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Abstract. Let r be an A-stable rational approximation of the exponential func-
tion of order ¢ > 1 and let ¢ > 0. It is shown that the inverse Laplace-Stieltjes
transforms an : s — a™* (%) of rn(2) = r”(%) converge in Lp(R4) to the
Heaviside function H; with a rate of t!/Pn=1/2P(In(n + 1))1~1/P. Moreover,
for 0 < k < g, the k-th antiderivatives of a, converge in Lp(R4) to the k-th
antiderivative of the Heaviside function with a speed that increases with k.
In particular, the g-th antiderivatives of ay converge in Li(Ry) to the g-th
antiderivative of the Heaviside function H; with the optimal rate of t(%)q.
In addition to the LP-estimates, bounds on the total variation and supremum
norms of ay are given. Via the Hille-Phillips functional calculus for operator
semigroups, the results have immediate applications to the error analysis of
rational time discretization methods for evolution equations.

1. Introduction

Let r,(z) := OOO e*® da, (s) converge pointwise to v(z) = fooo e**da(s) (z < 0),

where «, a,, are functions of bounded total variation. Does this imply the conver-
gence of a,, to a and, if yes, in what sense? Moreover, if it is known how fast r,
converges to v, what can be said about the speed of convergence of «,, to « in vari-
ous norms? Motivated by applications to time discretization methods, of particular

interest are cases where 7, (z) := (%) — e'* for some rational function r with

(a) r(z) =€+ O(29!) as 2 — 0 for some g € N, and

(b) |r(2)] <1 for Rez <0.
Such functions r are called A-stable rational approximations of the exponential of
order q. Each such r is the Laplace-Stieltjes transform of a function « with finite
total variation. Moreover,

)= / e** dauy, 4(s) — €% = / e** dHy(s)
0 0

(2 <0,t>0,n — 00), where o, := a4 is the n-th Stieltjes convolution power s —
a™ (%) and Hy is the Heaviside function with jump at ¢. By translating technical
arguments of [4] and [8] into a Laplace-Stieltjes transform setting, in Theorems
3.1 and 3.4 it is shown that the total variation of ay,; may grow at most like v/n.

Hence, in general, the functions o, + will not converge towards H; with respect to

tz
/n/i
r (n
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the total variation norm. In Theorem 3.6 it is established that the L.,-norm of
¢ cannot increase faster than In(n+1). With this result one obtains convergence
in L,(Ry) once the convergence in L; (R, ) is established. In Section 4, based on
the complex inversion formula for the Laplace-Stieltjes transform and analytical
techniques developed by P. Brenner and V. Thomée in [4], the convergence of
oy and its k-th antiderivatives (0 < k < ¢) in L;(Ry) is established together
with convergence rate estimates that improve with increased k. In Theorem 4.5,
combining the L;-result with the logarithmic L., —growth bound, L,-error estimates
are given for o, ; — H; and its k-th antiderivatives Ik (0n,t —Hy) when 1 < p < 0.

Using the Hille-Phillips functional calculus, these estimates yield convergence es-
timates for rational approximation schemes for strongly continuous semigroups’(see
[4], [9], [12], [14]). Let X be a Banach space and let A: X D D(A) — X generate
a strongly continuous semigroup of linear operators T'(-) bounded by M > 1 (for
details, see [1]). For A-stable rational approximations r of the exponential of order
q the operators

rn(%A)x = /OOO T(s)x day, ¢(s)

are well defined (where a, ¢ is as above; for details see, for example, [10, Chapter
XV] and [13]). It is immediate from the definition that for any 7 > 0 we have
[|f(TA)|| < MV4(co) which gives the estimate ||r"(7A)|| < K+/n by Theorem
3.1. For sufficiently smooth initial data one can integrate by parts k-times (k =
1,2,...,9+ 1) and obtain

r"(%A)x — T

*° el d*T(s)x
= A T(S)x d[O['mt(S) - Ht(S)} = (—1)’6/0v I(k 1)(Oén,t - Ht)(S)T ds.
Hence, L,-estimates of I*~1) (e, , — H;) result in error estimates for r"(L A)z —

T(t)x for those x with appropriately regular orbits s — T'(s)x (for details, see [14]).

2. Preliminaries and Basic Inequalities

A bounded variation function « : [0, R] — C is in NBVg if it is normalized; i.e.,
a(0) =0 and a(u) = % (u € (0,R)). The space NBVjo. := Np>oNBVg
is an algebra With multiplication defined by the Stieltjes convolution (a * B)(t) =
fo a(t —u)dp(u fo Bt —u)da(u) (t ¢ Patp), where Porg = {t e R: t =
ta+ts, ta € Pa, ts € Pg}, and where P, (and similarly Pg) denotes the countable
set of discontinuity points of a. If P, or Ps is empty, then P, 3 is defined to be
the empty set. If a, 5 € NBVg, then v := a * § exists on [0, R] \ P+ and v may
be defined on P, g so that it becomes normalized (see [16, Thms 11.1 and 11.2al).
Let V,(o0) denote the total variation of & € NBV,. on [0,00). Then NBV :=
{a € NBVjye: Vu(o0) < +00} is a Banach algebra with norm ||a|| := V,,(c0). Let
G = {fa: falz) = [} e*da(t) if Rez <0, a € NBV}. Next, we show that
A-stable rational functions belong to G (see, also, [10, p. 441]).

Proposition 2.1. If a rational function r is bounded for Rez <0, thenr € G.

LFor convergence estimates for distribution or C-regularized semigroups, see [11]
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Proof. Clearly, constant functions and the functions z — ﬁ belong to the algebra
G for Rea > 0. Developing r into partial fractions, we see that r € G. O

The proof of the following inequality is a straightforward modification of the proof

of [9, Lemma 5] and is provided for convenience?.

Proposition 2.2 (Carlson’s Inequality). Assume that f € La(R) and s — sf(s) €
Ly(R). Then, f € L1(R) and

[ sz ([ If(s)IQdS)i (/" |sf<s>|2ds)‘l‘.

Proof. Let f # 0 and note that ||f||1 = f__oc: |s|~tsf(s)ds + f_OCQ 1-|f(s)|ds+
focz 1-[f(s)|ds+ [ s7'|sf(s)|ds. By the Cauchy-Schwartz inequality,

e < (f e d3>é (f” |8f(8)|2ds>% o [ pas)
+C</002|f(5)|2d8>$+</c:052ds>;</6:o|sf(s)2ds);

< c(/:ms)ﬁds)éwl ([ lsropas)”

1
The choice ¢ := (ffooo |f(s)\2ds) * (ffooo |sf(s)|2ds> yields the desired result.
O

NG

It is noted that the above inequality remains true if we replace the constant 2 by
/7 as shown by Carlson in [7] with equality for f(s) = H%

Corollary 2.3. Assume that f, f' € La(R). Then the Fourier transform F(f) is
in L1(R) and [|[F(f)llx < 2(If113 [1£113-

Proof. Parseval’s identity yields | F(f)|2 = [|f]l2 and [ [sF(f)(s)[*ds = || f'||3-
Now the result follows immediately from Proposition 2.2. ([

Throughout the paper the following inversion formula for the Laplace-Stieltjes
transform will be useful (see, for example, [16, Chapter II, Thm 7al).

Proposition 2.4 (Complex Inversion Formula). Let f(z) = [, ¢** da(s) for a €
NBVjye and Rez < o. Then, for ¢ > max(—0,0),
" a(s) ifs>0
1 c+iR _
— lim / (72)6'25 dz = w ifs=0 (2.1)
2mi R—oo J._iR z :
0 if s <0.
A consequence of the Complex Inversion Theorem is a crucial estimate of V,(c0)

using information of the behavior of its Laplace-Stieltjes transform on the imaginary
axis. A related statement with a different proof can be found in [4, Lemma 2].

2For a more general version, see [1, Lemma 8.2.1]
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Theorem 2.5. Let f(z) = [ e**da(s), Rez < 0, where o € NBVj,. with
a(0+) = 0 and define fo(s) := f(is). Assume that f has an analytic extension
to a neighborhood of iR. If fo, f§ € La(R), then « is absolutely continuous on Ry
and

Valoc) = <= |IF (ol < VR (22)

Proof. The integral in (2.1) can be replaced by %IimRHOO fFRU'y f(;Z) e**dz,

where ¢ > £ >0, 7. (u) = ee™, u e [-%, %] and TE(u) = iu, u € [-R, —€] U [e, R].
This follows from Cauchy’s theorem and the fact that

/ f(—Z) s dz
Pir,e z

where 'y g (u) = £iR + u, u € [0,¢]. Fix sg > 0. Since a(0+) = 0 and z —
f(—=2)e*® is analytic in a neighborhood of R, it follows from Proposition 2.4 that

a(sg) = 1 lim / M(e“0 —1)dz
TRUy.

gfecs sup |f(—z)] — 0as R — oo,
R Rez>0

271 R—oo
S0 1
/ / f(=2)e**dsdz = o lim / / e**dzds
2’/TZ R—>oo TRUy, 271 R—oo FRU’Ya
1 So (2) iR
- 1 _ zSs - 1 zs
i REHOOA ﬂ.Rf( detdzds = oo | fim o f(=2)en dzds

i R
m/{; \/7Rm fO( ) szdUdS)

(2)
where lim denotes the limit in Loy (R) To see that we can interchange the limit and
the mtegral above, let fr(s) := \/ﬂ f_ fo(v)e™™ dv. Since fy € Lo(R) it follows

that limR_>OO fr = F(fo) exists and defines a uniquely determined function in
Ly(R) (see, for example, [6, p.210]). Therefore, fr — F(fo) weakly as R — oo.
Let X[0,s,] denote he characteristic function of [0, so]. Then,

fim [ ) ds = Jim (e Xo) = FO0) o) = [ Flo)(s)ds

R—oo 0

This proves that we can interchange the limit and the integral above, that « is
absolutely continuous since

1 S0
also) = == /0 F(fo)(s) ds, (2.3)
and that V,,(c0) = \/%H]:(fo)ﬂl. Since fo, f§ € La(R), it follows from Corollary

2.3 that F(fo) € L1(R) and [|F(fo)ll1 < 2|foll2[|f{]13. Therefore,

Vatoe) = S lF ol < 21l 11
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Corollary 2.6. Let f(z f e**da(s) for Rez < 0 and o € NBVj.. If f
extends analytically to a nezghborhood of iR and fo — f(—00), f§ € L2(R), then
o € NBV. In particular, if f(—o0) := limm_,_OO f(x), then

Va(oo) = |f(—o0 / Ffo — [(~00))(s)) ds

|+\/>|f0— - Hz ||f0||2

Proof. Since f(—o0) = a(0+) exists for & € NBVj,. (see [16, Cor. 1c]), define

f(z) = f(—0) := /000 e** dla(s) — f(—o0)Hy(s)].

Then f — f(—o0) and a — f(—o0)H, satisfy the conditions of Theorem 2.5 and
Va( ) = Vi(—o0) iy (00) + Vo IS oo)Ho( 00) = |f(=00)| + = F (fo — f(=o0)[1 <

—~00)| +y/2llfo = F(=o0)lIZ 15113 D

3. Bounds on the Convolution Powers of the Determining Function

IN

3.1. NBV- bounds By Proposition 2.1, an A-stable rational function r can be
represented by r( fo e** da(s) (Rez < 0) for some o € NBV. In this section,
the total varlatlon of the convolutlon powers a™* will be estimated.

Employing techniques due to P. Brenner and V. Thomée ([4] [5, Ch. 2]), the
following partition of unity is needed. Let 0 < ¢ € C§°(R) with supp(¢) C
(=2,-3) U (3,2) and D 9(27 Js) =1 for |s| > 2. Define ¢;(s) := ¢(277s) for
j>0and ¢o =137, ¢;. Note that supp(¢;) C (=2/F1, =277 u (2771, 27F1)

for 7 > 0. The proof of the next theorem follows [4, Theorem 1].

Theorem 3.1. Let r(z) = [~ e** do(s), a € NBV, be an A-stable rational func-
tion. Then there is a constant K > 0 such that

Vons (00) < Ky/n for all m € N. (3.1)

Proof. Since r is an A-stable rational function it follows that r(co) := lim| ;| 7(2)
exists. By Corollary 2.6,

Ve (00) < | \/%/
1

= (oo )|+m/o 7l Zm )| ds

<o)+ 3 / Flén - (rlh — " (00))](s)] ds

h \/ﬂkzo 0

< |r"(c0)| + ﬂ S lléw - (g — rm(oo)II3 llw - (rf — " ()N, (3.2)
k=0

00))(s)| ds

where we use Corollary 2.3 for the last inequality. Since r is A-stable and rational,

there exist polynomials p,q with deg(p) < deg(q) such that r(z) — r(c0) = ’;8
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Thus, by the binomial formula (and using C' to denote a constant whose value may
change from line to line),

n

, seR.
1+ |s]

n—1

[r"(is) — r"™(oc0)| = |r(is) — r(o0)| Zrk(is)rnfk(oo) <C
k=0

The A-stability of r also implies that |r™(is) — r"(oo)| < 2 for s € R. Hence,

7 (i) — 1™(c0))] <len< par |>, seR. (3.3)

There are polynomials p1,q; with deg(p1) < deg(q1) — 1 such that r' = p1 . Thus,

|%(r"(zs) —r"(00))| = |nr"71(is)r'(is)| < C’ﬁ, seR. (3.4)

y (3.3),

16w - (rfy = 7" (00))II3 = /_Oo |6k (5) (1" (i) — " (00))|? ds
2k+1

. n’ s ok 20—k
<C - min <1,(1+|8|)2> ds < Cmin(2%,n°27") (3.5)

if k > 0. Since |r§ —r™(00)| < 2 it follows that ||¢g- (rf —r"(c0))||3 < C. Therefore,
(3.5) holds for k£ > 0. Notice that from the definition of ¢; it follows that

d
'dsm(s) =|27%¢/(27%s)| < C27F for s € R.
Let k > 0. By the product rule and the inequality (a + b)? < 2(a® + b?),

2

L [66()(r" (i5) — 7" (00))]

<2 <2’“¢'(2’“8)(r"(i8) —1"(00))[* + |dk(s) d( " (is) = r"(00))

It follows from(3.3) and (3.4) that

)

2

liow - = o1 = [ | ontortin) - smeal| as
ok+1 9 gk+1 9
< 92 min (1, —0 / S —
—C<L1 win (117 ) 40 [ e e
< Cmin(27% n2273%) 4 Cn?273F < C(27F 4+ n2273). (3.6)

Note, that the final estimate in (3.6) holds also for £ = 0 by (3.3) and (3.4). Finally,
from (3.5) and (3.6) it follows that

1
6% - (rg = " (00))[13 Ik - (rG — " ()]l
Hence, by (3.2), the final estimate of Vi« (00) is

(0 |+J*2mm - (o)

[N

< Cyn2 =,

0 ol

13 1w - (r — r (o)) 1E < K v/m.
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If ro satisfies additional conditions at co and at 0, then the estimate (3.1) can be
improved by an order up to % (see [4]). For example, the inverse Laplace-Stieltjes
transform « of r(z) = 1L is monotonic on (0, 00) with a(0) = a(0+) = 0, a(cc) =
1, and hence Vyn«(00) < [V,(00)]" = 1. However, in general, (3.1) is sharp as will
be shown in Theorem 3.4. Although crucial technical details are adopted from [8]
and [3], our approach does not use Fourier multipliers and operator semigroups. A

few preliminary lemmas are needed.
Lemma 3.2. Let g € Li(R) N C(R) with F(g) € L1(R). If f(s) = [~ " da(t)
for some o € NBV, then || F(gf)|l1 < [|F(9)]]1Va(0).

Proof. The proof is straightforward using Fubini’s theorem for the Riemann-
Stieltjes integral [16, Theorem 15¢, p. 25]. |

The next lemma is one of the basic tools when estimating oscillatory integrals (for
the proof, see [5, Lemma 5.1, p. 24]).

Lemma 3.3 (Van der Corput). If ¢ € C?[a,b] is real with |¢"| > & > 0 on [a,b],
then |f: ¢i?(s) ds| < 85~ 2.

The following result shows the sharpness of Theorem 3.1 when the A-stable rational
function r satisfies |r(is)| = |ro(s)| = 1.3

Theorem 3.4. Let r be an A-stable rational function given by r(z) = [;° e*' do(t),
a € NBV, Rez <0, with |r(is)| = 1 for all s € R. Then there is a constant K > 0
such that Vgn«(00) > K+/n for all n € N.

Proof. Since |r(is)] = 1 for all s € R it follows that r(is) = e¥() for some
1 € C*°(R). Since r is rational, 1) can not be linear; i.e., ¢ Z 0. Hence, there
is § > 0 and a C*°-function g with compact support such that |¢)”| > § > 0 on
supp(g). By Parseval’s identity, Holder’s inequality, and |ro(s)| = |r(is)] = 1 it
follows that

llgll3 = Nlgrg 15 = 1F(gro)lI3 < 117 (grg) 17 (g7 oo (3.7)
To see that the last two norms in (3.7) are finite, first observe that Lemma 3.2
yields
1F(gro)ll < [[F(g)[[1Van= (00). (3-8)
Using Lemma 3.3, an upper estimate for ||F(gr{ )|/ can be obtained as follows.

\/%H‘F(QTS)HOO = sup ’/ g(t)einw(t)—ist dt
s€ER |J -0

= sup
seR

Therefore, by (3.7), (3.8), and (3.9), it follows that
lgl3  v2m8(6n)?

Vs (00) > = K+/n.
() 2 F I~ gl

[e%s} t
/ g0 / emw’“)—isrdrdt’g||g’||18(5n)—%. (3.9)

—00 to

3For example, the function r(z) = gfi satisfies this property.
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3.2. Lo.-bound. In this section it is shown that [|a™*|. < K In(n+ 1) (although
there is numerical evidence that supports the conjecture that, in fact, ||@™ | <
K). The L. -estimate shows that the possible y/n-growth of Vn«(00) is generated
by strengthening oscillations rather than from the growth in absolute value. The
logarithmic growth bound is essential in Theorem 4.5 whose proof does not go
through using a /n—-growth bound of the L,,—norm (this fact is an immediate
consequence of the y/n—growth bound on the total variation).

Lemma 3.5. If a rational function r is A-stable, then there are positive constants
g, m,w, L, C such that |r(z)| < eCVl for|z| < e and |r(2)| < X7 for|z] > w > 1.

For the proof we refer to [15, Lemmas 8.2 and 8.3].

Theorem 3.6. If r is an A-stable rational function given by r(z) = [, e**da(s),
a € NBV, Rez <0, then ||| < Kln(n+ 1) for some K >0 and all n € N.

*

Proof. It suffices to consider the case s > 0 since a™* is normalized with o™*(0) =
0. It is not difficult to see that the path of integration in the complex inversion
formula (Proposition 2.4) can be replaced by the contour integral, oriented counter-

clockwise,
1 n
an*(s) _ 7/ r (Z)
27 e unRun(s)  ?

where I'# := {z € C: £ < |Imz| < R, Rez =0}, 7(R) :={z € C: |2| =
R, Rez > 0} and y(£) := {2 € C: |z] = £, Rez > 0}. Here, R and ¢ are
chosen so that the singularities of the integrand lie inside the path of integration
except the one at z = 0. Note that the additional constant 1 comes from the residue

of the integrand at z = 0. For the purpose of this proof, FE is defined by R := wn

e **dz+1 (3.10)

where w (large enough), ¢ (small enough), and m are as in Lemma 3.5. Then

1 1 1 "
a™(s)—1= —/ +— +— r (Z)e*“dz =11 + 1y + I5.
2mi Jrr  2mi Jym) 2T )y ) z

7

L n m
By Lemma 3.5, [I;]| < & In 20 — %(m—"'l)ln(m), |15 < %eL/“’ ,and |I3] <

m g

1eC%. Thus, o™ < KIn(n + 1) for some K >0 and all n € N. O

4. Convergence of the Determining Functions Induced by the
Convergence of Their Laplace-Stieltjes Transforms

If r is an A-stable rational function, then

r”(%z) = /000 e da, (s), (4.1)

where ay,(s) := a™*(%s), « € NBV, n €N, t>0, and Rez < 0. Note that in fact
oy, = ap ¢ but the dependence on t will be surpressed in the notation for simplicity.
If, in addition, r is a rational approximation of the exponential of order ¢ (i.e.,
r(2) = e + O(29"1) as 2z — 0), then, for Rez <0,

n—1

t n—1—k ik,
Zr(nz) e

k=0

t t 1
(S 2) — €] = [r(L2) — et < M [0,
n n n
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Since r"(Lz) — €' = [ e** dH,(s) (n — oo, Rez < 0), one may expect that a,
converges to Hy in some sense as n — o0o. In Theorems 4.4 and 4.5 it will be shown,
among others, that indeed «,, converges to Hy in L,(R,) for all 1 < p < oo with a
rate proportional to n='/2P(In(n+1))*~1/P. The proofs use a modified version of the
complex inversion formula for the differences «,, — H; and their k-th antiderivatives

I e, — / / / t)(s1)ds1dsz ... dsg, ke N. (4.2)

Proposition 4.1. Let r be an A-stable rational approximation of the exponential
of order q and t > 0. Then, for alln € N,

_1)\ Rl rrGL () — eit()
I(k)[anHt](il> \/127_]-“[ (”(())k)ﬂ ], k=0,1,....q

n (0,00). For k =0 the equality holds pointwise almost everywhere on (0,00).

Proof. Let k=0 and ¢,s > 0. By Proposition 2.4,

1 c+iR ,.n/__ 1 _ ,—=zt
an(s) — He(s) = lim / Mezs dz. (4.3)
278 R—o0 iR z

Since r is an A-stable rational approximation of the exponential of order ¢ it follows

that z v TCa2)=e™™

z

n t —zt
/ r(—-z)—e oot | <
Pir,c z

where 'y p.={2z: z=+iR+s, s € [0,c]}. Therefore, by Cauchy’s theorem, one
can integrate along the imaginary axis in (4.3) and obtain

is analytic at 0 and in a neighborhood of iR. Moreover,

c
“—2et - 0as R — oo,

iR rn(_%z) _ e—zt

1
an(s) — Hi(s) = — lim / e*dz
27 R—oo J_,p z
R .n(;1 itv
r(itv) —e , 1
= —— I —nr L e "™dv=——1 44
271 Rgnoo R v € v 2T RgnoofR( ) ( )
R r"(itv)—e'™ s . rt(itov)—ett?
where fgr(s) := \/ﬂ IR T@ dv. Since v — —=—>—— € Ly(R),
@ (L) — et

Fl | € Ly(R)

limgr o frR= orT B

(see, for example, [6, p. 209]). By (4.4), fr converges also pointwise and hence the
pointwise limit is a.e. the same as the Lo-limit. Thus,

L) e

This proves the claim for £ = 0. Assume that the claim holds for 0 < k < ¢. Define

an(s) — Hy(s) =

[k] eitv

R : /271. / Uk:-l—l

e "% dv.
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With the same weak convergence argument as in the proof of Theorem 2.5 one
obtains

s s 1\ k+1 (L () — eit()
1+ (o, — H;)(s) :/0 (zl) \/127}‘[ ( n(())k)-‘rl |(r)dr

s\t 1 @ %] —1\F*!
NG) A= () g [

By Fubini’s theorem,

s & 1 R s T,n(iiv)ieitv Cior
/0 fj[{](T)dT:72ﬂ_ /_R/O —’;kﬂ e " drdv
-1

1 R r”(i%v) — eltv

7 o J_gr pk+2

4.5)

(e7™" —1)dv. (4.6)

Next, it will be shown that limpg_, f % dv = 0. Since r is an A-stable

rational approximation of the exponentlal of order g and k+2 < g+1, it follows that
z— T(E# dz is analytic in a neighborhood of {z : Re(z) < 0}. By Cauchy’s
theorem and [r™(Lz) — e*| < 2 for Re(z) <0,

) iR Tn(%z)_ezt ) ,r,n(%z)_ezt
lim o dz=lim | A dr =0,
R—oo _iR VA + R—oo T'r z +

where T'p = {z € C: z = Re', s € [5,%F]}. Thus, from (4.5) and (4.6) one
obtains

1 k+2 1
104D, — Hy](5) = lim_ () vzl

Finally, since v — % € L2(R) N Ly (R) it follows that

N k2 rr(L () — eit()
1%+ D], — H(s) = <1> L Fl ( ”(())k)w | (s) for all s > 0.

O

Corollary 4.2. Let r be an A-stable rational approzimation of the exponential of
order q andt > 0. Then, for alln € N, lim,_ o I'®[a,,—Hy(s) =0, k=0,1,...,q.

Proof. First, let & = 0. Since 1 = 7"(0) = r"(0—) = an(c0) it follows that

im0 an(s) — Hi(s) =0, n € N. If £ > 0, then v — % € Ly (R). Thus,
by the Riemann-Lebesgue Lemma and by Proposition 4.1, the claim follows. (I

For the main convergence result of this section another technical lemma is needed.
Its elementary proof uses change of variables and is omitted.

Lemma 4.3. Leta € R and b > 0. If f € L2(R) with F(f) € L1(R), then
IFOIl = [1FSODIL = [[FF el (4.7)
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Combining analytical tools from the proofs of [4, Theorems 3 and 4] with Proposi-
tion 4.1, the main L;-convergence result can now be proved. For ¢ € N define

k+ 3 if k< 44
‘gq(k)':{ ? ?

(k+1)7%  if 4 <k

Theorem 4.4. Let r be an A-stable rational approzimation of the exponential of
order q, t >0, and k =0,1,...,q. Then there is K > 0 such that, for alln € N,
KiEH-009 (1)) g7 4 0t
Kth1=0200 (L)% W 1y 4 1y gp = 9L

t
n 2

TP o, — Hellzy ey < {

Proof. Combining Lemma 4.3 with a = t and b = n~ @i T¢ with Proposition 4.1
yields

L (ig () — et
) S ﬁ||f[ (-)k+1 ]||1
s

11 e = Hill ey

—
@
o~
=
7N\
m‘
3
I
<
i
4
3
I
<
e
A
~
=
-

3
—

3

|
Q
Y

3

|
=)
1

-

S
—
S~—
S~—

N———
3
\
—

= = Flgull] (77, (4.8)

_1
where gi(s) == [(e7" " ZS7"(7”fﬁis))” — 1] /s**1. Using the partition of unity as
in the estimate (3.2) and employing Corollary 2.3, one obtains

1Flgalln < S 1F 9l < S s gellZ o) 13 (4.9)

=0 =0
Define h(s) := efnimisr(n_ﬁis). Then |h(s)] <1 and

Ih(s)" — 1] < 2 for all s € R. (4.10)
Moreover, e *r(z) — 1 = O(297!) as z — 0 since r(z) = €* + O(29%!). Thus,

1

h(s)—1=e" “Tip(n T is) —1=0 ((niﬁs)qﬂ) as a5 — 0.

By the binomial formula,

n—1
IA(s)™ = 1] = |h(s) = 1| h(s)?| < Cln~ 77 5|7+ n = Cs|7+! (4.11)

=0

for |n_q7113| sufficiently small. Therefore, by (4.10) and (4.11), one obtains for
selR

|h(s)" —1] < Cmin(]s|? 1), and (4.12)
h(s)" —1 o
o) = "t | < Cmin ) (4.13)
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To handle the derivatives in (4.9), observe that h'(s) = n" T [ei(')r(i-)]/(n_ﬁs).
Since 1/ (z) = e* + O(z?) it follows that

(e7%r(z)) =1 (2)e * —r(z)e " =14+ 0(29) — (1 + O(271")) = O(z) as z — 0.
(4.14)
Thus,

1 . li

1

W (s)] = n~ 71| [¢Or(i)] (n~ 77 8)| < Cn~ 71 [~ 71 5]9 = C—|s
n

for |n*qur15| sufficiently small. For ¢ < |n7ql?s\ the inequality holds since [r(is)]’
(s € R) is bounded (see (3.4)) and hence | [ei(')r(i-)]l(n_ﬁllis)‘ <Cel < C’|n_#s|q.
(Remember that C is a universal constant that can change from line to line). Thus,
d
ds

[h(s)™ — 1]‘ = [nh(s)""'h'(s)| < C|s|, for s €R. (4.15)

By (4.12), (4.15), and the product rule it follows that

d h(s) 1

\ L (8)] = dSSk‘H’ < C(\S‘Q—k—l +min{|s|q_k_1, Pz 1< C|S|q—k—1.
(4.16)
These etimates will be useful if 0 < k < ¢—1. The case k = ¢ requires an additional
estimate. Since w — e_fq(# is analytic at the origin and infinitely often

differentiable on iR \ {0}, it and its derivative are bounded on compact intervals
containing the origin. Let |s| < 1 and w :=n~Ts. Then W (s)] < CL and

i ()= (e )Zh : Sqlil;ifz_;:w

d n* n—
_ -1 7 h J lh
" ds ((sn 7T q+1> Z Z]

=0 (sn T yatl

L d (e r(iw) -1 — ; _ -1
_ |-t 1
=|n ds< s ) E h(s)’| + |n wq+1 E Gh(s)T 7 H/(

1
<np l'Cn ain4 Cnt——2n -t <C.

Thus,

194(s)| =

% (%)’ < cmm,ﬁ). (4.17)

The estimate (4.16) shows that the use of a partition of unity is necessary if k < ¢—1

since the function that bounds the derivative is not in Lo(R). Since the estimates
n (4.13), (4.16), and (4.17) are independent of n it follows that

[[éogs][3 < € and || [dogi] || < C.



93

Let j > 1. Since supp(¢;) C (=291, —2971) U (2771,29F1), by (4.13) there exist
constants C' (depending on k but not on j) such that

2J+1

sl <€ [, gy s s 02780, (119

;From the definition of ¢; it follows that |£¢;(s)| = [277¢/(277s)| < C277 for s €
R. Hence, by (4.13), (4.16), and the product rule,

/2 12 2
I[esan]'ll; < Cop L st s2a=k=D gg  (4.19)
< 27k 4 ooighilamhm), (4.20)
Combining (4.18) and (4.19) yields
65061 - |[6506)||2 < C2790HD 4 028050 < %05 —8) (4.21)

Therefore, if k£ > q%, then we see from (4.9) and (4.21) that
179l =< €,

which finishes the proof for this case in view of (4.8). If k < %1, then we cannot
sum the terms in (4.21) and we need different estimates. In the following we misuse
notation by identifying f(s) with the function f. If j > 0, then 0 ¢ supp(¢;). Thus

1Ft6sanlll, < 11705 X001, + 1171y, (4.22)

Recall that r™(z) = [, ¢** da™ (u) with « € NBV. Thus,
e 1 o0 . 1
h(s)n — e'”/ q lérn(nfmis) — ‘/0 7/;511/ dHniﬁ( ) ./0\ ezéu dan* (nmu)

= [ e (e ),

Therefore, using Lemma 3.2,

||}—¢’J k+1 ||1 = H}— k+1 ||1 n,#*a"*(nﬁ(.))(oo)
5 (s)
<||F[= s |, Var CRrS (00) Van*(nﬁ(‘))(oo). (4.23)
Since Vg, (00) = 1 and since V,,(00) is independent of positive scaling, Theorem
n at1
3.1 yields that V' e T ( ))( 00) = Vns (00) < Cy/n. Thus, by (4.22),
17l < 171 kH D, eva+1) < oljF k+1 v (4.24)

From Corollary 2.3 it follows that

A2, <2 B8y, 12y, (4.29
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. 27+t 1
Since | ¢i+sl)||2 <2 [ iy ds < C27203) and

1 2i+1 1
-1 82(k+1) ds + 0/2']'71 82(k+2)

¢( . 2]+1
N1 < 02 [

it follows that

ds < 027 20(k+3)

|[Flosaul|], < C277¢+D /. (4.26)

If n is large enough then choose jo > 0 such that 270 < nTH < Qdo+l, Then, using
(4.21) for 0 < j < jo and (4.26) for jo < j for k < %5 one obtains

75 2ol <O PN oni 3 gk

j=0 Jo+1

< € (200770 4 o= UotDD)) < opd=i

This proves the statement for k < %% in view of (4.8) and (4.9). If k = &1

2
(or equivalently, ’;ﬂ = %), then similarly to the above one chooses jo with 270 <

nTH < 2J0+1 This implies that jo < C'lnn and hence

Ly (k+1)
EZH‘F[(;SJ(QICHM < ZC+Cn2 ZQ j(k+1)
7= Jo+1
= CJO +Cn227 0D < Clnn + € < Cln(n + 1),
Together with (4.8) and (4.9), this completes the proof of the statement. O

If r( satisfies additional conditions at oo and 0, then the estimate in Theorem 4.4
can be improved by an order up to % for k < qgl. To do so one uses an improved
estimate on Vn«(00). With the additional conditions, this estimate can be sharp-

ened by an order up to § as was already noted after Theorem 3.1. See [3] for

details. Also note that the proof of the optimal convergence order of I9)(a,, — H;)
is relatively simple as it neither uses the partition of unity nor the estimate on
Va,. (00).

Using the L;—estimates and the L—bounds yields the following L,—convergence
results for o, — Hy for 1 < p < .

Theorem 4.5. Let r be an A-stable rational approximation of the exponential of
order ¢ and t > 0. Then*, for 1 < q < oo, there is K > 0 such that

1 1 _1
e, — Ht||L &) < Ktrn 2 (In(n+1))' 7P neN. (4.27)
Ifk=1,...,q, k# %L, then® there is a constant K > 0 such that
0q (k) q _ =
T o = Hillly @, < K505 @) 008 nen. (428)

1
Urg=1, then a factor of (In(n 4+ 1))? has to be added to the estimate; see Theorem 4.4.

1
5If k = 451 then a factor of (In(n + 1)) 7 has to be added in the estimate; see Theorem 4.4.
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Proof. If f € Li(Ry) N Loo(Ry), then f € L,(R4) for all 1 < p < oo and

1 Nt

11lzy e < (i) P (1 llweo) P (4.29)
Thus, (4.27) follows immediately from Theorem 3.6, Theorem 4.4 and (4.29). To
show (4.28) it suffices to demonstrate that for k =1,2,...,q,

11® oy — Hilllpo ) < K(tn~a0)F, neN,
in view of Theorem 4.4 and (4.29). By Proposition 4.1, (4.13) and a change of
variables,
r(it() - )

118, — Hl|z o) < bt

1
V2T

Li(Ry)

_ Lok
- (-)k+1 tn” )
L1(Ry)
—_9q > . _ ]. __4a
< C(tn~ @)k [m min(|s|97", e Yds < C(tn~#1)* k=1,...,q, n €N,
and the proof is complete. O
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