is not equal to Rn×{b}. The function w, defined
on R by

w(x, t) = (4πc0)−
n
2 −W (x− η0, t− σ0),
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is a positive temperature on R such that

lim
(x,t)→(y0,s0)

w(x, t) = 0,

and for any neighbourhood N of (y0, s0),

inf
R\N

w > 0.

Given ε > 0, we put A = f(y0, s0) + ε. Since f is continuous at (y0, s0), we can
find a neighbourhoodN of (y0, s0) such that f < A onN∩∂nR. Since infR\N w > 0,
we can choose α > 0 such that α infR\N w > max f −A. We put u = A+αw on R,
and note that u is a lower bounded temperature on R. Whenever (y, s) ∈ (∂nR)\N
we have

lim inf
(x,t)→(y,s)

u(x, t) ≥ A+ α inf
R\N

w > max f ≥ f(y, s);

and whenever (y, s) ∈ (∂nR) ∩N we have

lim inf
(x,t)→(y,s)

u(x, t) ≥ A > f(y, s).

Therefore the function v = u ∧ (max f), which is a supertemperature on R by
Theorem 9 Corollary 1, belongs to the upper class Uf . Hence the upper PWB
solution Uf ≤ v on R, which implies that

lim sup
(x,t)→(y0,s0)

Uf (x, t) ≤ lim sup
(x,t)→(y0,s0)

u(x, t) = A+ α lim
(x,t)→(y0,s0)

w(x, t) = A.

Hence, since f is resolutive by Theorem 13,

lim sup
(x,t)→(y0,s0)

Sf (x, t) ≤ f(y0, s0).

A similar inequality holds with f replaced by −f , and so it follows from Lemma 5
that

lim inf
(x,t)→(y0,s0)

Sf (x, t) = − lim sup
(x,t)→(y0,s0)

S−f (x, t) ≥ f(y0, s0).

Hence Sf (x, t) → f(y0, s0) as (x, t) → (y0, s0).

Remark. Theorem 14 shows that, if κ ∈ ]0,+∞[ and R is the cone with vertex
(x0, b) given by {(x, t) : |x− x0| < κ(b− t), a < t < b}, then the Dirichlet problem
is solvable on R for any function f ∈ C(∂nR), even though ∂nR = ∂R. It follows
that the class of temperatures satifies the Base Axiom of a harmonic space [2], [3].

Corollary. Let R = {(x, t) ∈ Rn+1 : |x − x0| < ρ(t), a < t < b} be any convex
domain of revolution, let a < c < b, and let C = {(x, t) : |x−x0| < ρ(t), a < t < c}.
If f ∈ C(∂nR), then the PWB solution Sf for f on R satisfies

lim
p→q

Sf (p) = f(q)

for all q ∈ ∂nC. Furthermore, the restriction to C of Sf is the PWB solution on
C for the restriction of f to ∂nC.

Proof. We choose d such that c < d < b, and let D denote the convex domain
of revolution {(x, t) : |x − x0| < ρ(t), a < t < d}. Since ρ is a concave function on
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a neighbourhood of d, we have ρ′−(d) > −∞. Therefore, if SD
f denotes the PWB

solution on D for the restriction of f to ∂nD, Theorem 14 shows that

lim
p→q, p∈D

SD
f (p) = f(q)

for all q ∈ ∂nD. Furthermore, min f ≤ SD
f ≤ max f on D. Now we define functions

u and v on R by putting u(p) = v(p) = SD
f (p) for all p ∈ R ∩C, and u(p) = min f ,

v(p) = max f for all p ∈ R\C. Then u is a bounded subtemperature on R that
satisfies lim supp→q u(p) ≤ f(q) for all q ∈ ∂nR, so that u ∈ Lf . Similarly v ∈ Uf .
Therefore u ≤ Sf ≤ v on R, which implies that

lim
p→q, p∈C

Sf (p) = f(q)

for all q ∈ ∂nC. Since c is arbitrary, it follows that limp→q Sf (p) = f(q) for all
q ∈ ∂nC. So the restriction to C of Sf solves the Dirichlet problem on C, and
hence is the PWB solution on C for the restriction of f to ∂nC, by Theorem 12.

6. Characterizations of Subtemperatures

In this final section, we give several characterizations of subtemperatures. In
particular, we show that these subtemperatures are the same as the subcaloric
functions of harmonic space theory [2], and also the same as the subtemperatures
on [10]. Our characterizations are based on the following variant of Theorem 9, in
which circular cylinders are replaced by convex domains of revolution.

Theorem 15. Let w be an extended-real valued function on an open set E, that
satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature. Con-
sider the following property: Whenever R is a convex domain of revolution such
that R ⊆ E, and v is a function in C(R) that is a temperature on R and satisfies
v ≥ w on ∂nR, then v ≥ w on R.

The stated property holds if and only if w is a subtemperature on E.
Proof. The proof of one part is similar to that of the first part of Theorem 9.

The converse follows from Theorem 9.

Another crucial part of our approach is that functions which satisfy the definition
of a subtemperature with L replaced by M or V, also satisfy the maximum principle.

Theorem 16. Let R = {(x, t) : |x− x0| < ρ(t), a < t < b} be a convex domain
of revolution, and let w be an extended-real valued function that satisfies conditions
(δ1), (δ2) and (δ3) on R. If, given any point (x, t) ∈ R and ε > 0, we can find a
positive number c < ε such that either

(a) w(x, t) ≤ M(w;x, t; c)
or

(b) w(x, t) ≤ V(w;x, t; c)
holds, then u satisfies the maximum principle on R. That is, if there is a point
(x0, t0) ∈ R such that w(x0, t0) ≥ w(x, t) whenever (x, t) ∈ R and t < t0, then
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w(x0, t0) = w(x, t) for all such points (x, t). Consequently, if

lim sup
(x,t)→(y,s)

w(x, t) ≤ A

for all (y, s) ∈ ∂nR, then w(x, t) ≤ A for all (x, t) ∈ R.
Proof. Suppose that there is a point (x0, t0) ∈ R such that w(x0, t0) ≥ w(x, t)

whenever (x, t) ∈ R and t < t0. Put M = w(x0, t0), and let (x1, t1) be any point of
R such that t1 < t0. Join (x0, t0) and (x1, t1) with a closed line segment γ, and put

S = {s : there is a point (y, s) ∈ γ with w(y, s) = M}.

Then S 6= ∅ because t0 ∈ S, and S is lower bounded by t1. Put s∗ = inf S. If
condition (a) holds, we can find a number c < t0 − t1 such that

M = w(x0, t0) ≤ M(w;x0, t0; c) ≤ M(M ;x0, t0; c) = M.

This implies that w = M almost everywhere on ∂Ω(x0, t0; c), and so the upper
semicontinuity of w shows that w ≡ M on ∂Ω(x0, t0; c). Since c < t0 − t1, the set
γ ∩ (∂Ω(x0, t0; c)) 6= ∅, so that there is a point s1 ∈ S such that s1 < t0. A similar
argument is valid if condition (b) is satisfied. Hence s∗ < t0.

Suppose that t1 < s∗ < t0. There is a sequence of points {(zk, rk)} on γ such
that w(zk, rk) = M for all k, and rk → s∗ as k → ∞. The upper semicontinuity
of w now implies that there is a point (y∗, s∗) on γ such that u(y∗, s∗) = M . If
condition (a) holds, we can find c < s∗ − t1 such that w ≡M on ∂Ω(y∗, s∗; c), and
therefore a point s2 ∈ S such that s2 < s∗. A similar argument is valid if condition
(b) is satisfied, so we have a contradiction. Hence s∗ = t1, and w(x1, t1) = M by
similar reasoning to that at the beginning of this paragraph. This proves the first
part of the theorem.

For the second part, we extend w to R ∪ ∂nR by putting

w(y, s) = lim sup
(x,t)→(y,s)

w(x, t) ≤ A

for all (y, s) ∈ ∂nR. Given any α such that a < α < b, we let Rα denote the set
{(x, t) : |x − x0| < ρ(t), a < t < α}. Then w is upper semicontinuous and upper
finite on Rα, and so has a maximum value Mα. We choose a point (x′, t′) ∈ Rα

such that w(x′, t′) = Mα. If (x′, t′) ∈ R, then the first part of the theorem shows
that w(x, t) = Mα for all (x, t) ∈ R such that t < t′. So there is no loss of generality
in assuming that (x′, t′) ∈ ∂nR, which implies that Mα ≤ A. Since this holds for
all α, we have w ≤ A on R, as required.

We now come to our characterization of subtemperatures using the fundamental
means M. A similar characterization using the volume means V follows. We extract
part of the proof as a lemma.

Lemma 8. Let w be an extended-real valued function on an open set E, that
satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature. Let
R denote the class of convex domains of revolution R, for which both ∂nR = ∂R
and the Dirichlet problem on R has a solution for every f ∈ C(∂R). Consider the
following property: Whenever R ∈ R is such that R ⊆ E, and v is a function in
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C(R) that is a temperature on R and satisfies v ≥ w on ∂R, then v ≥ w on R.
If the stated property holds, then the inequalities

w(p) ≤ M(w; p; d) ≤ M(w; p; c)

hold whenever 0 < d ≤ c and Ω(p; c) ⊆ E.
Proof. Let Ω(x0, t0; c) be any heat ball whose closure is contained in E. Then

Ω(x0, t0; c) = {(x, t) : |x− x0| < φ(t), t0 − c < t < t0}
is a convex domain of revolution with

φ(t) =
√

2n(t0 − t) log
c

t0 − t
.

We note that
max{φ(t) : t0 − c < t < t0} = φ

(
t0 −

c

e

)
.

Let k be a positive integer such that 1/k < c/e, let r = λk(t) be the equation of
the tangent line to the curve r = φ(t) at the point t = t0− 1

k , and let bk denote the
zero of λk. We put

ρk(t) =

{
φ(t) if t0 − c ≤ t ≤ t0 − 1

k ,

λk(t) if t0 − 1
k ≤ t ≤ bk,

and let
Rk = {(x, t) : |x− x0| < ρk(t), t0 − c < t < bk}.

Since a concave curve lies below its tangent, each domain Rk contains Ω(x0, t0; c).
Furthermore, for each k we have ρ′k(bk) = φ′(t0 − 1

k ) > −∞, so that Rk ∈ R in
view of Theorem 14. Note that, if t0 − c ≤ t ≤ t0 − 1

k , the point (x, t) belongs to
∂Ω(x0, t0; c) if and only if it belongs to ∂Rk.

The closures Rk form a contracting sequence of sets with intersection Ω(x0, t0; c),
and so there is a number k0 such that Rk ⊆ E for all k > k0. For each k > k0,
the function w is upper semicontinuous and upper bounded on ∂Rk, and hence we
can find a decreasing sequence ψ(k)

j ∈ C(∂Rk) which tends pointwise to w on ∂Rk.

For each j, we put u(k)
j equal to the PWB solution for ψ(k)

j on Rk, and u(k)
j = ψ

(k)
j

on ∂Rk. Then each function u
(k)
j ∈ C(Rk), by Theorem 14, and is a temperature

on Rk. In particular, each function u
(k)
j ∈ C(Ω(x0, t0; c)) and is a temperature on

Ω(x0, t0; c). Therefore, by [10] (Lemma 7),

u
(k)
j (x0, t0) = M(u(k)

j ;x0, t0; d)

whenever 0 < d ≤ c. Furthermore, by the stated property, w ≤ u
(k)
j on Rk for all

j and k. Since the sequence {ψ(k)
j } is decreasing on ∂Rk, the maximum principle

shows that the sequence {u(k)
j } is also decreasing. Put vk = limj→∞ u

(k)
j ≥ w on

Rk, for each k. Then, whenever 0 < d ≤ c, we have

vk(x0, t0) = lim
j→∞

M(u(k)
j ;x0, t0; d) = M(vk;x0, t0; d),

by Lebesgue’s monotone convergence theorem.
We need to show that the sequence {vk} is decreasing on Ω(x0, t0; c), in order

to apply the monotone convergence theorem again. Let k > k0. Each function
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u
(k)
j belongs to C(Rk) ⊆ C(Rk+1), satisfies u(k)

j ≥ w on Rk ⊇ Rk+1, and is a
temperature on Rk ⊇ Rk+1. Given any ε > 0 and positive integer J , the sequence
{ψ(k+1)

j } decreases to the limit w < u
(k)
J + ε on ∂Rk+1. Therefore the sequence of

sets {Sj}, defined by

Sj = {q ∈ ∂Rk+1 : ψ(k+1)
j (q) < u

(k)
J (q) + ε}

is expanding to the union ∂Rk+1. Both ψ(k+1)
j and u(k)

J are continuous on ∂Rk+1,
so that each set Sj is relatively open. Therefore, since ∂Rk+1 is compact, there is
a number j0 such that Sj = ∂Rk+1 whenever j > j0. Thus ψ(k+1)

j (q) < u
(k)
J (q) + ε

for all q ∈ ∂Rk+1 if j > j0. This implies, using the maximum principle, that
u

(k+1)
j (q) < u

(k)
J (q)+ε for all q ∈ Rk+1 if j > j0. Therefore vk+1 < u

(k)
J +ε on Rk+1

for any ε > 0 and positive integer J , and so vk+1 ≤ vk. Hence the sequence {vk}
is decreasing on Ω(x0, t0; c). Put v = limk→∞ vk ≥ w on Ω(x0, t0; c). Whenever
(x, t) ∈ ∂Ω(x0, t0; c) and t ≤ t0 − 1

k , we have

vk(x, t) = lim
j→∞

ψ
(k)
j (x, t) = w(x, t),

so that v(x, t) = w(x, t) for all (x, t) ∈ ∂Ω(x0, t0; c)\{(x0, t0)}. Hence the monotone
convergence theorem shows that

w(x0, t0) ≤ v(x0, t0) = lim
k→∞

M(vk;x0, t0; d) = M(v;x0, t0; d)

whenever 0 < d ≤ c. It follows that

M(w;x0, t0; d) ≤ M(v;x0, t0; d) = v(x0, t0) = M(v;x0, t0; c) = M(w;x0, t0; c)

whenever 0 < d ≤ c. This proves the lemma.

Theorem 17. Let w be an extended-real valued function on an open set E,
that satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature.
Suppose that, given any point p ∈ E and ε > 0, we can find a positive number c < ε
such that the inequality w(p) ≤ M(w; p; c) holds. Then w is a subtemperature on
E.

Conversely, if w is a subtemperature on E and p ∈ E, then the inequality w(p) ≤
M(w; p; c) holds for all c > 0 such that Ω(p; c) ⊆ E.

Proof. Suppose that, given any point p ∈ E and ε > 0, we can find a positive
number c < ε such that w(p) ≤ M(w; p; c). Let R be a convex domain of revolution
such that R ⊆ E. Then w satisfies the same conditions on R as it does on E. We
use Theorem 15. Let v ∈ C(R), be a temperature on R, and satisfy v ≥ w on ∂nR.
Then w− v satisfies the same conditions on R as does w, in view of [13] (Theorem
2 Corollary). Therefore w − v satisfies the maximum principle of Theorem 16.
Furthermore, whenever q ∈ ∂nR we have

lim sup
p→q, p∈R

(w(p)− v(p)) ≤ w(q)− v(q) ≤ 0,

so that w(p) ≤ v(p) for all p ∈ R. Hence w is a subtemperature on E, by Theorem
15.

Now suppose, conversely, that w is a subtemperature on E. Then, by Theorem
15, w satisfies the hypotheses of Lemma 8, and the result follows.
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Corollary. Let w ∈ C2,1(E). Then w is a subtemperature on E if and only if
Θw ≥ 0 on E.

Proof. If w is a subtemperature on E and p ∈ E, then the inequality w(p) ≤
M(w; p; c) holds for all c > 0 such that Ω(p; c) ⊆ E, by Theorem 17. So Θw ≥ 0 on
E, by [13] (Theorem 2).

Conversely, if Θw ≥ 0 then w(p) ≤ M(w; p; c) holds whenever Ω(p; c) ⊆ E, by
[13] (Theorem 2). Therefore w is a subtemperature on E, by Theorem 17.

Our next theorem shows that subtemperatures can be characterized in terms of
the class R of Lemma 8.

Theorem 18. Let w be an extended-real valued function on an open set E, that
satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature. Let
R denote the class of convex domains of revolution R, for which both ∂nR = ∂R
and the Dirichlet problem on R has a solution for every f ∈ C(∂R). Consider the
following property: Whenever R ∈ R is such that R ⊆ E, and v is a function in
C(R) that is a temperature on R and satisfies v ≥ w on ∂R, then v ≥ w on R.

The stated property holds if and only if w is a subtemperature on E.
Proof. If w is a subtemperature on E, then the stated property follows from

Theorem 15.
Conversely, if the stated property holds then, by Lemma 8, the inequality w(p) ≤

M(w; p; c) holds whenever Ω(p; c) ⊆ E. So w is a subtemperature on E, by Theo-
rem 17.

We can now show that a function is subcaloric if and only if it is a subtempera-
ture. Recall that a bounded open set V ⊆ Rn+1 is called regular (in harmonic space
theory) if, for every function f ∈ C(∂V ), there is a function uf ∈ C(V ) which is a
temperature on V and equal to f on ∂V . A function w on E is called subcaloric if
it satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature, and
in addition has the following property: Whenever V is a regular, bounded open set
such that V ⊆ E, and f ∈ C(∂V ) with f ≥ w on ∂V , then uf ≥ w on V .

Theorem 19. Let w be an extended-real valued function on an open set E.
Then w is a subtemperature if and only if it is a subcaloric function.

Proof. Suppose that w is a subtemperature on E, that V is a regular, bounded
open set such that V ⊆ E, and that f is a function in C(∂V ) with f ≥ w on ∂V .
Then the function w−uf satisfies the maximum principle of Theorem 8 on V , and

lim sup
p→q

(w − uf )(p) = lim sup
p→q

w(p)− lim
p→q

uf (p) ≤ w(q)− f(q) ≤ 0

whenever p ∈ V tends to a boundary point q of V . Thus w ≤ uf on V , and hence
w is subcaloric.

The converse follows from Theorem 18.

Now we come to our characterization of subtemperatures in terms of the volume
means V.
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Theorem 20. Let w be an extended-real valued function on an open set E,
that satisfies conditions (δ1), (δ2) and (δ3) of the definition of a subtemperature.
Suppose that, given any point p ∈ E and ε > 0, we can find a positive number c < ε
such that the inequality w(p) ≤ V(w; p; c) holds. Then w is a subtemperature on E.

Conversely, if w is a subtemperature on E and p ∈ E, then the inequality w(p) ≤
V(w; p; c) holds for all c > 0 such that Ω(p; c) ⊆ E.

Proof. The proof of the first part is similar to that of the first part of Theorem
17, but uses Theorem 6 Corollary of [13].

Conversely, if w is a subtemperature on E and p ∈ E then, by Theorem 17, the
inequality w(p) ≤ M(w; p; l) holds for all l > 0 such that Ω(p; l) ⊆ E. It therefore
follows from (2.1) that

V(w; p; c) =
n

2
c−

n
2

∫ c

0

l
n
2−1M(w; p; l) dl ≥ n

2
c−

n
2

∫ c

0

l
n
2−1w(p) dl = w(p)

whenever Ω(p; c) ⊆ E.

If we use either the fundamental means M or the volume means V, we can
weaken the finiteness condition (δ3) in the definition of a subtemperature, as the
next theorem and its second corollary show. The bulk of the proof is contained in
the following lemma.

Lemma 9. Let w be a locally upper bounded, extended-real valued function
on an open set E, and let (x0, t0) ∈ E. If w(x0, t0) > −∞, and the inequality
w(y, s) ≤ V(w; y, s; c) holds whenever Ω(y, s; c) ⊆ Λ(x0, t0;E) ∪ {(x0, t0)}, then w
is locally integrable on Λ(x0, t0;E).

Proof. We prove the contrapositive. If w is not locally integrable on Λ(x0, t0;E),
then we can find a point (x1, t1) ∈ Λ(x0, t0;E) such that w is not integrable on
any neighbourhood of (x1, t1). Join (x0, t0) to (x1, t1) by a polygonal path γ in
Λ(x0, t0;E) ∪ {(x0, t0)} along which the temporal variable is strictly decreasing.
Since γ is compact, its distance from Rn+1\E is positive, and so we can find c0 > 0
such that Ω(x, t; c0) ⊆ E for all (x, t) ∈ γ. Given (x, t) ∈ γ, we put

P (x, t) = {(y, s) : |y − x|2 < 2n(s− t), s− t < c0/e}.

The set P (x, t) is a truncated paraboloid with vertex (x, t), and if (y, s) ∈ P (x, t)
then

|y − x|2 < 2n(s− t) < 2n(s− t) log
(

c0
s− t

)
,

so that (x, t) ∈ Ω(y, s; c0).
Observe that, because γ is a union of finitely many line segments, there is a

positive number c1 < c0/e, independent of (x, t), such that if (x, t), (y, t + c1) ∈ γ
then (y, t + c1) ∈ P (x, t). Choose points (x2, t2), ..., (xl, tl) inductively, such that
tj = t1+(j−1)c1 and (xj , tj) ∈ γ, for all j ∈ {2, ..., l}, and such that tl < t0 ≤ tl+c1.
Note that (xj , tj) ∈ P (xj−1, tj−1) for all j ∈ {2, ..., l}. Since (x1, t1) ∈ Λ(x0, t0;E),
we have (x1, t1) ∈ Ω(y, s; c0) for all (y, s) ∈ P (x1, t1). Therefore

w(y, s) ≤ (4πc0)−
n
2

∫ ∫
Ω(y,s;c0)

|y − z|2

4(s− r)2
w(z, r) dz dr = −∞
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for all (y, s) ∈ P (x1, t1) such that y 6= x1. In particular, w is not integrable on
any neighbourhood of (x2, t2). Proceeding stepwise along γ, we deduce succes-
sively that w is not integrable on any neighbourhood of (x2, t2), ..., (xl, tl). Since
tl < t0 ≤ tl + c1, we have (xl, tl) ∈ Ω(x0, t0; c0). Now w(y, s) = −∞ for all
(y, s) ∈ P (xl, tl) such that y 6= xl, so that w(x0, t0) ≤ V(w;x0, t0; c0) = −∞.

Theorem 21. Let w be an extended-real valued function on an open set E. Then
w is a subtemperature on E if and only if it satisfies the following four conditions:

(a) −∞ ≤ w(p) <∞ for all p ∈ E;
(b) w is upper semicontinuous on E;
(c) given any point p ∈ E, we can find a point q ∈ E such that p ∈ Λ(q;E) and

w(q) > −∞;
(d) the inequality w(p) ≤ V(w; p; c) holds whenever Ω(p; c) ⊆ E.

Furthermore, every subtemperature on E is locally integrable on E.
Proof. Theorem 20 shows that any subtemperature on E satisfies the four con-

ditions.
To prove the remainder of the theorem, it suffices to show that any function w

which satisfies the four conditions is locally integrable on E, in view of Theorem
20. Given condition (c), this follows from Lemma 9.

Corollary 1. If v and w are subtemperatures on the open set E, then v + w is
also a subtemperature on E.

Proof. Conditions (δ1) and (δ2) are obviously satisfied by v+w, and (δ4) follows
from Theorem 9. For (δ3), Theorem 21 shows that each of v and w is finite outside
a set of full measure, so that v + w is too, and hence v + w is finite on a dense
subset of E.

Corollary 2. Let w be an extended-real valued function on an open set E. Then
w is a subtemperature on E if and only if it satisfies the following four conditions:

(a) −∞ ≤ w(p) <∞ for all p ∈ E;
(b) w is upper semicontinuous on E;
(c) given any point p ∈ E, we can find a point q ∈ E such that p ∈ Λ(q;E) and

w(q) > −∞;
(d) the inequality w(p) ≤ M(w; p; c) holds whenever Ω(p; c) ⊆ E.
Proof. If w satisfies the conditions in the corollary, then it also satisfies those in

the theorem, because of formula (2.1). So w is a subtemperature on E.
Conversely, if w is a subtemperature on E, then Theorem 17 shows that it sat-

isfies the conditions of the present corollary.

Theorem 21 Corollary 2 shows that w is a subtemperature by our current defi-
nition if and only if it is a subtemperature by the definition in [10].
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