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Abstract

Objective

We review two alternative ways of modeling stability and change of longitudinal data by using time-fixed and time-varying
covariates for the observed individuals. Both the methods build on the foundation of finite mixture models, and are
commonly applied in many fields but they look at the data from different perspectives. Our attempt is to make comparisons
when the ordinal nature of the response variable is of interest.

Methods

The latent Markov model is based on time-varying latent variables to explain the observable behavior of the individuals. It is
proposed in a semiparametric formulation as the latent process has a discrete distribution and is characterized by a
Markov structure. The growth mixture model is based on a latent categorical variable that accounts for the unobserved
heterogeneity in the observed trajectories and on a mixture of Gaussian random variables to account for the variability in
the growth factors. We refer to a real data example on self-reported health status to illustrate their peculiarities and
differences.

1 INTRODUCTION
The analysis of longitudinal or panel data by using latent variable models has a long and rich history mainly in the social
sciences. In the past several decades, the increased availability of large and complex data sets, have witnessed a sharp
increase in interest in this topic. Nowadays, it demands the development of increasingly rigorous statistical analytic methods
that can be proved useful for data reduction as well as for inference. Among the different proposals available there are two
main broad classes of models: one tailored to consider the transition over time and the other focused on growth or trajectory
analysis. Among the former, we discuss the latent Markov (LM) model which is mainly used for the analysis of categorical data.
Among the second class, the growth mixture model (GMM) is originally employed with observed continuous response

Citation tools

Go To

http://olabout.wiley.com/WileyCDA/Section/id-813473.html
http://onlinelibrary.wiley.com
https://secure.onlinelibrary.wiley.com/secure/login/?originalUrl=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fsam.11335%2Ffull&wolSessionId=1d0b64d143354642b0572cdfd2d78ebd
http://onlinelibrary.wiley.com/wol1/doi/10.1002/sam.11335/full
http://onlinelibrary.wiley.com/doi/10.1002/sam.11335/pdf
http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/sam.11335
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1932-1872
http://onlinelibrary.wiley.com/doi/10.1002/sam.2017.10.issue-1/issuetoc
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/sam.11334
http://onlinelibrary.wiley.com/enhanced/doi/10.1002/sam.11336
http://onlinelibrary.wiley.com/doi/10.1002/sam.2017.10.issue-1/issuetoc
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fulvia.pennoni@unimib.it
mailto:fulvia.pennoni@unimib.it
http://onlinelibrary.wiley.com/advanced/search/results?searchRowCriteria%5B0%5D.fieldName=author&start=1&resultsPerPage=20&searchRowCriteria%5B0%5D.queryString=%22Fulvia Pennoni%22
http://onlinelibrary.wiley.com/advanced/search/results?searchRowCriteria%5B0%5D.fieldName=author&start=1&resultsPerPage=20&searchRowCriteria%5B0%5D.queryString=%22Isabella Romeo%22
http://onlinelibrary.wiley.com/enhanced/exportCitation/doi/10.1002/sam.11335
http://onlinelibrary.wiley.com/enhanced/refreshCitedBy?doi=10.1002/sam.11335&refreshCitedByCounter=true
https://www.altmetric.com/details.php?domain=onlinelibrary.wiley.com&citation_id=15909369


variables. In the following we compare the models to account for the recent improvements proposed in literature. Previous
comparisons can be found in [1, 2] and some hints are available in [3]. We consider measurements on an ordinal scale to
illustrate similarities and differences between these models.

The LM models may be classified as observation-driven models tailored for many types of longitudinal categorical data as
showed recently in [4, 5]. The evolution of the individual characteristics of interest over time is represented by a latent
process with state occupation probabilities that are time-varying. They are extensions of the latent class model [6] when
multiple occasion of measurements are available and of Markov chain models for stochastic processes when an error term is
included in the observations. They allow for unobserved heterogeneity among individuals or within the latent states. Even if
the first basic model formulation proposed by Wiggins [7] does not include the covariates, at present time-constant and time-
varying covariates can be added in the measurement or in the latent part of the model. Wiggins proposed this model at
Columbia in a social science research project when Paul Lazarsfeld was principal investigator (see for more details
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/lazarsfeld-paul-f.pdf). In 1955 in his Ph.D.
dissertation he analyzed the applicative example of a single item of human behavior moving over time in a nonexperimental
context. When the model is formulated according to a discrete time-dependent latent process it may be classified as a
semiparametric approach. It allows modeling with different data in applications in fields such as medicine, sociology, biology,
or engineering (see also [8, 9]). Some of the connections with the hidden Markov model employed to analyze time-series data
are illustrated in [10]. The hidden Markov model was also developed in the social science field to study sudden changes in
learning processes by Miller [11]. An alternative model formulation to assess causal effects under the potential outcome
framework [12] has been recently proposed in [13].

Conventional growth models or growth curve models (GCMs) are viewed either as hierarchical linear models or as structural
equation models. Their use in analyzing continuous response variables has been widely discussed in the literature (see,
among others [14, 15]). Their use in modeling and analyzing categorical data has recently received more attention [16, 17].
Latent growth modeling was first proposed independently in [18, 19] in relation to the longitudinal factor analysis and later
extended and refined in [20-22]; see also [23].

The GCM aims at studying the evolution of a latent individual characteristic in order to estimate the trajectories by accounting
for individual variability about a mean population trend. It imposes a homogeneity assumption, requiring that all individuals
follow similar trajectories. The GMM proposed by [24] (see also [25, 26]) is a generalization of the GCM which accounts for the
heterogeneity in the observed development trajectories by employing a latent categorical variable. The finite mixture of linear
and multinomial regression models allows us to disentangle the between-individual differences and the within-individual
pattern of changes through time (see also [27, 28]). It is a parametric approach where the population variability in growth is
modeled by a mixture of subpopulations with different Gaussian distributions.

A specific case of the GMM is the latent-class growth curve model (LGCM) (see, among others, [29-31]), also termed as latent
class regression model by [32]. Another terminology employed in [33] is latent class growth analysis (LCGA). The multinomial
model is used to identify the homogeneous groups of developmental trajectories by avoiding the random effects of Gaussian
distribution assumption. The individuals in each class share a common trajectory [34] without considering the between-class
heterogeneity. Therefore, in the LGCM, the individual heterogeneity is captured completely by the mean growth trajectories of
the latent classes. However GMM allows us to model the class-specific variance components (intercept and slope variance). For
a more complete comparison between GMM and LGCM, see also [35]. An alternative extension of these models to the
counterfactual context has been proposed in [36].

We illustrate two recent extensions of the LM model and GMM where the ordinal response is made by thresholds imposed on
an underlying continuous latent response variable. We show how the discrete support for the latent variable used in the LM
model framework can be appropriate in this context. The models are compared on how they allow covariates, how they make
inference, on their computational features required to achieve the estimates, and on their ability to classify units and their
predictive power. Our proposal to compare them in terms of fitting, parsimony, interpretation, and prediction is an attempt to
review the recent literature on these models for panel data. The results of the model fitting are illustrating through a data set
on longitudinal study aimed at describing self-perceived health status, which also appears in other published scientific articles
(see, among others [37]).

The structure of the paper is as follows. In Section 2 we introduce the basic notation for both models and we summarize the
main features concerning the estimation issues. In Section 3 we demonstrate the effectiveness of the models explaining their
purposes in relation to the applied example and their results. In the last section we draw some concluding remarks.

2 MAIN NOTATION AND ILLUSTRATION OF THE MODELS
One way to afford the issue of ordinal response variables consists in deriving a conditional probability model from a linear
model for a latent response variable. The observed variables are obtained by categorizing the latent continuous response that
may be related, for example, to the amount of understanding, attitude, or wellbeing required to respond in a certain category.
Let Y  be the observed ordinal variable for individual i  , for i  = 1, …,  n  at time t , t  = 1, …,  T . We assume an underlying
continuous latent variable , via a threshold model given by
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where s  = 1,2, …,  S  and − ∞ =  τ  <  τ  <  τ  < � <  τ  < τ  = + ∞ are the cut-off points by which it is possible to achieve a unique
correspondence. With S  response categories, there are S  − 1 threshold parameters, τ , s  = 1,2, …,  S  − 1.

0 1 2 s − 1 s

s

2.1 LM models for ordinal data

Under the basic model we assume the existence of a discrete latent process such that

with α , …,  α  following a hidden Markov chain with state space ξ , …,  ξ , initial π  =  p ( α  =  ξ ), and transition
probabilities π  =  p ( α  =  ξ | α  =  ξ ), ū ,  u  = 1, …,  k . Moreover,  is a random error with normal or logistic
distribution.

In the case of time-varying or time-fixed covariates collected in the column vectors x , the model is extended as:

so as to include these covariates in the measurement model concerning the conditional distribution of the response variables
given in the latent process. The covariates are allowed in the latent part of the model; however, the model is better identified
when the covariates are stored in the latent or in the measurement model. The choice is related to the research question and
the aims of the analysis.

The model has a simple structure if the discrete latent process follows a first-order homogeneous Markov chain and we can
assume the conditional independence of an observed response variable Y  in relation to the other responses given the latent
process for i  = 1, …,  n , t  = 1, …,  T . This is called the local independence assumption. The conditional distribution of the
responses is denoted by f ( y | u ,  x ), u  = 1, …,  k , whereas the latent stochastic process U  has initial probability function p ( u ),
for u  = 1, …,  k , and transition probability function p ( u | ū ), where t  = 2, …,  T , u  ,  ū  = 1, …,  k , and k  denote the discrete
number of latent states. Therefore, a semiparametric model results. A generalized linear model parameterization [38] allows
us to include properly the covariates in the measurement model. In this way, by using suitable link functions we can allow for
specific constraints of interest and we can also reduce the number of parameters.

An effective way to include the covariates in the measurement model is to consider

where C  is a suitable matrix of contrasts, M  is a marginalization matrix with elements 0 and 1, which sums the probabilities
of the appropriate cells and the operator log is coordinate wise, f ( u ,  x ) is a c -dimensional column vector with elements
f ( y  | u ,  x  ) for all possible values of y . In the following, η  denotes each element of η  where y  = 1, …,  s  − 1. Within this
formulation, we can state some hypothesis of interest by constraining the model parameters according to the research
question related to the application. For example, an interesting formulation is the following:

(1)

where the levels of β  are cut-off points or threshold parameters, β  are intercepts specific to the corresponding latent
state, and β  is a vector of parameters for the covariates. The above is possible once we define the global logits [38] on the
conditional response mass function:

We carry out the estimation of the model parameters in two ways: by using the maximum likelihood method through the EM
algorithm [39] or by the Bayesian methods applying the Markov Chain Monte Carlo methods [40]. Within the first choice, the
log-likelihood is maximized according to the following steps until convergence:

We use the recursions developed in the hidden Markov literature by [41] and by [42] to compute the quantities of interests.
They enable computing efficiently the expected values of the random variables involved in the complete data log-likelihood:

where a  is the number of individuals that are in latent state u  and provide response y  at occasion t , b  is the
frequency of the latent state u , and b  is the number of transitions from state ū  to state u  at occasion t .

As for other mixture models [43] there may be many local optima, therefore the estimation is carried out by considering
multiple sets of starting values for the chosen algorithm. A drawback of the EM algorithm is that it does not provide a direct
quantity to assess the precision of the maximum likelihood estimates. It is possible to consider the missing information
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step to compute the expected value of the complete data log-likelihood given the observed data and the current
value of θ , which denotes all the model parameters;
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step to maximize this expected value with respect to θ  and thus update θ .M.

tuxy 1u

tuū



principle. In the case of the regular exponential family [44], the observed information is equal to the complete information
minus the missing information due to the unobserved components [45, 46]. For an implementation of the above and for the
directed acyclic Gaussian graphical models with hidden variables see [47]. Its computational burden is low over that required
by the maximum likelihood estimation.

The model selection may be based on a likelihood ratio (LR) test statistics between the model with k  latent classes and that
with k  + 1 latent classes for increasing values of k , until the test is not rejected. However, we need to employ the bootstrap to
obtain a p -value for the LR test. It is based on a suitable number of samples simulated from the estimated model with k
latent classes [48]. In [49] they select the best parsimonious model through a consistent estimator based on the parametric
bootstrap. The best model is one among those with the proposed number of latent classes.

We select the number of latent states according to the information criteria most commonly employed: the Akaike information
criterion (AIC, [50]) and the Bayesian information criterion (BIC, [51]). We recall that, when the states are selected according to
the model with the smallest value of BIC, we decrease the maximum of the log-likelihood value, considering also the total
number of individuals. Their performance has been studied in-depth in the literature on mixture models (see, among others
[43], Chapter 6). They are also employed in the hidden Markov literature for time-series, where they are penalized by the
number of time occasions (see, among others [52]). The BIC is usually preferred to AIC, as the latter tends to overestimate the
number of latent states but it may be too strict in certain cases (see, among others [53]). The theoretical properties of BIC in
the LM models framework are still not well established. However, BIC is a commonly accepted choice criterion for these models
as well as to choose the number of latent classes for the latent class model (see, among others [54]). In [5], this criterion is
also used together with other diagnostic statistics measuring the goodness-of-classification. A more recent study [55]
compares the performance of some likelihood and classification-based criteria, such as an entropy measure, for selecting the
number of latent states when a multivariate LM model is fitted to the data.

An interesting feature of the LM model concerns prediction. As shown in [5] the local decoding allows prediction of the latent
state for each individual at each time occasion by maximizing the estimated posterior function of the latent process. The
global decoding employing the Viterbi algorithm [56], (see also [57]) allows us to obtain the most a posteriori likely predicted
sequence of states for each individual. The joint conditional probability of the latent states given the responses, and the
covariates  are computed by using a forward recursion according to the maximum likelihood estimates of the

model parameters, where u  denotes a configuration of the latent states. The optimal predicted state

is found by considering , where the hat denotes the value of the parameter at the maximum of the log-

likelihood of the model of interest, for u  = 1, …,  k ; and computing in a similar way , for t  = 2, …,  T  and ū  = 2, …,  k ; then

maximizing such that .

2.2 Growth mixture models

The GCMs provide the estimated shapes of the individual trajectories accounting for within and between individual
differences. The measurement model concerning the observed responses deals with individual growth factors. The latent
model is related to the means, variances, and covariances of the growth factors to explain between-individual differences. First
we recall the LGCM and then the GMM. The LGCM without covariates is defined by the following equations:

(2)

for i  = 1, …,  n  and t  = 1, …,  T , where α  and β  are named intercept and slope growth factor respectively, and q  is the
quadratic growth factor. To allow identifiability, the coefficient of the intercept growth factor is fixed to 1. Therefore, it equally
influences the repeated measures across the waves and it remains constant across time for each individual. Different values
can be assigned to the coefficient λ  related to each time occasion t , in order to dispose of growth curves with different
shapes that are linearly or not linearly dependent on time. In order to define a growth model with equidistant time points, the
time scores for the slope growth factor are fixed at 0, 1,2, …,  T  − 1 (see, among others [15]). The first time score is fixed at zero
and the intercept growth factor can be interpreted as the expected response at the first time point. The time scores for the
quadratic growth factor are fixed at 0, 1,4, …, ( T  − 1)  to allow for a quadratic shape of the trajectory, and for a linear growth
model the quadratic growth factor q  is fixed at 0 for all i , i  = 1, …,  n .

The measurement errors  in Equation (2) are not correlated across time, they are i.i.d. disturbances. Because there is no
intercept term in the measurement model, the mean structure of the repeated measures is determined entirely by means of
the latent trajectory factors. In the structural model, the parameters μ , μ , and μ  are the population means of the
intercept, slope, and the quadratic term respectively; ζ  is the deviation of α  from the population mean intercept, ζ  is the
deviation of β  from the population mean slope, and  is the corresponding deviation from the population mean quadratic

factor. They are assumed to follow a multivariate Gaussian distribution with zero means and variances denoted by ψ , ψ ,
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and ψ  respectively and they are uncorrelated with . The covariance of the intercept and the slope growth factor is ψ ,
those of the quadratic factor with the intercept and the growth factor are ψ  and ψ , respectively. When the response is
ordinal or categorical, the thresholds are assumed to be equal for each measurement occasion by imposing the constraint τ  
=  τ  for all t , t  = 1, …,  T  and the constraint μ  = 0 is also required.

In the conditional growth model, the time-fixed covariates are included as predictors of the growth factors or as direct
predictors of the response variable. Time-varying covariates can only be included as predictors in the measurement model
according to the following equations where the quadratic term as in Equation (2) is deleted to simplify the notation:

(3)

for i  = 1, …,  T  and t  = 1, …,  T , where γ  and γ  are vectors of parameters for the time-fixed covariates x  on α  and β ,
respectively, and γ  is the vector of parameters for the time-varying covariates ω  on the measurement model.

The unconditional GMM is defined by a latent categorical variable U  accounting for the unobserved heterogeneity in the
development among individuals. It represents a mixture of subpopulations whose membership is inferred by the data (for a
review, see, among others [15, 58]). It is characterized by the following equations:

for t  = 1, …  T , where p  is the probability of belonging to latent class u , for u  = 1, …,  k  which defines the latent trajectory,
with the constraints p  ≥ 0 and , where k  is equal to the number of mixture components. The thresholds τ  are

unknown and they are estimated and constrained to be equal across time and latent classes. The intercepts of the growth
factors may vary across latent classes. With categorical response variables, the growth factor referred to the last class is
constrained to zero for identifiability issues and the others are estimated from the model. The variances and covariance of the
growth factors can be allowed to be class-specific or constrained to be equal. Residuals of the growth factors and of the
measurement model are assumed with a Gaussian distribution within each latent class. As in Equation (3) only time-fixed
covariates may be included to infer the latent class through a multinomial logistic regression model since the latent variable is
typically viewed as time invariant. Therefore, the GMM reduces to the GCM when k  = 1 and to the LGCM when the within-class
growth factor variance and covariances ψ ,  ψ ,  ψ  are set to zero for all u  = 1, …,  k . In the latter case, the between-
individual variability is captured only by the latent class membership. The thresholds are estimated with the mean cumulative
response probabilities for a specific response category at each measurement occasion by the estimated distribution of the
latent growth factors.

The maximum likelihood estimation of the model parameters when there are categorical response variables and continuous
latent variables requires numerical methods. The computation is carried out by using Monte Carlo integration [15, 59]. As in
the standard Gaussian mixture models, imposing constraints on the covariance matrices of the latent classes ensures the
absence of singularities and potentially reduces the number of local solutions [24, 28]. The model selection concerns the
choice of the number of the latent classes and the order of the polynomial of the group's trajectories. The most common
applied empirical procedure is the following: first the order of the polynomial is assessed by estimating both linear and
nonlinear unconditional GCM, or GMM with k  = 1, GMM(1) in the following. Then, the number of latent classes is determined
according to the unconditional model in order to avoid an over-extraction of the latent classes (see also [60]). Finally, the
covariates are added in the model as predictors of the latent classes.

The LR statistic is employed for the model selection also by considering the bootstrap (see, among others [61]) as illustrated in
the previous section. The number of latent classes is selected according to the AIC or BIC indices illustrated in Section 2.1. The
relative entropy measure [62] is commonly employed to state the goodness of classification:

(4)

where  is the estimated posterior probability of belonging to the u -th latent class at convergence, k  is the number of latent

classes, and n  is the sample size. The values approach 1 when the latent classes are well separated. However, we notice that
it differs from the normalized entropy criterion defined by [63] which instead divides the first term of the Equation (4) by the
difference between the log-likelihood of the model with k  classes and the one with just one class. The above criteria may lead
to a model lacking of interpretability in terms of latent classes or in which only few individuals are allocated in a class. As
suggested by many authors such a choice needs also to be guided by the research question as well as by theoretical
justification and interpretability [64-66]. The optimal number of classes derived from the LGCM is always bigger than the
optimal number of classes derived from GMM. Within the LGCM, individuals with slightly different growth parameters are
allocated to a different latent class compared with the GMM (see, among others [67]).
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3 REAL DATA EXAMPLE: THE HEALTH AND RETIREMENT STUDY
In order to show the main differences among the models illustrated in the previous section, we consider a longitudinal study
aimed at describing self-perceived health status. The latter is a frequently used way to establish health policy and care as the
repeated subjective health assessment reflects the self-perception of health and how it is going to evolve over time. It is
recorded by one item with response categories defined according to an ordinal variable. The data is taken from version I of the
RAND HRS data, collected by the University of Michigan (see also http://www.cpc.unc.edu/projects/rlms-hse and
http://www.hse.ru/org/hse/rlms). The 30 406 respondents were asked to express opinions on their health status at T  = 8
approximately equally spaced occasions, from 1992 to 2006. After considering only individuals with no missing data, we ended
up with a sample of n  = 7074 individuals. The response variable is measured on a scale based on five categories: “poor”, “fair”,
“good”, “very good”, and “excellent”. For each individual, some covariates are also available: gender, race, education, and age (at
each time occasion). The study relies on the investigation of the population heterogeneity in the health status perception as
well as on prediction of features needs to be especially tailored for those elders who are identified to share the most difficult
health conditions.

First, we summarize the estimation process for both models presented in Section 2 and then we make some comparisons on
the estimated quantities. The estimation of the LM models is undertaken in the R environment [68] through the library LMest
(V2.2) [69] that is available on the Comprehensive R Archive Network. This version also accounts for the covariates on the
latent part of the model and missing values on the responses. The estimation of the growth models is undertaken via the
commercial software MPLUS (V7.2). The syntax code is available from the authors upon request.

For the LM model parameterized as in Equation (1) we employ the model search procedure as illustrated in Section 2.1 to find
the best model among those with a number of latent states from 1 up to 11. The search strategy which is implemented to
account for the multimodality of the likelihood function is based on estimating the same model many times with the same
number of states by using deterministic and random starting values for the EM algorithm. The number of different random
starting values is proportional to the number of latent states. The relative log-likelihood difference is evaluated by considering
a tolerance level equal to 10 . The model is estimated for an increasing number of latent states while checking for the
replication of likelihood values. The best model is the one with nine latent states according to the BIC values as showed in
Table 1 denoted by LM(9) in the following. The table also reports the AIC values and the number of free parameters.

Table 1. Fitted statistics for an increasing number of latent states from 1 to 11 of the LM model with covariates
and number of parameters
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The estimated cut-off points of the LM(9) model are , , . The estimated initial
probabilities are reported in Table 2 together with the support points. The estimated support points are arranged in
increasing order, in order to interpret the resulting latent states from the worst (latent state 1) to the best (latent state 9)
health conditions. We notice from Table 2 that 11% and 19% of individuals are in the second and third latent states
respectively, which are worse states with respect to latent states 6 and 8. Table 4 reports the matrix of the estimated transition
probabilities between latent states. The only greater probabilities than 0.10 in the elements adjacent to the diagonal are those
of the transition from the first to the second latent state and from the second to the third. For the latent state 4, the probability
to move to the latent states 7 or 8 or 9 is higher than 0.10. They show that the individuals belonging to this state, perceiving
bad health conditions at the beginning of the survey, have some probability to feel better (to improve their health conditions)
over time. For the latent state 8, the probability of moving to latent state 3 or 4 or 5 are higher than 0.10.

Table 2. Estimated support points and parameters referring to the initial probabilities of the chain of the LM(9)
model

 Log-
likelihood AIC BIC #par

Abbreviations: AIC, Akaike information
criterion; BIC, Bayesian information
criterion; LM, latent Markov; #par, number
of parameters.

LM(1) −80 623.52 161 
267.0

161 
335.7

10

LM(2) −69 789.21 139 
604.4

139 
693.6

13

LM(3) −65 707.82 131 
451.6

131 
575.2

18

LM(4) −63 968.06 127 
986.1

128 
157.7

25

LM(5) −63 293.98 126 
656.0

126 
889.3

34

LM(6) −63 062.23 126 
214.5

126 
523.4

45

LM(7) −62 894.29 125 
904.6

126 
302.7

58

LM(8) −62 739.12 125 
624.2

126 
125.3

73

LM(9) −62 645.69 125 
471.4

126 
089.1

90

LM(10) −62 615.99 125 
450.0

126 
198.2

109

LM(11) −62 650.58 125 
561.2

126 
453.5

130



Table 3 shows the effect of the covariates on the probability of reporting a certain level of the health status. In particular,
women tend to report worse health status than men (the odds ratio for females versus males is equal to (exp(−0.185) = 0.831),
whereas white individuals have a higher probability of reporting a good health status with respect to non-whites (the odds
ratio for non-whites versus whites is equal to (exp(−1.341) = 0.261). We also observe that better educated individuals tend to
have a better opinion about their health status especially those with a high educational qualification. Finally, the effect of age
is decreasing over time and its trend is linear as the quadratic term of age is not significant.

Table 3. Estimates of the vector of the regression parameters of the LM(9) model

Table 4. Estimates of the transition probabilities under the LM(9) model (probabilities out of the diagonal greater
than 0.1 are in bold)

Latent
state

Support
points

Initial
probabilities

Abbreviation: LM, latent Markov.

1 −8.657 0.047

2 −4.941 0.117

3 −2.456 0.192

4 −1.147 0.028

5 −0.224 0.213

6 2.062 0.189

7 4.303 0.121

8 5.159 0.213

9 7.357 0.067

Coefficient Female Non-
white

Some
college

College
and
above

Age Age

Abbreviations: LM, latent Markov; se, standard errors.

β −0.185 −1.341 1.37 2.461 −0.125 −0.001

se 0.075 0.109 0.092 0.104 0.007 0.026
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In Figure 1 we compare the individual response profiles of the LM(9) model obtained by using the estimated posterior
probabilities according to the rules illustrated in Section 2.1. They are related to the white female participants over 65 years of
age at the third wave of interview, who are highly educated. They may constitute a special group of people to account for. From
Figure 1 we notice that some profiles are less regular than others: they detect those females whose health status may strongly
decline due to events that are not observed through the covariates.

 

1 2 3 4 5 6 7 8 9

Abbreviation: LM, latent Markov.

1 0.796 0.182 0.000 0.001 0.006 0.001 0.002 0.012 0.000

2 0.053 0.822 0.106 0.002 0.000 0.000 0.000 0.017 0.000

3 0.008 0.020 0.868 0.004 0.061 0.001 0.000 0.038 0.000

4 0.026 0.013 0.001 0.336 0.006 0.039 0.155 0.292 0.132

5 0.002 0.024 0.015 0.000 0.887 0.066 0.006 0.000 0.000

6 0.000 0.004 0.024 0.003 0.024 0.896 0.045 0.001 0.003

7 0.001 0.004 0.001 0.052 0.025 0.009 0.845 0.001 0.062

8 0.018 0.061 0.189 0.301 0.153 0.000 0.000 0.278 0.000

9 0.000 0.000 0.000 0.050 0.006 0.051 0.072 0.000 0.821



For the growth models, we detect the best model within the class of GMMs according to the model strategy illustrated at the
end of Section 2. As the first step, we estimate two GMMs without covariates with just one latent class in which the
respondents' opinions about their health are specified as a function of linear and nonlinear growth patterns. The GMM with a
quadratic effect shows a log-likelihood equal to −63 996.8 and the BIC index equal to 128 100 with 12 parameters. This model is
preferred according to a BIC index as the GMM without the quadratic effect results in the log-likelihood equal to −63 116.3 and
the BIC value equal to 128 303.5 with eight parameters (the χ  test is equal to 1761 with four degrees of freedom which is
significant). As the second step, we reject the hypothesis of homogeneity within groups since the log-likelihood of the linear
model under this assumption decreases to −83 152.7. When we consider the quadratic term we reach three dimensions of
integration, the computer burden increases exponentially and the model with a high number of latent classes does not reach
the convergence. The estimated parameters of the linear GMM model denote that the perception of a good health status
decreases over time. The variances of the intercept and of the slope factor are significant, indicating the existence of
individual differences in growth trajectories. As a third step, we fit the selected GMM model without covariates by considering
the existence of a mixture of Gaussian distributions from two up to five components with varying patterns of the growth
trajectories.

Table 5 shows the results. We select the model with three latent classes according to the BIC index denoted as GMM(3) as the
models with a higher number of components do not reach the convergence criteria. The model with four latent classes has the
same log-likelihood value of the model with three latent components. The best log-likelihood value for the model with five
latent classes is not replicated with different starting values. As a last step, we include in the model of Equation (3) time-fixed
covariates, taken as constants across the latent classes. Their coefficients are significant with the exception of the quadratic
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Figure 1.

Open in figure viewer

Individual profiles for a selected group of individuals for the LM(9) model. LM, latent Markov.
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effect of age. The resulting model has a log-likelihood equal to −63 421.0 and a BIC index equal to 127 143.3 with 34
parameters. The entropy value as in Equation (4) is equal to 0.763.

Table 5. Selection of the number of latent classes of the GMM without covariates

The estimated probabilities of GMM(3) and the average conditional probability of belonging to each latent class are displayed
in Table 6. This is a common employed way to assess the tenability of the selected model as the average posterior probability
of group membership for each trajectory is considered as an approximation of the trajectories' reliability. The posterior
probabilities are used to assign each individual membership to the trajectory that best matches. Values of 0.70 or 0.80 are
reference values in the literature to group individuals with a similar pattern of change in the same latent class. Table 6 shows
the classification probabilities for the selected GMM(3) by considering the most likely latent class membership (row) by the
average conditional probabilities (column). We notice that contrary to our expectation, the diagonal values referred to the first
and third latent class are lower than that of the second latent class meaning that these classes are not properly identified. The
percentage of units belonging to the first and third latent classes according to the estimated posterior probabilities is equal to
10.8% and 3.2%, respectively. From Table 7, the estimated coefficients of the covariates on the growth factor are not high and
the sign of the female coefficient is reversed in comparison to that estimated by employing the LM model. Therefore, females
tend to report better health status than man. This is probably due to the poor reliability of the selected model. The high
education shows the highest positive estimated coefficient on the intercept factor.

Table 6. Classification probabilities for the GMM(3) with covariates according to the most likely latent class
membership (row) by the average conditional probabilities (column)

Table 7. Estimates of the regression parameters of the intercept and slope growth factor of the GMM(3) with
covariates

Latent
class

Log-
likelihood BIC #par Entropy

Abbreviations: BIC, Bayesian information criterion;
GMM, growth mixture model; #par, number of
parameters.

1 −64 116.3 128 
303.5

8 1.000

2 −64 092.3 128 
282.2

11 0.599

3 −63 982.3 128 
088.7

14 0.719

4 −63 982.2 128 
115.1

17 0.428

5 −63 977.2 128 
131.7

20 0.746

 1 2 3

Abbreviation: GMM, growth
mixture model.

Class
1

0.436 0.556 0.008

Class
2

0.022 0.973 0.005

Class
3

0.028 0.436 0.537



As shown in Table 8 the estimated covariance is negative, meaning that the individuals with the highest values of the
intercepts at the first occasion (e.g. with better perceived health) change more rapidly into a worse perception. Figure 2
illustrates the estimated trajectories where the first latent class identifies the individuals with initial poor health status and a
slow decline in their health, the second latent class those with a better initial health status and a slightly faster decline
compared to the first class and the third latent class individuals perceiving a strong worsening of their health status over time.

Table 8. Estimates of the structural parameters of GMM(3) with covariates

Coefficient Female Non-
white

Some
college

College
and
above

Age

Abbreviations: GMM, growth mixture model; se, standard errors.

γ 0.265 −1.506 1.037 1.876 −0.044

se 0.103 0.170 0.136 0.148 0.009

γ 0.005 0.032 −0.040 −0.071 0.000

se 0.012 0.015 0.016 0.018 0.001

α

β

Coefficient Estimates se Coefficient Estimates se

Abbreviations: GMM, growth mixture model; se, standard errors.

μ −6.734 0.498 μ −0.105 0.090

μ −2.302 0.443 μ −0.193 0.069

μ 0.000 0.000 μ −1.292 0.118

ψ 6.501 0.422 ψ 0.065 0.005

ψ −0.272 0.039    

α(1) β(1)

α(2) β(2)

α(3) β(3)

α β

αβ



Figure 2.

Open in figure viewer

Response profile plot for the GMM(3) with covariates. GMM, growth mixture model.

4 CONCLUDING REMARKS
We propose a comparison between the LM models and the GMMs when the interest lies in modeling longitudinal ordinal
responses and time-fixed and time-varying individual covariates. The interest in this topic is relevant since in many different
contexts ordinal data are a way to account for the importance given by an item or to measure something which is not directly
observable.

The LM model is a data-driven model which relays on a latent stochastic process following a first-order Markov chain with the
fundamental principle to estimate transitions between latent states and to capture the influence of time-varying and time-
fixed covariates on the observed transitions. GMM exploits a latent categorical variable to allow the unobserved heterogeneity
in observed development trajectories. The latent variable is time invariant and it describes the trend through a polynomial
function allowing for time-fixed covariates. We illustrate the main features of the models and their performance by referring to
a specific application based on real data in which the ordinal response variable describes the self-perceived health status. The
aim is also to estimate a life expectancy for longevity.

We can summarize the main differences between the LM model and the GMM according to the following characteristics: (1)
the model estimation and selection procedure leading to the choice of the number of the latent states or classes, (2) the way
they relate the conditional probabilities of the responses to the available individual covariates, (3) the model capability to use
the posterior probabilities in order to get profiles for each latent class membership. We show that the LM model outperforms
the GMM mainly because it is more rigorous on each of the above points. With reference to (1) the model choice is more

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/sam.11335#figure-viewer-sam11335-fig-0002
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complex for the GMM and it starts with the model without covariates. We found that the Monte Carlo integration for the GMM
with a number of latent classes up to three, leads to improper solutions. The selection of the best model is more straight for
the LM model, however it requires a search strategy to properly initialize the EM algorithm and therefore it is computationally
demanding when the number of latent states in the model is high. With reference to (2) the covariates are better handled by
the LM model since they are allowed according to a suitable parametrization for categorical data such as global logits. While in
the LM model the covariates may affect the measurement part of the model or may influence the latent process, in the GMM
they can affect both but in the measurement model, only time-fixed covariates are allowed. Then, when the interest is on
detecting subpopulations in which individuals may be arranged according to their perceived health status, the LM model is
more appropriate. The GMM can be useful when just a mean trend is of interest and the expected subpopulations are not too
many. With reference to (3) the predictions of the LM model are based on local and global decoding. The first is based on the
maximization of the estimated posterior probability of the latent process and the second on a well-known algorithm developed
in the hidden Markov model literature to get the most a posteriori likely predictive sequence. In the GMM, the prediction is
based on the maximum posterior probability and as shown in the example it may not be precise when the internal reliability
of the model is poor.

We conclude that, due to the asymptotic properties of the algorithm used to estimate the posterior probabilities, the LM model
should be recommended especially when the prediction of the latent states is one of the main interests in the data analysis.
The GMM leads to select a lower number of subpopulations compared with the LM model. However, this is not always a
desirable property since when the data are rich, as in the applicative example, it may not be of interest to extremely compress
their information. Within the LM model it is possible to detect also a reversible transition between the latent states. On the
other hand, the consideration of the time dimension in the structural form made by the GMM is inadequate to explain the
latter feature of the data.

The results proposed by the applied example may be useful when the interest is to evaluate the needs of the elderly in order
to prevent fast deterioration of their health, or to investigate in more depth the reasons for improved health conditions with
increasing age and therefore plan specific interventions for their health.
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