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1Abstract—The paper presents a number of results 
regarding the construction of specific overcomplete 
dictionaries for ECG compressed sensing (CS). The 
dictionaries were built using normal and patological cardiac 
patterns extracted from 24 recordings of the MIT-BIH 
Arrhythmia Database. It has been shown that the compression 
results obtained using the CS concept based on specific 
dictionaries are better that those using the wavelet 
overcomplete dictionaries. Starting from the concept of sparse 
signal with respect to a given overcomplete dictionary the 
paper present several results regarding the possibility of simple 
pattern classification as well.  

Index Terms—Compressed sensing, Biomedical signal 
processing, Electrocardiography, Pursuit algorithms, Signal 
processing algorithms

I. INTRODUCTION

The development of uni- and multi-dimensional signals 
acquisition, compression and processing - an extremely vast 
area – constituted and still constitutes the preoccupation of a 
large number of researchers, the goal being performances 
improvement and optimization according to often 
contradictory constraint regarding speed, precision, 
robustness, consumption, portability, cost, etc. [1-5]

For clinical diagnosis it is often important to record the 
medical data of the patients over a longer period of time or 
to transmit it, when the diagnostic is done remotely. In order 
to detect anomalies or diseases, the doctor may need 24 hour 
or even longer recordings. For example, for an ECG signal, 
its storage or transmission can reach 26MB for a one 
channel ECG recording with 12 bits/sample and a sampling 
frequency of 400Hz or even 138MB for two channels ECG 
recording with 16 bits/sample and the same sampling 
frequency. Besides, it is known that the ECG signal is also 
used for other cardiac monitoring and diagnostic 
applications, including transmission through phone channels 
in ambulatory monitoring and recordings in anesthesia and 
intensive care units of hospitals [2], [6]

The storage and transmission of large amounts of data are 
time and resource consuming operations which can be 
optimized using data compression techniques. The three 
important features of a compression algorithm are the 
compression rate (CR), the reconstruction error and the 
computational complexity, the first two being 
interdependent. The CR is defined as the ratio between the 
number of bits needed to represent the original and the 
compressed signal [7], [8] .

This work has been jointly supported by CNCSIS –UEFISCSU, project 
PNII – RU - PD 347/2010 and project PNII – IDEI 310/2008.

For lossy compression techniques, defining the error 
criterion to evaluate the distortion of the reconstructed 
signal with respect to the original one is of paramount 
importance particularly for biomedical signals like the ECG 
where a slight loss or change of information can lead to 
wrong diagnostics. In most ECG compression algorithms, 
the percentage root-mean-square difference (PRD) measure 
and its normalized version, PRDN, which does not depend 
on the signal mean x , defined as
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are used. In the above formulas, ( )x n and ( )x n  are the 

original and the reconstructed signals respectively, x is the 
original signal mean and N is the length of the window over 
which the PRD is calculated. 

In order to evaluate the relative preservation of the 
diagnostic information in the reconstructed signal compared 
to the original one, Zigel [9] introduced a new measure 
(which is not always easy to use) called Weighted 
Diagnostic Distortion (WDD) which consists in comparing 
the P and T wave, and QRS complexes features of the two 
ECG signals. Moreover, the Quality Score (QS) representing 
the ratio between the CR and the PRD has been recently 
proposed as a measure of the compression value that takes 
into consideration the trade-off between CR and distortion 
[10].

Nevertheless the final verdict regarding the fidelity and 
clinical acceptability of the reconstructed signal should be 
validated through visual inspection by the cardiologist 
physician. 

Last but not least, the computational complexity is 
directly related to practical implementation considerations 
and is desired to be as low as possible, especially for 
portable equipment.

Due to the importance of the ECG signals many specific 
compression algorithms for this type of signals have been 
proposed. According to the processing method used, Zigel 
[11] classifies the ECG compression methods into two 
categories: time-domain and transform-domain 
compression. Time-domain compressions are fast, easy to 
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implement and have low distortions, but also low 
compression ratios; this is why transform-domain methods 
are preferred in the scientific world, as well as in medical 
applications. They basically consist in representing signals 
in terms of appropriate basis elements or atoms in complete 
or over complete dictionaries respectively. 

A dictionary ):(  D  is a collection of 

parameterized waveforms  . For N-dimensional signals 

NR  are discrete-time signals of length N called atoms. 

Dictionaries can be complete when they contain exactly N 
linearly independent atoms (a basis, possibly orthonormal) 
or overcomplete (they contain more than N atoms). [12]

A fundamental challenge in ECG signals compression 
techniques is that of increasing the CR and decreasing the 
distortion i.e., improving the QS. For transform domain 
compression this means finding appropriate dictionaries and 
projection vectors to achieve ECG representation with as 
few as possible relevant atoms - a need the suggested the 
idea of investigating the possibility of using the recent 
theory of compressed sensing (CS) [13].

This paper presents an ECG signals compression method 
based on specific dictionaries and techniques of sparse 
decomposition. Using a training set of ECG signals 
associated to normal and several cardiac diseases a 
construction method of overcomplete dictionaries is 
presented. Based on these dictionaries, the ECG can be 
accurately represented by sparse vectors with entries
associated with the most significant atoms and reconstructed 
using appropriate linear programming algorithms. 

Section II is a brief presentation of the compressed 
sensing principles, Section III presents aspects regarding the 
implementation methodology and the construction method 
of the specific ECG signal dictionaries and the possibility of 
cardiac beats classification using the parameters extracted 
through CS.  The experimental results of the ECG signals 
compression using CS concepts are presented in Section IV 
together with the results obtained using Coiflet4 type 
wavelet overcomplete dictionaries and dictionaries specific 
to the ECG signal, for two types of projection matrixes. 
Section V contains an overview of the previously presented 
results, a comparison with other ECG compression methods 
and is followed by conclusions.

II. PRINCIPLES OF COMPRESSED SENSING

The concept of compressed sensing (CS) [13], [14], [15] 
refers to the possibility of reconstructing the samples of 
signals which are sparse in certain bases or dictionaries. The 
technique, which is attractive in the case of reduced 
acquisition and transmission resources compared to those 
for decoding, seeks to answer the question “how can we 
achieve an efficient compression?” using the philosophy 
“acquire first, ask questions later” [16], [17].

In its classical form, for the 1D case the theory of CS 
considers an Nx1 signal x which is sparse or compressible in 
some basis (i.e., complete dictionary) },...,1,{ Nii 
i.e., it can be written as x  where 

},...,1,{ Nii   are rapidly decreasing to zero so that it 

can be approximated well enough using only the K largest 

coefficients, the remaining N-K being replaced by zeros. It 
has been proved that such a signal can be recovered from a 
number of nonadaptive  projections on a specified set of 
vectors, their number being dependent on the signal 
dimension and its sparsity. The CS theory gives an 
estimation of the number of projections needed so the signal 
can be recovered at a similar quality to that corresponding to 
the approximation obtained from ))/log(( KNKOM  (M 

is proportional to the quantity log( / )K N K ) non-adaptive 

linear projections on a second base  whose elements 
satisfy the property that neither they can be used to sparsely 
represent those of the initial base nor vice versa. [15], [18]

Thus, for sparse signals, instead of acquiring N samples 
according to the sampling theorem, a smaller number M of 
nonadaptive (signal independent) projections on random 
vectors are taken from which the signal can be then 
reconstruction. The reconstruction can be perfect or 
approximate while the number of projections depends on the 
signal dimension and sparsity with respect to the adopted 
dictionary2. The direct relationship between the sparsity or, 
equivalently, the compressibility of a signal and the number 
of random projections necessary for the signal 
reconstruction (which can be perfect in certain conditions) is 
apparent.

The M×1 projection vector y can be written 
nnnxy   where the signal   n 

represents the cumulated effect of the quantification and of 
the inherent noise of the measurement. The computation of 
the coefficients   for the reconstruction of the signal x is 
an optimization problem which relies on the compressibility 
of x in the base . The reconstruction is made by means of 
standard linear programming algorithms with quadratic 
constraints such as LARS, LASSO, SparseLab, l1 Magic, 
(Orthogonal) Basis Pursuit, (Orthogonal) Matching Pursuit 
etc., for which there are fast implementations [19], [20], 
[21], [22]. 

Since CS theory is very efficient provided the signals are 
highly sparse in an orthogonal basis – a property which is 
seldom satisfied – it has been extended to the case of signals 
that are sparse with respect to atoms in overcomplete 
dictionaries, i.e., with dictionaries whose elements/atoms are 
not linearly independent [23]. Again the signal x can be 

written as x where now is an N×P matrix with 
P>>N. Several choices for overcomplete dictionaries are: 
megadictionaries obtained by merging complete dictionaries 
(i.e., Fourier + canonical basis, Fourier + wavelet), wavelet 
overcomplete dictionaries, optimized/learned overcomplete 
dictionaries etc.). For these cases the previously mentioned 
methods work as well, in particular the method of basis 
pursuit (BP). BP finds the best representation of a signal by 
minimizing the l1-norm of α for an overcomplete dictionary. 
Since we would like as many components of α to be zero or 
as close to zero as possible one have to solve the problem 
[12]: 

2 Basically the possibility of reconstructing signals from few projections 
relies on a fundamental mathematical result represented by the Johnson–
Lindenstrauss lemma [24] that states that a small set of points in a high-
dimensional Euclidean space can be embedded into a space of lower 
dimension almost conserving the distances.
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xtosubjectminimize 
1

where the nonzero components of α correspond to the 
dictionary waveforms on which the signal representation is 
based. Using the 11 -norm replaces the LP hard problem of 
minimizing the l0 norm of α with a linear programming 
problem (LP) of the form:

NT Rxtosubjectc   ,minimize

where Tc is the objective function and Ψ α=x can be 
viewed as a collection of constraints. 

To solve the above equations any LP algorithm can be 
used; in this paper the Interior Point Method (IPM) [12] [19] 
has been chosen.

III. METHOD

As already mentioned, the key issue regarding an efficient 
CS or compressibility for a class of signals is that of finding 
appropriate dictionaries and projection matrices to get high 
compression QS’s. For many classes of signals, good (time-
frequency or time-scale) dictionaries for CS have been 
already proposed [12], [25], [26]. Still there are classes of 
signals like the ECG for which the use of standard 
dictionaries does not ensure spectacular CS results, new 
dictionaries are needed. The analytic construction of 
dictionaries such as wavelets, curvelets etc. stems from the 
deep mathematical tools of Harmonic Analysis [27] [12]. 
However, since it is difficult and time consuming to develop 
complex mathematical theory each class of data, the 
alternative solution of dictionary learning which basically 
consists in building the dictionary from a set of training data 
is the most advantageous solution.

ECG compression using CS
We have investigated three types of dictionaries namely:
 The Coiflet4 overcomplete wavelet dictionary 

(WD), a time-frequency dictionary containing 
Nlog2(N) waveforms [12]. For ECG signals with N 
= 256 samples the dictionary contains 2048 Coiflet 
atoms [28].

 Overcomplete dictionaries built from resampled 
cardiac patterns (RCP): the ECG has been 
segmented by taking cardiac patterns between the 
middles of successive RR intervals. Each segment 
contains the P-wave, the QRS complex and the T-
wave and each cardiac segment thus obtained was 
resampled with 301 samples using linear 
interpolation such that all cardiac patterns have the 
same dimension, and thus being possible to create a 
specific dictionary [29].  

 Overcomplete dictionaries built from resampled 
and R-centered cardiac patterns (RRCP): the 
cardiac patterns were resampled to 301 samples 
and processed as follows: the R wave was 
elastically shrinked/stretched with respect to the 
peak of the R wave until it moved in the middle of 
the waveform support and then the left and right 
sides were resampled each with 150 samples such 
that the peak of the R wave was now positioned on 
sample 151. To make this type of processing 
reversible, the information about the initial position 

of the R wave peak was retained [29]. 

To test the compression method with the above 
mentioned overcomplete dictionaries 24 ECG annotated 
recordings from the MIT-BIH Arrhythmia database have 
been used [30]. The ECG signals were initially digitized 
through sampling at 360 samples per second, quantized and 
encoded with 11 bits and then resampled as described 
above.

Based on the database annotations, 8 major classes have 
been identified, namely a class of normal cardiac beats and 7 
classes of pathological beats: atrial premature beat, left 
bundle branch block beat, right bundle branch block beat, 
premature ventricular contraction, fusion of ventricular and 
normal beat, paced beat, fusion of paced and normal beat.

The two dictionaries (RCP and RRCP) were built 
using randomly selected patterns form the 24 recordings 
of the MIT-BIH Arrhythmia database and contain 2367 
cardiac patterns, evenly distributed for all the 8 classes 
of cardiac beats. No pattern used for the construction of 
the dictionary has been employed later for testing.

The CS of ECG signals assume the existence of a 
projection matrix containing a number of vectors of the 
same dimension N as the ECG signals equal to the ration 
between N and the imposed CR. 

For the random projection matrix used in CS two cases 
have been considered, namely:

 The projection matrix contains pseudo-random 
values drawn from a normal distribution with mean 
zero and standard deviation one (These matrices
were generated using the randn function in Matlab).

 The projection matrix contains only binary values, 
each line of the matrix (each projection vector) 
containing 50 ones and 50 zeros, and the positions 
of the ones values being randomly generated with a 
uniform distribution.

For the ECG signals reconstruction, the Basis Pursuit 
(BP) method has been used. As previously mentioned this 
method minimizes the l1 norm of the α coefficients and has 
been shown to be optimal method from the point of view of 
the reconstruction errors.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Compression based on the Coiflet4 dictionary 
In order to test the compression performances of the

Coiflet4 type wavelet overcomplete dictionary described 
above, the first 256 samples from the recording with number 
100 have been used. The results presented in Figure 1 are 
the best obtained for 10 different random projection 
matrixes for each of the compression ratios of 4, 6, 8 and 10. 
It can be seen that, except for the 4:1 compression in all the 
other cases, both the reconstruction errors and the visual 
inspection show unacceptable reconstruction errors.
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FIG. 1 –ORIGINAL (THIN LINE) AND RECONSTRUCTED (THICK LINE) ECG SIGNALS USING A COIFLET4 OVERCOMPLETE DICTIONARY.

The weak results obtained with overcomplete wavelet 
dictionaries for CR over 4:1 have determined us to adopt the 
method of construction of specific dictionaries for the ECG 
signal based on cardiac patterns. 

Compression and classification using RCP and RRCP
The testing of the compression method has been made on 

1000 cardiac patterns taken from the 24 ECG recordings, 
evenly distributed for all 8 classes. The two previously 
presented types of dictionaries together with the two types 
of projection matrixes have been used. In order to evaluate 
the compression we computed the CR, the distortion, the QS 
[10], the classification ratio of the cardiac patterns and the 
confusion matrix. 

Together with compression, for the case of dictionaries 
constructed with cardiac patterns (RCP and RRCP) we have 
also investigated the classification possibility of using the 
largest coefficient α necessary for the reconstruction 
obtained using the BP technique as a result of the CS 
technique. This classification mode is justified to a certain 
extent by the fact that the reconstructed ECG wave is a 
linear combination of patterns from the dictionary, the 
greater weighting being expected for the component which 
resembles most the ECG signal and carrying significant 
information about the pathology. 

We present in Fig. 2 presents the results for a RRCP 
dictionary with {0,1} random projection matrix respectively 
pseudo-random projection matrix.

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8
class 1 69.23                  0.0 7.69         0.0 7.69    7.69 7.69         0.0
class 2 15.38   76.92         0.0 0.0 0.0 0.0 7.69 0.0
class 3 9.09    9.09   81.81         0.0 0.0 0.0 0.0 0.0
class 4 7.69       7.69         0.0 84.61         0.0 0.0 0.0 0.0
class 5 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0
class 6 21.42         0.0 0.0 0.0 0.0 78.57 0.0 0.0
class 7 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
class 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100
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RRCP with {0,1} random matrix:
CR = 15:1 ; classification _rate =  80%; PRD_mean = 1.04 ; PRDN_mean 

= 15.46; RMS_mean = 1.2694e-004 
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class1 class2 class3 class4 class5 class6 class7 class8
class1 80,0 0,0 10,0 0,0 10,0 10,0 0,0 0,0
class2 12,5 75,0 0,0 0,0 6,25 6,25 0,0 0,0
class3 11,11 0,0 88,88 0,0 0,0 0,0 0,0 0,0
class4 7,14 0,0 0,0 85,71 0,0 7,14 0,0 0,0
class5 12,5 0.0 12,5 0.0 75 0.0 0.0 0.0
class6 23,52 0.0 0.0 0.0 0.0 64,70 11,76 0.0
class7 0.0 40 0.0 0.0 0.0 0.0 60 0.0
class8 6,25 0.0 0.0 0.0 0.0 0.0 6,25 87,5

0 50 100 150 200 250 300
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1300
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1400

1450

RRCP with pseudo random matrix:
CR = 15:1; classification _rate =  77%; PRD_mean =  1.18; PRDN_mean 

= 17.42; RMS_mean = 11.51 
FIG. 2 - ORIGINAL (THIN LINE) AND RECONSTRUCTED (THICK LINE) ECG SIGNALS AND CONFUSION MATRICES FOR THE RRCP DICTIONARY WITH {0,1}

RANDOM AND PSEUDO-RANDOM PROJECTION MATRICES RESPECTIVELY.

The compression results for the RRCPand RCP 
dictionaries using random projection matrixes and random 0 
and 1 projection matrixes, for a 15:1 and a 20:1 compression 
are summarized in Tables 1 and 2.

Comments regarding compression 
It can be observed, that the best compression results were 

obtained using the RRCPdictionary followed the RCP 
dictionary, both built from cardiac patterns. The above two 
dictionaries, being more specific and adequate to the 
problem significantly outperform the overcomplete Coiflet4 
wavelet dictionary.

A somehow surprising but highly beneficial from the 
computing point of view is the fact that the compression 
results using random projection matrixes which contain only 
values of 0 and 1 are superior compared with the case 
random matrixes.

TABLE 1 –COMPRESSION RESULTS FOR THE RANDOM PROJECTION 

MATRIXES

Dictionar CR
classification 

_rate
QS PRDN_mean PRD_mean

RRCP 15:1 77% 12,71 17.42 1.18

RCP 15:1 74% 10,13 23.02 1.48
RRCP 20:1 62% 12,5 24.37 1.60

RCP 20:1 70% 11,11 28.90 1.80

TABLE 2 –COMPRESSION RESULTS FOR THE RANDOM PROJECTION 

MATRIXES WITH 0 AND 1

Dictionar CR
classification 

_rate
QS PRDN_mean PRD_mean

RRCP 15:1 80% 14,42 15.40 1.05

RCP 15:1 74% 10,20 23.32 1.47

RRCP 20:1 67% 13,51 22.90 1.48

RCP 20:1 70% 10,41 29.87 1.92

As it can be observed from the table above the 
results obtained with the (RRCP) dictionary with the R wave 
centered by resampling and with 0-1 random projection 
matrix compares positively regarding the PRD, RMS errors, 
average CR and QS with other compression results 
presented in the literature.

TABLE 3 - COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER 

COMPRESSION ALGORITHMS FOR AVERAGE VALUES FOR 24 RECORDS

Algorithm
Average of errors 

(PRD or RMS)
Average 

of CR QS
Wavelet [31] 18.2 RMS 21.4:1

3.57 PRD 12:1 3.39

4.85 PRD 16:1 3.29SPHIT [32]

6.49 PRD 20:1 3.08

2.19 PRD 12:1 5.47

2.74 PRD 16:1 5.8JPEG2000 [33]

3.26 PRD 20:1 6.1
QLV – Skeleton –

Huffman* [34]
0.641 PRD* 16.9:1* 29.36*

Skeleton – [10]
1.17 PRD

11.35 RMS
18.27:1 15.61

Proposed -  RRCP 1.04 15:1 14.42

Proposed -  RRCP 1.48 20:1 13.51

NOTE: The results reported in [34] marked with * in the 
Table X were obtained using a combined ECG compression 
method consisting of a preprocessing stage with quad level 
vector (QLV) for the extraction of the ECG skeleton 
achieving a 8.4:1 compression and a coding block 
(consisting of delta and Huffman Coding). The results 
referenced in Table 3 are the final one improved by the 
Huffman coding stage.

Comments regarding classification
The main purpose of this paper was to investigate 

aspects the possibility of compressing ECG signals based on 
the theory of the CS. The very simple classification of the 
decoded cardiac patterns based only on the largest α 
coefficient required for the reconstruction was an aspect 
which came together with the main research, was very easy 
to reveal and seems to be worthwhile for future research. 
Except for being associated to CS and extremely simple it 
cannot be used in this form for medical diagnostic and 
cannot compete with state of the art results: for 5 classes of 
pathologies out of 15, De Chazal [35] reports a classification 
accuracy of 97.4%, while Prasad [36] and Osowski [37] 
using wavelet and SVM respectively, report 96%.

V. CONCLUSION

The paper presents several results concerning ECG 
medical signals compression based on recent results on 
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compressed sensing. The ECG signal has been compressed 
using a number of projections on a random matrix and 
reconstructed with the Basis Pursuit algorithm. Thus, 
knowing the ECG signal, the random projection matrix used 
for coding, and the dictionary which ensures the ECG 
signals sparsity, the   coefficients necessary for 
reconstruction were obtained from the projections using the 
Interior Point Method (IPM) linear programming algorithm. 

Three types of dictionaries have been used, namely, 
overcomplete Coiflet4 wavelet dictionaries and two specific 
dictionaries built from cardiac patterns. The results obtained 
in the case of using the Coiflet4 wavelet dictionary have 
shown that for compressions higher than 4:1, the 
reconstruction errors are unacceptable. In the case of using 
dictionaries constructed from cardiac patterns with the R 
wave centered by resampling (RRCP), compression ratios of 
15:1 with an error PRD_mean of 1.04 and of 20:1 with error 
PRD_mean of 1.48  have been obtained. As a “byproduct”, 
an extremely simple pattern classification with 80% and 
67% accuracy respectively has been also obtained. We have 
thus shown that the use of specific dictionaries adapted to 
the class compressed signal constitutes an advantage both 
from the point of view of the compression quality but also a 
very simple (but rough) classification method.
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