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Abstract. Let r be an A-stable rational approximation of the exponential func-
tion of order q ≥ 1 and let t > 0. It is shown that the inverse Laplace-Stieltjes
transforms αn : s → αn∗(ns

t
) of rn(z) := rn( tz

n
) converge in Lp(R+) to the

Heaviside function Ht with a rate of t1/pn−1/2p(ln(n + 1))1−1/p. Moreover,
for 0 ≤ k ≤ q, the k-th antiderivatives of αn converge in Lp(R+) to the k-th
antiderivative of the Heaviside function with a speed that increases with k.
In particular, the q-th antiderivatives of αn converge in L1(R+) to the q-th
antiderivative of the Heaviside function Ht with the optimal rate of t( t

n
)q .

In addition to the Lp-estimates, bounds on the total variation and supremum
norms of αn are given. Via the Hille-Phillips functional calculus for operator
semigroups, the results have immediate applications to the error analysis of
rational time discretization methods for evolution equations.

1. Introduction

Let rn(z) :=
∫∞
0
ezs dαn(s) converge pointwise to v(z) =

∫∞
0
ezs dα(s) (z < 0),

where α, αn are functions of bounded total variation. Does this imply the conver-
gence of αn to α and, if yes, in what sense? Moreover, if it is known how fast rn
converges to v, what can be said about the speed of convergence of αn to α in vari-
ous norms? Motivated by applications to time discretization methods, of particular
interest are cases where rn(z) := rn( tzn ) → etz for some rational function r with

(a) r(z) = ez +O(zq+1) as z → 0 for some q ∈ N, and
(b) |r(z)| ≤ 1 for Re z ≤ 0.

Such functions r are called A-stable rational approximations of the exponential of
order q. Each such r is the Laplace-Stieltjes transform of a function α with finite
total variation. Moreover,

rn(
tz

n
) =

∫ ∞

0

ezs dαn,t(s) → etz =
∫ ∞

0

ezs dHt(s)

(z < 0, t > 0, n→∞), where αn := αn,t is the n-th Stieltjes convolution power s→
αn∗(nst ) and Ht is the Heaviside function with jump at t. By translating technical
arguments of [4] and [8] into a Laplace-Stieltjes transform setting, in Theorems
3.1 and 3.4 it is shown that the total variation of αn,t may grow at most like

√
n.

Hence, in general, the functions αn,t will not converge towards Ht with respect to
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the total variation norm. In Theorem 3.6 it is established that the L∞-norm of
αn,t cannot increase faster than ln(n+1). With this result one obtains convergence
in Lp(R+) once the convergence in L1(R+) is established. In Section 4, based on
the complex inversion formula for the Laplace-Stieltjes transform and analytical
techniques developed by P. Brenner and V. Thomée in [4], the convergence of
αn,t and its k-th antiderivatives (0 ≤ k ≤ q) in L1(R+) is established together
with convergence rate estimates that improve with increased k. In Theorem 4.5,
combining the L1–result with the logarithmic L∞–growth bound, Lp-error estimates
are given for αn,t−Ht and its k-th antiderivatives I(k)(αn,t−Ht) when 1 ≤ p <∞.

Using the Hille–Phillips functional calculus, these estimates yield convergence es-
timates for rational approximation schemes for strongly continuous semigroups1(see
[4], [9], [12], [14]). Let X be a Banach space and let A : X ⊃ D(A) → X generate
a strongly continuous semigroup of linear operators T (·) bounded by M ≥ 1 (for
details, see [1]). For A-stable rational approximations r of the exponential of order
q the operators

rn(
t

n
A)x =

∫ ∞

0

T (s)x dαn,t(s)

are well defined (where αn,t is as above; for details see, for example, [10, Chapter
XV] and [13]). It is immediate from the definition that for any τ ≥ 0 we have
||f(τA)|| ≤ MVα(∞) which gives the estimate ||rn(τA)|| ≤ K

√
n by Theorem

3.1. For sufficiently smooth initial data one can integrate by parts k-times (k =
1, 2, . . . , q + 1) and obtain

rn(
t

n
A)x− T (t)x

=
∫ ∞

0

T (s)x d[αn,t(s)−Ht(s)] = (−1)k
∫ ∞

0

I(k−1)(αn,t −Ht)(s)
dkT (s)x
dsk

ds.

Hence, Lp-estimates of I(k−1)(αn,t − Ht) result in error estimates for rn( tnA)x −
T (t)x for those x with appropriately regular orbits s 7→ T (s)x (for details, see [14]).

2. Preliminaries and Basic Inequalities

A bounded variation function α : [0, R] → C is in NBVR if it is normalized; i.e.,
α(0) = 0 and α(u) = α(u+)+α(u−)

2 (u ∈ (0, R)). The space NBVloc := ∩R>0NBVR
is an algebra with multiplication defined by the Stieltjes convolution (α ∗ β)(t) =∫ t
0
α(t − u) dβ(u) =

∫ t
0
β(t − u) dα(u) (t /∈ Pα+β), where Pα+β := {t ∈ R : t =

tα+ tβ , tα ∈ Pα, tβ ∈ Pβ}, and where Pα (and similarly Pβ) denotes the countable
set of discontinuity points of α. If Pα or Pβ is empty, then Pα+β is defined to be
the empty set. If α, β ∈ NBVR, then γ := α ∗ β exists on [0, R] \ Pα+β and γ may
be defined on Pα+β so that it becomes normalized (see [16, Thms 11.1 and 11.2a]).
Let Vα(∞) denote the total variation of α ∈ NBVloc on [0,∞). Then NBV :=
{α ∈ NBVloc : Vα(∞) < +∞} is a Banach algebra with norm ||α|| := Vα(∞). Let
G := {fα : fα(z) =

∫∞
0
ezt dα(t) if Re z ≤ 0, α ∈ NBV }. Next, we show that

A-stable rational functions belong to G (see, also, [10, p. 441]).

Proposition 2.1. If a rational function r is bounded for Re z ≤ 0, then r ∈ G.

1For convergence estimates for distribution or C-regularized semigroups, see [11]
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Proof. Clearly, constant functions and the functions z → 1
a−z belong to the algebra

G for Re a > 0. Developing r into partial fractions, we see that r ∈ G. ¤
The proof of the following inequality is a straightforward modification of the proof
of [9, Lemma 5] and is provided for convenience2.

Proposition 2.2 (Carlson’s Inequality). Assume that f ∈ L2(R) and s 7→ sf(s) ∈
L2(R). Then, f ∈ L1(R) and

∫ ∞

−∞
|f(s)| ds ≤ 2

(∫ ∞

−∞
|f(s)|2 ds

) 1
4

(∫ ∞

−∞
|sf(s)|2 ds

) 1
4

.

Proof. Let f 6= 0 and note that ‖f‖1 =
∫ −c2
−∞ |s|−1|sf(s)| ds +

∫ 0

−c2 1 · |f(s)| ds +
∫ c2
0

1 · |f(s)| ds+
∫∞
c2
s−1|sf(s)| ds. By the Cauchy-Schwartz inequality,

‖f‖1 ≤
(∫ −c2

−∞
|s|−2 ds

) 1
2

(∫ −c2

−∞
|sf(s)|2 ds

) 1
2

+ c

(∫ 0

−c2
|f(s)|2 ds

) 1
2

+ c

(∫ c2

0

|f(s)|2 ds
) 1

2

+
(∫ ∞

c2
s−2 ds

) 1
2

(∫ ∞

c2
|sf(s)|2 ds

) 1
2

≤ c

(∫ ∞

−∞
|f(s)|2 ds

) 1
2

+ c−1

(∫ ∞

−∞
|sf(s)|2 ds

) 1
2

.

The choice c :=
(∫∞
−∞ |f(s)|2 ds

)− 1
4

(∫∞
−∞ |sf(s)|2 ds

) 1
4

yields the desired result.
¤

It is noted that the above inequality remains true if we replace the constant 2 by√
π as shown by Carlson in [7] with equality for f(s) = 1

1+s2 .

Corollary 2.3. Assume that f, f ′ ∈ L2(R). Then the Fourier transform F(f) is

in L1(R) and ||F(f)||1 ≤ 2||f ||
1
2
2 ||f ′||

1
2
2 .

Proof. Parseval’s identity yields ‖F(f)‖2 = ‖f‖2 and
∫∞
−∞ |sF(f)(s)|2 ds = ‖f ′‖22.

Now the result follows immediately from Proposition 2.2. ¤
Throughout the paper the following inversion formula for the Laplace-Stieltjes
transform will be useful (see, for example, [16, Chapter II, Thm 7a]).

Proposition 2.4 (Complex Inversion Formula). Let f(z) =
∫∞
0
ezs dα(s) for α ∈

NBVloc and Re z < σ. Then, for c > max(−σ, 0),

1
2πi

lim
R→∞

∫ c+iR

c−iR

f(−z)
z

ezs dz =





α(s) if s > 0
α(0+)

2 if s = 0
0 if s < 0.

(2.1)

A consequence of the Complex Inversion Theorem is a crucial estimate of Vα(∞)
using information of the behavior of its Laplace-Stieltjes transform on the imaginary
axis. A related statement with a different proof can be found in [4, Lemma 2].

2For a more general version, see [1, Lemma 8.2.1]



44 MIHÁLY KOVÁCS AND FRANK NEUBRANDER

Theorem 2.5. Let f(z) =
∫∞
0
ezs dα(s), Re z ≤ 0, where α ∈ NBVloc with

α(0+) = 0 and define f0(s) := f(is). Assume that f has an analytic extension
to a neighborhood of iR. If f0, f ′0 ∈ L2(R), then α is absolutely continuous on R+

and

Vα(∞) =
1√
2π
||F(f0)||1 ≤

√
2
π
||f0||

1
2
2 ||f ′0||

1
2
2 . (2.2)

Proof. The integral in (2.1) can be replaced by 1
2πi limR→∞

∫
ΓR

ε ∪γε

f(−z)
z ezs dz,

where c > ε > 0, γε(u) = εeiu, u ∈ [−π
2 ,

π
2 ] and ΓRε (u) = iu, u ∈ [−R,−ε] ∪ [ε,R].

This follows from Cauchy’s theorem and the fact that
∣∣∣∣∣
∫

Γ±R,c

f(−z)
z

ezs dz

∣∣∣∣∣ ≤
c

R
ecs sup

Re z≥0
|f(−z)| → 0 as R→∞,

where Γ±R,c(u) = ±iR + u, u ∈ [0, c]. Fix s0 ≥ 0. Since α(0+) = 0 and z 7→
f(−z)ezs is analytic in a neighborhood of iR, it follows from Proposition 2.4 that

α(s0) =
1

2πi
lim
R→∞

∫

ΓR
ε ∪γε

f(−z)
z

(ezs0 − 1) dz

=
1

2πi
lim
R→∞

∫

ΓR
ε ∪γε

∫ s0

0

f(−z)ezs ds dz =
1

2πi
lim
R→∞

∫ s0

0

∫

ΓR
ε ∪γε

f(−z)ezs dz ds

=
1

2πi
lim
R→∞

∫ s0

0

∫ iR

−iR
f(−z)ezs dz ds =

1
2πi

∫ s0

0

(2)

lim
R→∞

∫ iR

−iR
f(−z)ezs dz ds

=
1√
2π

∫ s0

0

1√
2π

(2)

lim
R→∞

∫ R

−R
f0(v)e−ivs dv ds,

where
(2)

lim denotes the limit in L2(R). To see that we can interchange the limit and
the integral above, let fR(s) := 1√

2π

∫ R
−R f0(v)e

−ivs dv. Since f0 ∈ L2(R) it follows

that
(2)

limR→∞ fR := F(f0) exists and defines a uniquely determined function in
L2(R) (see, for example, [6, p.210]). Therefore, fR → F(f0) weakly as R → ∞.
Let χ[0,s0] denote he characteristic function of [0, s0]. Then,

lim
R→∞

∫ s0

0

fR(s) ds = lim
R→∞

〈fR, χ[0,s0]〉 = 〈F(f0), χ[0,s0]〉 =
∫ s0

0

F(f0)(s) ds.

This proves that we can interchange the limit and the integral above, that α is
absolutely continuous since

α(s0) =
1√
2π

∫ s0

0

F(f0)(s) ds, (2.3)

and that Vα(∞) = 1√
2π
||F(f0)||1. Since f0, f ′0 ∈ L2(R), it follows from Corollary

2.3 that F(f0) ∈ L1(R) and ||F(f0)||1 ≤ 2||f0||
1
2
2 ||f ′0||

1
2
2 . Therefore,

Vα(∞) =
1√
2π
||F(f0)||1 ≤

√
2
π
||f0||

1
2
2 ||f ′0||

1
2
2 .

¤
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Corollary 2.6. Let f(z) =
∫∞
0
ezs dα(s) for Re z ≤ 0 and α ∈ NBVloc. If f

extends analytically to a neighborhood of iR and f0 − f(−∞), f ′0 ∈ L2(R), then
α ∈ NBV . In particular, if f(−∞) := limx→−∞ f(x), then

Vα(∞) = |f(−∞)|+ 1√
2π

∫ ∞

0

|F(f0 − f(−∞))(s)| ds

≤ |f(−∞)|+
√

2
π
||f0 − f(−∞)||

1
2
2 ||f ′0||

1
2
2 .

Proof. Since f(−∞) = α(0+) exists for α ∈ NBVloc (see [16, Cor. 1c]), define

f(z)− f(−∞) :=
∫ ∞

0

ezs d[α(s)− f(−∞)H0(s)].

Then f − f(−∞) and α − f(−∞)H0 satisfy the conditions of Theorem 2.5 and
Vα(∞) = Vf(−∞)H0(∞) + Vα−f(−∞)H0(∞) = |f(−∞)| + 1√

2π
‖F(f0 − f(−∞)‖1 ≤

|f(−∞)|+
√

2
π ||f0 − f(−∞)||

1
2
2 ||f ′0||

1
2
2 . ¤

3. Bounds on the Convolution Powers of the Determining Function

3.1. NBV -bounds. By Proposition 2.1, an A-stable rational function r can be
represented by r(z) =

∫∞
0
ezs dα(s) (Re z ≤ 0) for some α ∈ NBV . In this section,

the total variation of the convolution powers αn∗ will be estimated.
Employing techniques due to P. Brenner and V. Thomée ([4] [5, Ch. 2]), the

following partition of unity is needed. Let 0 ≤ φ ∈ C∞0 (R) with supp(φ) ⊂
(−2,− 1

2 ) ∪ ( 1
2 , 2) and

∑∞
j=1 φ(2−js) = 1 for |s| > 2. Define φj(s) := φ(2−js) for

j > 0 and φ0 = 1−∑∞
j=1 φj . Note that supp(φj) ⊂ (−2j+1,−2j−1) ∪ (2j−1, 2j+1)

for j > 0. The proof of the next theorem follows [4, Theorem 1].

Theorem 3.1. Let r(z) =
∫∞
0
ezs dα(s), α ∈ NBV , be an A-stable rational func-

tion. Then there is a constant K > 0 such that

Vαn∗(∞) ≤ K
√
n for all n ∈ N. (3.1)

Proof. Since r is an A-stable rational function it follows that r(∞) := lim|z|→∞ r(z)
exists. By Corollary 2.6,

Vαn∗(∞) ≤ |rn(∞)|+ 1√
2π

∫ ∞

0

|F(rn0 − rn(∞))(s)| ds

= |rn(∞)|+ 1√
2π

∫ ∞

0

|F [(rn0 − rn(∞)) ·
∞∑

k=0

φk](s)| ds

≤ |rn(∞)|+ 1√
2π

∞∑

k=0

∫ ∞

0

|F [φk · (rn0 − rn(∞))](s)| ds

≤ |rn(∞)|+
√

2
π

∞∑

k=0

||φk · (rn0 − rn(∞))||
1
2
2 ||[φk · (rn0 − rn(∞))]′||

1
2
2 , (3.2)

where we use Corollary 2.3 for the last inequality. Since r is A-stable and rational,
there exist polynomials p, q with deg(p) < deg(q) such that r(z) − r(∞) = p(z)

q(z) .
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Thus, by the binomial formula (and using C to denote a constant whose value may
change from line to line),

|rn(is)− rn(∞)| = |r(is)− r(∞)|
∣∣∣∣∣
n−1∑

k=0

rk(is)rn−k(∞)

∣∣∣∣∣ ≤ C
n

1 + |s| , s ∈ R.

The A-stability of r also implies that |rn(is)− rn(∞)| ≤ 2 for s ∈ R. Hence,

|rn(is)− rn(∞)| ≤ Cmin
(

1,
n

1 + |s|
)
, s ∈ R. (3.3)

There are polynomials p1, q1 with deg(p1) < deg(q1)− 1 such that r′ = p1
q1

. Thus,

| d
ds

(rn(is)− rn(∞))| = |nrn−1(is)r′(is)| ≤ C
n

1 + |s|2 , s ∈ R. (3.4)

By (3.3),

||φk · (rn0 − rn(∞))||22 =
∫ ∞

−∞
|φk(s)(rn(is)− rn(∞))|2 ds

≤ C

∫ 2k+1

2k−1
min

(
1,

n2

(1 + |s|)2
)
ds ≤ Cmin(2k, n22−k) (3.5)

if k > 0. Since |rn0 −rn(∞)| ≤ 2 it follows that ||φ0 ·(rn0 −rn(∞))||22 ≤ C. Therefore,
(3.5) holds for k ≥ 0. Notice that from the definition of φj it follows that∣∣∣∣

d

ds
φk(s)

∣∣∣∣ = |2−kφ′(2−ks)| ≤ C2−k for s ∈ R.

Let k > 0. By the product rule and the inequality (a+ b)2 ≤ 2(a2 + b2),
∣∣∣∣
d

ds
[φk(s)(rn(is)− rn(∞))]

∣∣∣∣
2

≤ 2

(
|2−kφ′(2−ks)(rn(is)− rn(∞))|2 +

∣∣∣∣φk(s)
d

ds
(rn(is)− rn(∞))

∣∣∣∣
2
)
.

It follows from(3.3) and (3.4) that

||[φk · (rn0 − rn(∞))]′||22 =
∫ ∞

−∞

∣∣∣∣
d

ds
[φk(s)rn(is)− rn(∞)]

∣∣∣∣
2

ds

≤ C

(∫ 2k+1

2k−1
2−2k min

(
1,

n2

(1 + |s|)2
)
ds+

∫ 2k+1

2k−1

n2

(1 + |s|2)2 ds
)

≤ Cmin(2−k, n22−3k) + Cn22−3k ≤ C(2−k + n22−3k). (3.6)

Note, that the final estimate in (3.6) holds also for k = 0 by (3.3) and (3.4). Finally,
from (3.5) and (3.6) it follows that

||φk · (rn0 − rn(∞))||
1
2
2 ||[φk · (rn0 − rn(∞))]′||

1
2
2 ≤ C

√
n2−

k
2 .

Hence, by (3.2), the final estimate of Vαn∗(∞) is

|rn0 (∞)|+
√

2
π

∞∑

k=0

||φk · (rn0 − rn(∞))||
1
2
2 ||[φk · (rn0 − rn(∞))]′||

1
2
2 ≤ K

√
n.
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¤
If r0 satisfies additional conditions at ∞ and at 0, then the estimate (3.1) can be
improved by an order up to 1

2 (see [4]). For example, the inverse Laplace-Stieltjes
transform α of r(z) = 1

1−z is monotonic on (0,∞) with α(0) = α(0+) = 0, α(∞) =
1, and hence Vαn∗(∞) ≤ [Vα(∞)]n = 1. However, in general, (3.1) is sharp as will
be shown in Theorem 3.4. Although crucial technical details are adopted from [8]
and [3], our approach does not use Fourier multipliers and operator semigroups. A
few preliminary lemmas are needed.

Lemma 3.2. Let g ∈ L1(R) ∩ C(R) with F(g) ∈ L1(R). If f(s) =
∫∞
0
eist dα(t)

for some α ∈ NBV , then ||F(gf)||1 ≤ ||F(g)||1Vα(∞).

Proof. The proof is straightforward using Fubini’s theorem for the Riemann-
Stieltjes integral [16, Theorem 15c, p. 25]. ¤
The next lemma is one of the basic tools when estimating oscillatory integrals (for
the proof, see [5, Lemma 5.1, p. 24]).

Lemma 3.3 (Van der Corput). If φ ∈ C2[a, b] is real with |φ′′| ≥ δ > 0 on [a, b],
then | ∫ b

a
eiφ(s) ds| ≤ 8δ−

1
2 .

The following result shows the sharpness of Theorem 3.1 when the A-stable rational
function r satisfies |r(is)| = |r0(s)| = 1.3

Theorem 3.4. Let r be an A-stable rational function given by r(z) =
∫∞
0
ezt dα(t),

α ∈ NBV , Re z ≤ 0, with |r(is)| = 1 for all s ∈ R. Then there is a constant K > 0
such that Vαn∗(∞) ≥ K

√
n for all n ∈ N.

Proof. Since |r(is)| = 1 for all s ∈ R it follows that r(is) = eiψ(s) for some
ψ ∈ C∞(R). Since r is rational, ψ can not be linear; i.e., ψ′′ 6≡ 0. Hence, there
is δ > 0 and a C∞-function g with compact support such that |ψ′′| ≥ δ > 0 on
supp(g). By Parseval’s identity, Hölder’s inequality, and |r0(s)| = |r(is)| = 1 it
follows that

||g||22 = ||grn0 ||22 = ||F(grn0 )||22 ≤ ||F(grn0 )||1||F(grn0 )||∞. (3.7)

To see that the last two norms in (3.7) are finite, first observe that Lemma 3.2
yields

||F(grn0 )||1 ≤ ||F(g)||1Vαn∗(∞). (3.8)
Using Lemma 3.3, an upper estimate for ||F(grn0 )||∞ can be obtained as follows.

√
2π||F(grn0 )||∞ = sup

s∈R

∣∣∣∣
∫ ∞

−∞
g(t)einψ(t)−ist dt

∣∣∣∣

= sup
s∈R

∣∣∣∣
∫ ∞

−∞
g′(t)

∫ t

t0

einψ(r)−isr dr dt
∣∣∣∣ ≤ ||g′||18(δn)−

1
2 . (3.9)

Therefore, by (3.7), (3.8), and (3.9), it follows that

Vαn∗(∞) ≥ ||g||22
||F(g)||1

√
2π8(δn)

1
2

||g′||1 = K
√
n.

¤
3For example, the function r(z) = 2+z

2−z
satisfies this property.
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3.2. L∞-bound. In this section it is shown that ‖αn∗‖∞ ≤ K ln(n+1) (although
there is numerical evidence that supports the conjecture that, in fact, ‖αn∗‖∞ ≤
K). The L∞-estimate shows that the possible

√
n-growth of Vαn∗(∞) is generated

by strengthening oscillations rather than from the growth in absolute value. The
logarithmic growth bound is essential in Theorem 4.5 whose proof does not go
through using a

√
n–growth bound of the L∞–norm (this fact is an immediate

consequence of the
√
n–growth bound on the total variation).

Lemma 3.5. If a rational function r is A-stable, then there are positive constants
ε,m, ω, L,C such that |r(z)| ≤ eC|z| for |z| ≤ ε and |r(z)| ≤ eL|z|

−m

for |z| ≥ ω ≥ 1.

For the proof we refer to [15, Lemmas 8.2 and 8.3].

Theorem 3.6. If r is an A-stable rational function given by r(z) =
∫∞
0
ezsdα(s),

α ∈ NBV , Re z ≤ 0, then ‖αn∗‖∞ ≤ K ln(n+ 1) for some K > 0 and all n ∈ N.
Proof. It suffices to consider the case s > 0 since αn∗ is normalized with αn∗(0) =
0. It is not difficult to see that the path of integration in the complex inversion
formula (Proposition 2.4) can be replaced by the contour integral, oriented counter-
clockwise,

αn∗(s) =
1

2πi

∫

ΓR
ε
n
∪γ(R)∪γ( ε

n )

rn(z)
z

e−zs dz + 1 (3.10)

where ΓRε
n

:= {z ∈ C : ε
n ≤ |Im z| ≤ R, Re z = 0}, γ(R) := {z ∈ C : |z| =

R, Re z ≥ 0} and γ( εn ) := {z ∈ C : |z| = ε
n , Re z ≥ 0}. Here, R and ε are

chosen so that the singularities of the integrand lie inside the path of integration
except the one at z = 0. Note that the additional constant 1 comes from the residue
of the integrand at z = 0. For the purpose of this proof, ΓRε

n
is defined by R := ωn

1
m

where ω (large enough), ε (small enough), and m are as in Lemma 3.5. Then

αn∗(s)− 1 =


 1

2πi

∫

ΓR
ε
n

+
1

2πi

∫

γ(R)

+
1

2πi

∫

γ( ε
n )


 rn(z)

z
e−zs dz := I1 + I2 + I3.

By Lemma 3.5, |I1| ≤ 1
π ln nωn

1
m

ε = 1
π (m+1

m ) ln(ω
m

m+1 n
ε ), |I2| ≤ 1

2e
L/ωm

, and |I3| ≤
1
2e
Cε. Thus, ‖αn∗‖∞ ≤ K ln(n+ 1) for some K > 0 and all n ∈ N. ¤

4. Convergence of the Determining Functions Induced by the
Convergence of Their Laplace-Stieltjes Transforms

If r is an A-stable rational function, then

rn( tnz) =
∫ ∞

0

ezs dαn(s), (4.1)

where αn(s) := αn∗(nt s), α ∈ NBV , n ∈ N, t > 0, and Re z ≤ 0. Note that in fact
αn = αn,t but the dependence on t will be surpressed in the notation for simplicity.
If, in addition, r is a rational approximation of the exponential of order q (i.e.,
r(z) = ez +O(zq+1) as z → 0), then, for Re z ≤ 0,

|rn( t
n
z)− etz| = |r( t

n
z)− e

t
n z|

∣∣∣∣∣
n−1∑

k=0

r(
t

n
z)n−1−ke

tk
n z

∣∣∣∣∣ ≤Mtq+1 1
nq
|zq+1|.
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Since rn( tnz) → etz =
∫∞
0
ezs dHt(s) (n → ∞, Re z ≤ 0), one may expect that αn

converges to Ht in some sense as n→∞. In Theorems 4.4 and 4.5 it will be shown,
among others, that indeed αn converges to Ht in Lp(R+) for all 1 ≤ p <∞ with a
rate proportional to n−1/2p(ln(n+1))1−1/p. The proofs use a modified version of the
complex inversion formula for the differences αn−Ht and their k-th antiderivatives

I(k)[αn −Ht](s) :=
∫ s

0

. . .

∫ s3

0

∫ s2

0

(αn −Ht)(s1) ds1 ds2 . . . dsk, k ∈ N. (4.2)

Proposition 4.1. Let r be an A-stable rational approximation of the exponential
of order q and t > 0. Then, for all n ∈ N,

I(k)[αn −Ht] =
(−1

i

)k+1 1√
2π
F[rn(i tn (·))− eit(·)

(·)k+1

]
, k = 0, 1, . . . , q

on (0,∞). For k = 0 the equality holds pointwise almost everywhere on (0,∞).

Proof. Let k = 0 and t, s > 0. By Proposition 2.4,

αn(s)−Ht(s) =
1

2πi
lim
R→∞

∫ c+iR

c−iR

rn(− t
nz)− e−zt

z
ezs dz. (4.3)

Since r is an A-stable rational approximation of the exponential of order q it follows
that z 7→ rn(− t

n z)−e−zt

z is analytic at 0 and in a neighborhood of iR. Moreover,
∣∣∣∣∣
∫

Γ±R,c

rn(− t
nz)− e−zt

z
ezt dz

∣∣∣∣∣ ≤
2c
R

2ect → 0 as R→∞,

where Γ±R,c = {z : z = ±iR+ s, s ∈ [0, c]}. Therefore, by Cauchy’s theorem, one
can integrate along the imaginary axis in (4.3) and obtain

αn(s)−Ht(s) =
1

2πi
lim
R→∞

∫ iR

−iR

rn(− t
nz)− e−zt

z
ezs dz

= − 1
2πi

lim
R→∞

∫ R

−R

rn(i tnv)− eitv

v
e−ivs dv = − 1√

2π i
lim
R→∞

fR(s), (4.4)

where fR(s) := 1√
2π

∫ R
−R

rn(i t
nv)−eitv

v e−ivs dv. Since v 7→ rn(i t
nv)−eitv

v ∈ L2(R),

(2)

limR→∞ fR = − 1√
2π i

F[rn(i tn (·))− eit(·)

(·)
] ∈ L2(R)

(see, for example, [6, p. 209]). By (4.4), fR converges also pointwise and hence the
pointwise limit is a.e. the same as the L2-limit. Thus,

αn(s)−Ht(s) = − 1√
2π i

F[rn(i tn (·))− eit(·)

(·)
]
(s).

This proves the claim for k = 0. Assume that the claim holds for 0 ≤ k < q. Define

f
[k]
R (s) :=

1√
2π

∫ R

−R

rn(i tnv)− eitv

vk+1
e−ivs dv.
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With the same weak convergence argument as in the proof of Theorem 2.5 one
obtains

I(k+1)[αn −Ht](s) =
∫ s

0

(−1
i

)k+1 1√
2π
F[rn(i tn (·))− eit(·)

(·)k+1

]
(τ) dτ

=
∫ s

0

(−1
i

)k+1 1√
2π

[
(2)

lim
R→∞

f
[k]
R ](τ) dτ =

(−1
i

)k+1 1√
2π

lim
R→∞

∫ s

0

f
[k]
R (τ) dτ.

(4.5)

By Fubini’s theorem,

∫ s

0

f
[k]
R (τ) dτ =

1√
2π

∫ R

−R

∫ s

0

rn(i tnv)− eitv

vk+1
e−ivτ dτ dv

=
−1
i

1√
2π

∫ R

−R

rn(i tnv)− eitv

vk+2
(e−ivr − 1) dv. (4.6)

Next, it will be shown that limR→∞
∫ R
−R

rn(i t
nv)−eitv

vk+2 dv = 0. Since r is an A-stable
rational approximation of the exponential of order q and k+2 ≤ q+1, it follows that
z → rn( t

n z)−ezt

zk+2 dz is analytic in a neighborhood of {z : Re(z) ≤ 0}. By Cauchy’s
theorem and |rn( tnz)− ezt| ≤ 2 for Re(z) ≤ 0,

lim
R→∞

∫ iR

−iR

rn( tnz)− ezt

zk+2
dz = lim

R→∞

∫

ΓR

rn( tnz)− ezt

zk+2
dz = 0,

where ΓR = {z ∈ C : z = Reis, s ∈ [π2 ,
3π
2 ]}. Thus, from (4.5) and (4.6) one

obtains

I(k+1)[αn −Ht](s) = lim
R→∞

(−1
i

)k+2 1√
2π
f

[k+1]
R (s).

Finally, since v → rn(i t
n v)−eitv

vk+2 ∈ L2(R) ∩ L1(R) it follows that

I(k+1)[αn −Ht](s) =
(−1

i

)k+2 1√
2π
F[rn(i tn (·))− eit(·)

(·)k+2

]
(s) for all s > 0.

¤

Corollary 4.2. Let r be an A-stable rational approximation of the exponential of
order q and t > 0. Then, for all n ∈ N, lims→∞ I(k)[αn−Ht](s) = 0, k = 0, 1, . . . , q.

Proof. First, let k = 0. Since 1 = rn(0) = rn(0−) = αn(∞) it follows that

lims→∞ αn(s)−Ht(s) = 0, n ∈ N. If k > 0, then v → rn(i t
nv)−eitv

vk+1 ∈ L1(R). Thus,
by the Riemann-Lebesgue Lemma and by Proposition 4.1, the claim follows. ¤

For the main convergence result of this section another technical lemma is needed.
Its elementary proof uses change of variables and is omitted.

Lemma 4.3. Let a ∈ R and b > 0. If f ∈ L2(R) with F(f) ∈ L1(R), then

||F(f)||1 = ||F(f(b·))||1 = ||F(f(·)eia(·))||1. (4.7)
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Combining analytical tools from the proofs of [4, Theorems 3 and 4] with Proposi-
tion 4.1, the main L1-convergence result can now be proved. For q ∈ N define

θq(k) :=

{
k + 1

2 if k < q−1
2

(k + 1) q
q+1 if q−1

2 ≤ k.

Theorem 4.4. Let r be an A-stable rational approximation of the exponential of
order q, t > 0, and k = 0, 1, . . . , q. Then there is K > 0 such that, for all n ∈ N,

‖|I(k)[αn −Ht]||L1(R+) ≤
{

Ktk+1−θq(k)
(
t
n

)θq(k) if k 6= q−1
2

Ktk+1−θq(k)
(
t
n

)θq(k) ln(n+ 1) if k = q−1
2 .

Proof. Combining Lemma 4.3 with a = t and b = n−
q

q+1 t with Proposition 4.1
yields

||I(k)[αn −Ht]||L1(R+) ≤
1√
2π

∣∣∣∣F[rn(i tn (·))− eit(·)

(·)k+1

]∣∣∣∣
1

=
1√
2π

∣∣∣∣F[
eti(·)

(
e−n

− 1
q+1 n

− q
q+1 ti(·)r(n−

1
q+1n−

q
q+1 ti(·))

)n
− 1

(n−
q

q+1 t(·))k+1
(tn−

q
q+1 )k+1

]∣∣∣∣
1

=
1√
2π

∣∣∣∣F[
(
e−n

− 1
q+1 i(·)r(n−

1
q+1 i(·))

)n
− 1

(·)k+1

]∣∣∣∣
1
(tn−

q
q+1 )k+1

=
1√
2π

∣∣∣∣F[
gk]

∣∣∣∣
1
(tn−

q
q+1 )k+1, (4.8)

where gk(s) :=
[
(e−n

− 1
q+1 isr(n−

1
q+1 is))n− 1

]
/sk+1. Using the partition of unity as

in the estimate (3.2) and employing Corollary 2.3, one obtains

‖F [gk]‖1 ≤
∞∑

j=0

‖F [φjgk]‖1 ≤
∞∑

j=0

‖φjgk‖
1
2
2 ‖[φjgk]′‖

1
2
2 . (4.9)

Define h(s) := e−n
− 1

q+1 isr(n−
1

q+1 is). Then |h(s)| ≤ 1 and

|h(s)n − 1| ≤ 2 for all s ∈ R. (4.10)

Moreover, e−zr(z)− 1 = O(zq+1) as z → 0 since r(z) = ez +O(zq+1). Thus,

h(s)− 1 = e−n
− 1

q+1 isr(n−
1

q+1 is)− 1 = O
(
(n−

1
q+1 s)q+1

)
as n−

1
q+1 s→ 0.

By the binomial formula,

|h(s)n − 1| = |h(s)− 1|
∣∣∣∣∣∣

n−1∑

j=0

h(s)j

∣∣∣∣∣∣
≤ C|n− 1

q+1 s|q+1n = C|s|q+1 (4.11)

for |n− 1
q+1 s| sufficiently small. Therefore, by (4.10) and (4.11), one obtains for

s ∈ R
|h(s)n − 1| ≤ Cmin(|s|q+1, 1), and (4.12)

|gk(s)| =
∣∣∣∣
h(s)n − 1
sk+1

∣∣∣∣ ≤ Cmin(|s|q−k, 1
|s|k+1

). (4.13)
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To handle the derivatives in (4.9), observe that h′(s) = n−
1

q+1
[
ei(·)r(i·)]′(n− 1

q+1 s).
Since r′(z) = ez +O(zq) it follows that

(e−zr(z))′ = r′(z)e−z − r(z)e−z = 1 +O(zq)− (1 +O(zq+1)) = O(zq) as z → 0.
(4.14)

Thus,

|h′(s)| = n−
1

q+1
∣∣[ei(·)r(i·)]′(n− 1

q+1 s)
∣∣ ≤ Cn−

1
q+1 |n− 1

q+1 s|q = C
1
n
|s|q

for |n− 1
q+1 s| sufficiently small. For ε ≤ |n− 1

q+1 s| the inequality holds since [r(is)]′

(s ∈ R) is bounded (see (3.4)) and hence
∣∣[ei(·)r(i·)]′(n− 1

q+1 is)
∣∣ ≤ Cεq ≤ C|n− 1

q+1 s|q.
(Remember that C is a universal constant that can change from line to line). Thus,

∣∣∣∣
d

ds
[h(s)n − 1]

∣∣∣∣ =
∣∣nh(s)n−1h′(s)

∣∣ ≤ C|s|q, for s ∈ R. (4.15)

By (4.12), (4.15), and the product rule it follows that

|g′k(s)| =
∣∣∣∣
d

ds

h(s)n − 1
sk+1

∣∣∣∣ ≤ C(|s|q−k−1 + min{|s|q−k−1,
1

|s|k+2
}) ≤ C|s|q−k−1.

(4.16)
These etimates will be useful if 0 ≤ k ≤ q−1. The case k = q requires an additional
estimate. Since w 7→ e−iwr(iw)−1

wq+1 is analytic at the origin and infinitely often
differentiable on iR \ {0}, it and its derivative are bounded on compact intervals
containing the origin. Let |s| ≤ 1 and w := n−

1
q+1 s. Then |h′(s)| ≤ C 1

n and

∣∣∣∣
d

ds

(
h(s)n − 1
sq+1

)∣∣∣∣ ≤
∣∣∣∣∣∣
d

ds

(
h(s)− 1
sq+1

) n−1∑

j=0

h(s)j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
h(s)− 1
sq+1

d

ds

[ n−1∑

j=0

h(s)j
]
∣∣∣∣∣∣

=

∣∣∣∣∣∣
n−1 d

ds

(
h(s)− 1

(sn−
1

q+1 )q+1

)
n−1∑

j=0

h(s)j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n−1 h(s)− 1

(sn−
1

q+1 )q+1

n−1∑

j=1

jh(s)j−1h′(s)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
n−1 d

ds

(
e−iwr(iw)− 1

wq+1

) n−1∑

j=0

h(s)j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n−1 e

−iwr(iw)− 1
wq+1

n−1∑

j=1

jh(s)j−1h′(s)

∣∣∣∣∣∣

≤ n−1Cn−
1

q+1n+ Cn−1 (n− 1)n
2

n−1 ≤ C.

Thus,

|g′q(s)| =
∣∣∣∣
d

ds

(
h(s)n − 1
sq+1

)∣∣∣∣ ≤ Cmin(1,
1
|s| ). (4.17)

The estimate (4.16) shows that the use of a partition of unity is necessary if k ≤ q−1
since the function that bounds the derivative is not in L2(R). Since the estimates
in (4.13), (4.16), and (4.17) are independent of n it follows that

∣∣∣∣φ0gk
∣∣∣∣ 1

2

2
≤ C and

∣∣∣∣[φ0gk
]′∣∣∣∣ 1

2

2
≤ C.
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Let j ≥ 1. Since supp(φj) ⊂ (−2j+1,−2j−1) ∪ (2j−1, 2j+1), by (4.13) there exist
constants C (depending on k but not on j) such that

∣∣∣∣φjgk
∣∣∣∣2

2
≤ C

∫ 2j+1

2j−1

1
s2(k+1)

ds ≤ C2−2j(k+ 1
2 ). (4.18)

¿From the definition of φj it follows that
∣∣ d
dsφj(s)

∣∣ = |2−jφ′(2−js)| ≤ C2−j for s ∈
R. Hence, by (4.13), (4.16), and the product rule,

∣∣∣∣[φjgk
]′∣∣∣∣2

2
≤ C

1
22j

∫ 2j+1

2j−1

1
s2k+2

ds+ C

∫ 2j+1

2j−1
s2(q−k−1) ds (4.19)

≤ C2−2j(k+ 3
2 ) + C2j22j(q−k−1). (4.20)

Combining (4.18) and (4.19) yields
∣∣∣∣φjgk

∣∣∣∣2
2
· ∣∣∣∣[φjgk

]′∣∣∣∣2
2
≤ C2−4j(k+1) + C24j( q−1

2 −k) ≤ C24j( q−1
2 −k). (4.21)

Therefore, if k > q−1
2 , then we see from (4.9) and (4.21) that

∣∣∣∣F[
gk

]∣∣∣∣
1
≤ C,

which finishes the proof for this case in view of (4.8). If k ≤ q−1
2 , then we cannot

sum the terms in (4.21) and we need different estimates. In the following we misuse
notation by identifying f(s) with the function f . If j > 0, then 0 /∈ supp(φj). Thus

∣∣∣∣F [φjgk]
∣∣∣∣

1
≤ ∣∣∣∣F [φj(s)

h(s)n

sk+1
]
∣∣∣∣

1
+

∣∣∣∣F [
φj(s)
sk+1

]
∣∣∣∣

1
. (4.22)

Recall that rn(z) =
∫∞
0
ezu dαn∗(u) with α ∈ NBV . Thus,

h(s)n = en
− q

q+1 isrn(n−
1

q+1 is) =
∫ ∞

0

eisu dH
n
− q

q+1
(u) ·

∫ ∞

0

eisu dαn∗(n
1

q+1u)

=
∫ ∞

0

eisu d[H
n
− q

q+1
(·) ∗ αn∗(n 1

q+1 (·))](u).

Therefore, using Lemma 3.2,

∣∣∣∣F [φj(s)
h(s)n

sk+1
]
∣∣∣∣

1
≤ ∣∣∣∣F [

φj(s)
sk+1

]
∣∣∣∣

1
V
H

n
− q

q+1
∗αn∗(n

1
q+1 (·))

(∞)

≤ ∣∣∣∣F [
φj(s)
sk+1

]
∣∣∣∣

1
VH

n
− q

q+1
(∞)V

αn∗(n
1

q+1 (·))
(∞). (4.23)

Since VH
n
− q

q+1
(∞) = 1 and since Vα(∞) is independent of positive scaling, Theorem

3.1 yields that V
αn∗(n

1
q+1 (·))

(∞) = Vαn∗(∞) ≤ C
√
n. Thus, by (4.22),

∣∣∣∣F [φjgk]
∣∣∣∣

1
≤ ∣∣∣∣F [

φj(s)
sk+1

]
∣∣∣∣

1

(
C
√
n+ 1

) ≤ C
∣∣∣∣F [

φj(s)
sk+1

]
∣∣∣∣

1

√
n. (4.24)

¿From Corollary 2.3 it follows that

∣∣∣∣F [
φj(s)
sk+1

]
∣∣∣∣

1
≤ 2

∣∣∣∣φj(s)
sk+1

∣∣∣∣
2

∣∣∣∣[φj(s)
sk+1

]′∣∣∣∣
2
. (4.25)
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Since
∣∣∣∣φj(s)
sk+1

∣∣∣∣2
2
≤ 2

∫ 2j+1

2j−1
1

s2(k+1) ds ≤ C2−2j(k+ 1
2 ) and

∣∣∣∣[φj(s)
sk+1

]′∣∣∣∣2
2
≤ C2−2j

∫ 2j+1

2j−1

1
s2(k+1)

ds+ C

∫ 2j+1

2j−1

1
s2(k+2)

ds ≤ C2−2j(k+ 3
2 ).

it follows that
∣∣∣∣F [φjgk]

∣∣∣∣
1
≤ C2−j(k+1)

√
n. (4.26)

If n is large enough then choose j0 > 0 such that 2j0 ≤ n
1

q+1 < 2j0+1. Then, using
(4.21) for 0 ≤ j ≤ j0 and (4.26) for j0 < j for k < q−1

2 one obtains

1√
2π

∞∑

j=0

∣∣∣∣F [φjgk]
∣∣∣∣

1
≤ C

j0∑

j=0

2j(
q−1
2 −k) + Cn

1
2

∞∑

j0+1

2−j(k+1)

≤ C
(
2j0(

q−1
2 −k) + n

1
2 2−(j0+1)(k+1)

)
≤ Cn

1
2− k+1

q+1

This proves the statement for k < q−1
2 in view of (4.8) and (4.9). If k = q−1

2

(or, equivalently, k+1
q+1 = 1

2 ), then similarly to the above one chooses j0 with 2j0 ≤
n

1
q+1 < 2j0+1. This implies that j0 ≤ C lnn and hence

1√
2π

∞∑

j=0

∣∣∣∣F [φj(gk]
∣∣∣∣

1
≤

j0∑

j=0

C + Cn
1
2

∞∑

j0+1

2−j(k+1)

≤ Cj0 + Cn
1
2 2−(j0+1)(k+1) ≤ C lnn+ C ≤ C ln(n+ 1).

Together with (4.8) and (4.9), this completes the proof of the statement. ¤

If r0 satisfies additional conditions at ∞ and 0, then the estimate in Theorem 4.4
can be improved by an order up to 1

2 for k < q−1
2 . To do so one uses an improved

estimate on Vαn∗(∞). With the additional conditions, this estimate can be sharp-
ened by an order up to 1

2 as was already noted after Theorem 3.1. See [3] for
details. Also note that the proof of the optimal convergence order of I(q)(αn−Ht)
is relatively simple as it neither uses the partition of unity nor the estimate on
Vαn∗(∞).

Using the L1–estimates and the L∞–bounds yields the following Lp–convergence
results for αn −Ht for 1 ≤ p ≤ ∞.

Theorem 4.5. Let r be an A-stable rational approximation of the exponential of
order q and t > 0. Then4, for 1 < q <∞, there is K > 0 such that

||αn −Ht||Lp(R+) ≤ Kt
1
pn

− 1
2p (ln(n+ 1))1−

1
p n ∈ N. (4.27)

If k = 1, . . . , q, k 6= q−1
2 , then5 there is a constant K > 0 such that

||I(k)[αn −Ht]||Lp(R+) ≤ Kt
k+1

p n−
θq(k)

p (tn−
q

q+1 )(1−
1
p )k

, n ∈ N. (4.28)

4If q = 1, then a factor of (ln(n + 1))
1
p has to be added to the estimate; see Theorem 4.4.

5If k = q−1
2

, then a factor of (ln(n + 1))
1
p has to be added in the estimate; see Theorem 4.4.
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Proof. If f ∈ L1(R+) ∩ L∞(R+), then f ∈ Lp(R+) for all 1 ≤ p ≤ ∞ and

||f ||Lp(R+) ≤
(||f ||L1(R+)

) 1
p

(||f ||L∞(R+)

)1− 1
p . (4.29)

Thus, (4.27) follows immediately from Theorem 3.6, Theorem 4.4 and (4.29). To
show (4.28) it suffices to demonstrate that for k = 1, 2, . . . , q,

||I(k)[αn −Ht]||L∞(R+) ≤ K(tn−
q

q+1 )k, n ∈ N,
in view of Theorem 4.4 and (4.29). By Proposition 4.1, (4.13) and a change of
variables,

||I(k)[αn −Ht]||L∞(R+) ≤
1√
2π

∣∣∣∣∣

∣∣∣∣∣
rn(i tn (·))− eit(·)

(·)k+1

∣∣∣∣∣

∣∣∣∣∣
L1(R)

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
eti(·)

(
e−n

− 1
q+1 n

− q
q+1 ti(·)r(n−

1
q+1n−

q
q+1 ti(·))

)n
− 1

(n−
q

q+1 t(·))k+1
(tn−

q
q+1 )k+1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
L1(R+)

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

(
e−n

− 1
q+1 i(·)r(n−

1
q+1 i(·))

)n
− 1

(·)k+1
(tn−

q
q+1 )k

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
L1(R+)

≤ C(tn−
q

q+1 )k
∫ ∞

−∞
min(|s|q−k, 1

|s|k+1
) ds ≤ C(tn−

q
q+1 )k, k = 1, . . . , q, n ∈ N,

and the proof is complete. ¤
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