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Abstract A new method for calibrating a parallel robot is
proposed as part of a project aimed at developing a
calibration method for spacecraft docking mechanism
motion simulator. To method, a
calibration equation is built by generating the constraint
conditions of the end-effector’s motion in the workspace

implement this

using a three-dimensional coordinate measuring machine.

According to the established calibration equation and the
simulation, the geometrical parameters of the parallel
robot are identified. The effectiveness of the calibration
method with a coordinate measuring machine is verified
through random pose test experiment.

Keywords Parallel Robot, Kinematic Calibration, Parameter
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1. Introduction

Parallel robots such as a Stewart platform [1] have some
advantage of high rigidity, high accuracy, and high
load-carrying capacity over serial robots. However, they
have some drawbacks of relatively small workspace and
very difficult forward kinematics problems. These robots
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Kinematic Calibration of Parallel
Robots for Docking Mechanism

have found a variety of applications in flight simulators,
high-precision machining centers, medical surgery, and so
on.

It is well known that excellent positioning performance of
the manipulator may be achieved based on an accurate
kinematic equation. However, parameters of the equation
inevitably deviate from their nominal values due to
manufacturing and assembly errors. A direct consequence
is to reduce the accuracy of the robots, since their control
strategy heavily relies on a precise description of the
kinematic equation. One way to tackle this problem is to
improve the theoretical kinematic equation through
kinematic calibration which consists of identifying a more
accurate geometrical relationship between the joint
sensor/encoder reading and the actual pose of the
Literatures indicated that the
economical and feasible enhancing the
manipulator accuracy is through kinematic calibration
[2-5].

end-effector. most

way of

Let us employ the paradigm of literature [6] in stating a
unified calibration formulation. First, the principle is to
link the unknown kinematic parameters P and the
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information on the state of the manipulator M, either
provided by sensors or through constraints applied on
joints or brought by an additional mechanism. Some
closed loop equations f{P, M)=0 can be determined; the
equations vanish within the measurement error. The
simplest way to determine M is by using the internal
sensors of the manipulator. Usually, though, as they do
not provide redundant information, their number is
minimal for controlling the manipulator’s degrees of
freedom. It is possible to install additional captors on
passive joints for self-calibration (with the benefit of
simplifying the
Alternatively, one can decrease the degree of freedom by
constraining the end-effector or the mobility of some
joints in [9-11]; this can also be used to simplify the
calibration procedure if external measurements are
present by several researchers [12], [13].

forward kinematics) in [7], [8].

In practice, it is not easy to add redundant sensors or
constrain. Hence, most calibration methods use external
measurements devices to obtain the required information,
such as laser trackers, theodolites, cameras, inclinometers
or mechanical devices in [14], [15].

Many authors use the kinematics to relate the kinematic
parameters P to the available information M. Then, the
basic calibration methods with external measurements
use either the forward kinematics or the inverse
kinematics in [16-18]. Those calibration methods may be
prone to error. The reason is the difficulty to obtain a
closed form for the solutions of the kinematics problem.

The work presented in this paper is at an early stage of
development. The goal is to develop an effective
calibration model for spacecraft docking simulator. Thus
far, work has focused on developing a calibration model
for the parallel robot because it is similar in form to a
structure of spacecraft docking simulator. The remainder
of the paper is organized as follows: In Section II, we
present a new calibration scheme with error model. We
describe our data measurement method in Section III.
Simulation and experiment results are given in Section IV.

2. Calibration algorithm

A. Error Model

In this design, the parallel robot has 6 extensible legs that
are connected by ball joints to the load platform and the
base. The load platform ball joints are fixed in position
relative to the load platform coordinate frame while the
base ball joints are fixed in position relative to the base
coordinate frame.

The error model allows for deviation in the ball joint
positions and in the lengths of the legs, giving 42 error
parameters in total. For the Stewart platform, the loop
closure condition is given by (1). The meanings of the
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symbols in (1) may be inferred from Fig. 1.
t+R(a,+6a,)—(b,+b,)—(l, + ), =0 ()

Matrix R is the 3 by 3 rotation matrix that converts the
load platform basis vectors into the base frame basis
factors. The inverse geometric solution expresses the
actuator coordinates as a function of the endpoint
position. And the direct geometric solution expresses the
endpoint position as a function of the actuator
coordinates robot geometry, and error parameters. While
the direct geometric solution has been solved analytically,
it is much more computationally to use a numerical
solution algorithm such as the Newton-Raphson
algorithm in [19], [20].

The differential solution expresses rates of change in the
endpoint coordinates as a function of changes in the error
parameters. If the error parameters are grouped into a

single 42 by 1 partitioned vector as in (2) then the direct
Jacobian matrix is defined as in (4).

82[571 ag  oa dag b, &76]T (2)

Where
(&Zi )T = [&lxi 5ayi §azf] (3-a)

(ébi )T = [ébxi ébyi ébzi] (3-b)

J=S=loqal, aufolen) arfo@)]

67,.=Ht+R(a+5al.)—(b+6bl.)—llfiu 5)

l_,(t,e)Z[éYl a, ol o, d 676] (6)

The terms in (4) are complicated to express or evaluated,
but the loop closure equation (1) may be rearranged as (5)
and the 6li collected into a vector function (6). It may be
shown that

ot/e(o1)=[eL(r,e)/o]' = A @)
J=[A A-0L(t,e)/o(5a) A-OL(t,e)/a(sh,)] ®)

This is easier to evaluate.
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{Measurement System} B, ¥ B
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Figure 1. The kinematic relation of the parallel robot

In the following expression, the subscript represents the
ordinal number of the measurement points. Each nominal

norm

measurement position 7} is associated with a

norm

Jacobian matrix J j evaluated at ¢ FERE

B. Calibration algorithm

The objective of error identification is to know the
effective kinematic parameters of the robot in order to
control accurately the endpoint position. The relationship
between the measured position of the robot endpoint Pu
and the actual position of the robot endpoint P is as
follows (see Figure 1)

Py =Rgp+1, &)
Where Rs and ts are the rotation matrix and position
vector from the measurement system coordinate to the

robot base frame, respectively. The relative position
between point i and j in workspace is

Py~ Pum,j :RB(pi_pj) (10)

Let us consider that the actual position of the robot
endpoint differs slightly from the nominal one p®™

p=p"+J-e (11)
Then (10) becomes
Pas = Puy = Rel(p" = P)+ (0, =7 )-e] a2
The relative position of pw1 and puo is
Pus = Paro = Ryl = p")+ (1, = J,)-e] 13

If positions pm,, pmj and pmo lie on a plane, and the line
pmo to pm is perpendicular to this plane, we have

(pM,l _pM,O)T<pM,i _pM,j)=0 (14)
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Then, from (12) and (13) we obtain

(o= p) (1 = p7)+ (15)
(= Y (7, (52 = Y (= 1)} e =0

Denoting,
X, = (pl(n) - P(()"))r(*]f - J,/)+ (Pi(n) - p_sn))T(Jl - Jo)(16)

v, === pf (b)) an
Then, (15) becomes
Xu-e:Y’. (18)

The above calibration equation is independent of Rs and
ps. If we measure n points, we have n-1 equations

X-e=Y (19)

Where
X:[Xl,z X2,3 Xi,j Xn—l,n]T (20)
v=ly, v, v, v, ey

The least squares solution for e is
-1
e=(XTX) X'y 22)

If E denotes the vector of original kinematic parameters,
the updated kinematic parameter values are E obtained
by

E'=E+e (23)

Since this is a nonlinear estimation problem, this
procedure is iterated until the variation e approach zero
and the parameters E have converged to some stable
values. Perpendicular constraints between the plane and
line can be obtained by coordinate measuring machine as
explained in Section 3.

3. Measurement Method

The simulations and experiments were also conducted
using the parallel robot, which developed in the IEST,
Harbin Institute of Technology, as shown in Fig. 2. The
precise  three-dimension
machine, manufactured by STAR Tech., was used to
construct the constraint conditions in the workspace, as
shown in Fig. 3. This machine has a repeatability of

coordinate measurement
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0.01lmm and an accuracy of 0.016mm in the
1.2m X 1.2m X 1.2m measuring range.

Making constraints in the workspace using the 3-D
coordinate measuring machine is as follows:

(1) Pose the robot endpoint in the position of any
range to be measured and read the positioning
coordinate from 3-D coordinate measuring
machine, via the computer.

(2) Move the robot endpoints to the next position.

(3) Move the robot endpoint and let the z axis
value from the 3-D coordinate measuring
machine agree with the pervious value.

(4) Repeat (2)-(4) process.

Then the points lie in an arbitrary x-y plane because of the
same z coordinate values. The method of obtaining one
vertical line with respect to this plane is the reverse of the
above method, i.e., move the robot endpoint only along
with the z-axis coordinate while fixing x and y axis values
of the 3-D coordinate measuring machine. The 3-D
coordinate measuring machine is only used as a tool to
construct a plane and perpendicular line in the workspace,
not used to measure the value of the position coordinate.

Figure 3. Coordinate measuring machine
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4. Simulation and Experiments

A. Simulations

Calibrations based on the geometry of the parallel robot
shown in Fig. 2 were simulated with various parameter
errors, noise levels, and pose sets. The nominal
parameters and the workspace limits of the parallel robot
are listed in Table 1 and Table 2. Three parameter sets
were simulated, with the parameter deviations obtained
from normal distributions with variances of 0.0lmm (set
1), 0.lmm (set 2), and 1mm (set 3). Gaussian noise with
variances of 0.000lmm, 0.00lmm, 0.0lmm, and 0.Imm
was added to measurements to simulate measurement
noise. Constraint set contains 100 positions selected from
the workspace using a coordinate exchange algorithm for
the D-optimal experimental design.

Table 3 gives the simulated calibration results. Note that
the first row in the table corresponds to the initial
conditions of the parameter set. The estimation error is
calculated as the 2-norm of the difference between the
actual deviations and the estimated deviations. To
determine the resulting error improvement, the position
error and the orientation error were computed as the root
mean square error with random 100 poses in the

workspace.
Platform joint . . offset
. Base joint locations

locations lengths

Paix Paiy Paiz bix biy biz Loi

1 (0557|0052 0 |0.738]0945| O 1.830
2 (-0233|0.508| 0 0449|1112 0 1.830
3 [-0.323|0456| 0 |-1.188|0.166| 0 1.830
4 [-0.323|-0456| 0 |-1.188|-0.166| 0 1.830
5 [-0.233|-0.508| O |0.449 |-1.112| 0 1.830
6 |0557(-0.052] 0 |0.738(-0.945| O 1.830

Table 1. Nominal structural parameters of the parallel robot
(Unit: m)

min (m or max (m or

rad) rad)

X -0.25 0.25

y -0.25 0.25

-0.2 0.2

roll -0.1745 0.1745
pitch -0.1745 0.1745
yaw -0.1745 0.1745

Table 2. workspace of the parallel robot
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Estimation Position Orientation
o Noise Error Error Error

(mm) | RMS |Reduct| RMS [Reduct| RMS |Reduct

(mm) % (mm) | % (deg) %

- 0.0853 - 0.3060 - 0.0177 -
0.0001 | 0.0136 | 84% {0.0306| 90% | 0.0019 | 89%
1 0.001 |0.0384| 55% |0.1561| 49% | 0.0058 | 67%
0.01 |0.0674 21% (0.2479| 19% | 0.0092 | 48%
0.1 |0.0768| 10% |0.2815| 8% | 0.0138 | 22%

- 0.3137 - 1.1730 - 0.0746 -
0.0001 | 0.0157 95% |0.0469| 96% | 0.0037 | 95%
bl 0.001 |0.0565| 82% |0.1525| 87% | 0.0157 | 79%
0.01 |01725| 45% |0.4457| 62% | 0.0418 | 44%
0.1 lo2510 20% |0.8915| 24% | 0.0679 9%

- 1.0019 - 1.6196 - 0.1246 -
0.0001 | 0.0230 | 97.7% |0.0470| 97.1% | 0.0031 | 97.5%
3| 0.001 |0-0902 91% |0.0648| 96% | 0.0037 | 97%
0.01 |0-2505 75% |0.2753| 83% | 0.0162 | 87%
0.1 |0.4108| 59% |0.7936| 51% | 0.0411 | 67%

Table 3. Calibration simulation results

The reduction of the parameter estimation error by itself
is not the goal of the calibration. Ultimately, the resulting
errors of the parallel robot should be reduced. Fig.4
shows that by estimating the model parameters well, the
overall accuracy of the parallel robot can be improved.
This verifies that better parameter estimates will result in
improved pose accuracy. Simply by updating the nominal
parameter values stored in the controller with those
estimated by the calibration, the resulting accuracy of the
parallel robot can be increased. The plot shows good
correlation between the parameter estimation error
reduction percentage and the average workspace error
reduction percentage.

Fig. 5 depicts the calibration of parameter set 3 with
measurement corrupted by noise of 0.0lmm. The
parameter estimation error is reduced by 75%. Position
error RMS was reduced from 1.6196 mm to 0.2753 mm, a
reduction of 83%, and orientation error RMS was reduced
from 0.1246 deg to 0.0162 deg, approximately 87%. Fig. 5
show representative pose errors before and after
calibration.
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Figure 4. The relation of identification error reduction percentage
and pose error reduction percentage

B. Experimental Results

For identification of the parameter errors of (18) a set of
50 measurement points was acquired, which is about
uniformly distributed within the workspace. Within 5
iterations and 30 seconds calculation time the LS-method
has identified the geometrical parameter set using the
normal parameter set given in Table 1 as an initial guess.

The improvement in quantitative terms is given by the
mean error and the standard deviation in Table 4.

By calibration and full pose measurement the position
error improved by a factor of 2.7 for the mean value and
by a factor of 4.3 for the standard deviation. For the
chosen size of the parallel robot this corresponds to an
absolute quantitative improve of 3.3 to 1.2 millimetres for
the mean value, whereas the standard deviation drops
from 0.5 to 0.1 millimetres.

By calibration an accuracy improvement a factor 3.9 for
the orientation error could be obtained on the mean value
whereas the standard deviation decreases by a factor of
4.7. This corresponds to an absolute improvement of 1.5
to 0.3 degrees for the mean value and 0.33 to 0.07 degrees
for the standard deviation.
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y position error/ mm

z position error/ mm

Figure 5. The comparison of pose error before and after calibration

o
w

y position error / mm

Z position error / mm

position error (unit: mm) orientation error (unit: degree)
[(ABx, Ay,
Ax Ay Az |(Ax, Ay, Az)]| AOx ABy AO: 20.)]
before mean 2.19 -345 | -0.84 3.25 0.14 -0.68 0.47 1.52
calibration standard deviation 0.42 0.86 0.29 0.47 0.36 0.18 0.49 0.33
after mean 0.81 0.18 -0.57 1.20 0.08 0.03 0.03 0.39
calibration standard deviation 0.14 0.33 0.09 0.11 0.01 0.06 0.01 0.07

Table 4. Position and Orientation Error of the Parallel Robot before and after Calibration

5. Conclusions

A new kinematic calibration method for docking
mechanism motion simulator was presented, using a
coordinate measuring machine that made constraint
conditions. Calibration equation was established to
perform calibration with the proposed method. These
measurement data were used to identify the parameters
of the calibration equation resulting in an accuracy
improvement of RMS (root mean squares errors) a factor
of 2.7 for the position and a factor of 3.9 for the
orientation.
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