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Abstract. This study concerns an implementation of smoothed particle 
hydrodynamics (SPH) fluid simulation on a graphics processing unit (GPU) 
using the Compute Unified Device Architecture’s (CUDA) parallel 
programming. A bookkeeping method for the neighbor search algorithm was 
incorporated to accelerate calculations. Based on sequence code profiling of the 
SPH method, particle interaction computation – which comprises the calculation 
of the continuity equation and the momentum conservation equation – consumes 
95.2% of the calculation time. In this paper, an improvement of the calculation is 
proposed by calculating the particle interaction part on the GPU and by using a 
bookkeeping algorithm to restrict the calculation only to contributed particles. 
Three aspects are addressed in this paper: firstly, speed-up of the CUDA parallel 
programming computation as a function of the number of particles used in the 
simulation; secondly, the influence of double precision and single precision 
schemes on the computational acceleration; and thirdly, calculation accuracy 
with respect to the number of particles. Scott Russell’s wave generator was 
implemented for a 2D case and a 3D dam-break. The results show that the 
proposed method was succesfull in accelerating the SPH simulation on the GPU. 

Keywords: Compute Unified Device Architecture (CUDA); fluid simulation runtime; 
graphic processing unit (GPU); Scott Russell’s wave generator; smoothed particle 

hydrodynamics (SPH).  

1 Introduction 

The smoothed particle hydrodynamics (SPH) method was introduced as a 
Lagrangian formulation in which the modeling does not depend on a mesh 
geometry but particles move following the motion of the flow. Grid-based 
methods such as finite differences and finite elements have difficulties in many 
aspects, limiting their application in a wide range of problems. Large 
deformations, inhomogeneities, moving material interfaces, deformable 
boundaries and free surfaces are difficult to simulate using grid-based methods. 
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Particle-based methods can deal with these difficulties. The main idea behind 
the SPH method is to provide accurate and stable numerical solutions for 
solving integral equations or PDEs with all kinds of possible boundary 
conditions that are discretized using a set of arbitrarily distributed particles 
without using a mesh. However, a weakness of the method is numerical 
dissipation, which leads to energy loss. This problem has been overcome by 
introducing small and weak perturbations on each particle stochastically as 
proposed in [1]. 

This work concerns optimizing the code that was developed in [1] to reduce 
computation time and be able to simulate with a large number of particles to 
increase the accuracy of the simulation. Since runtime simulation is 
proportional to the total number of particles, it is difficult to simulate fluid 
flows using SPH without an additional strategy to speed up calculation. 
Monaghan and Gingold [2] proposed a bookkeeping method to save 
computational time. This method can accelerate the simulation process by 
restricting the calculation of particle interaction to a box containing the 
concerned particle and neighboring boxes containing the corresponding 
neighboring particles. Nevertheless, the bookkeeping method remains 
inadequate for enabling fast simulation with higher particle resolutions. A 
possible technique to increase the computational speed is parallel computation. 
Parallel computation on graphics processing units (GPU) is extensively used for 
scientific computing. The GPU is specialized for performing intensive and 
highly parallel computation as well as interactive visualization and rendering of 
SPH [3]. 

The objective of this paper is to discuss the acceleration of the SPH method for 
fluid simulation by using parallel GPU programming. Based on profiling a 
sequential code in SPH – i.e. the particle interaction part, which consists of 
calculating the continuity equations and the momentum conservation equation – 
consumes about 95.2% of total calculation time. Since runtime simulation is 
proportional to the total number of particles, the particle interaction part is 
computed on the GPU using CUDA (Compute Unified Device Architecture) 
NVDIA® parallel programming. The bookkeeping algorithm is implemented 
with a grid construction and box calculation, which are calculated on the host or 
CPU, after which all the data are copied to the GPU. All particle interaction 
calculations are then performed on the GPU only for neighboring particles in 
the neighbor boxes and those in the box of the concerned particle. In a previous 
work, executing the SPH physics on a GPU accelerated the simulation in 
comparison to CPU implementation [4]. In the present work, the method is 
implemented in such a way that neighbor search is computed on the CPU while 
the standard SPH physics computation is done on the GPU. The speed-up of 
computation for two different GPU cards (GTX 560Ti and GT 220) was 
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compared, each with different computation capability and precision. In addition, 
the bookkeeping algorithm was used for the neighbor search step.  

In this paper, first, the general concept of the SPH method and its standard 
implementation are briefly discussed. A CUDA parallel approach for SPH is 
subsequently introduced and described in more detail. Afterwards, the Scott 
Russell wave generator problem is used to compare runtime simulations and 
speed-up of the two different GPU cards for single precision and double 
precision simulation, respectively. Finally, we observe that the accuracy of 
simulation depends on the total number of particles. Full-time simulation for a 
2D Scott Russell wave generator problem and a 3D dam-break problem with 
substantial numbers of particles are shown as test cases. 

2 Fundamental Theory 

2.1 Basic Theory of SPH 

SPH is an interpolation method that allows any function to be expressed in 
terms of its values at a set of disordered points [5]. It represents a continuous 
fluid using a set of particles. Each i-th particle carries information of physical 
quantities such as position ri, velocity ui, mass mi, density ρi and pressure Pi. 
Generally, the value of a function representing a physical quantity can be 
approximated by a number of neighboring particles, each contribution of which 
is determined by a kernel function W, written in Eq. (1)as follows: 
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and the gradient discretization of function f   in Eq. (2) becomes: 
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where h is the smoothing length that determines the support of the kernel 
function. 

The kernel function W is usually chosen to be an even function of finite range 
and it should be normalized to unity when integrated over space. The 
neighboring particles within a support domain of radius κh of the kernel 
function for the i-th particle contribute to the summation process of the i-th 
particle, as displayed in Figure 1.  
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Figure 1 Sphere of influence for the i-th particle in 2D space. 

The following kernel function in  Eq. (3) based on cubic spline functions is used 
[5]: 
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where 2/ ,  =0.7i jd r r h h   and κ = 2. 

2.2 Governing Equations 

The governing equations for a viscous fluid that comprises the mass continuity 
and momentum conservation equations are in Eqs. (4) and (5) as follows: 
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where ρ is density, u is velocity vector, P is pressure, g is gravity acceleration, 
and  refers to the diffusion terms. 

In SPH, the fluid field is represented as a set of particles interacting with each 
other through evolution equations. The discretization of the continuity and 
momentum conservation equations in terms of Eq. (1) gives the following Eqs. 
(6) and (7) [6]: 
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where ρk, Pk, and uk are density, pressure and velocity of particle k (evaluated at 
k = i or k = j ), respectively, mj is the mass of the j-th particle, g is body force, 
in this case the gravity, and Wij = W(ri-rj,h). Πij in Eqs. (8) and (9) is an artificial 
viscous term aimed at increasing the stability of the numerical algorithm [2]: 
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where cs is the speed of sound following the equation of state, ε = 0.01 and τ is 
an empirical parameter that represents the shear viscosity. The value of τ = 0.01 
is used for most computations [5]. 

2.3 Equation of State 

In the present implementation, the equation of state is used to avoid expensive 
resolution of the Poisson equation. The equation of state relates pressure to 
density as shown in Eq. (10): 
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and the corresponding speed of sound is in Eq. (11) as follows: 
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where γ is the polytrophic constant, typical adopted value is γ = 7 for water and 
similar fluids, c is the speed of sound at reference density ρ0 = 1000 kg/m3, χ is 
the background pressure; the reference pressure P0 is usually chosen to achieve 
a weakly compressible fluid. To approximate real fluid with an artificial 
compressible fluid, the actual speed of sound cannot be used. However, the 
speed of sound should be set adequately low so that the time stepping remains 
reasonable. Monaghan [7] has found by experience that the speed of sound can 
be artificially slowed significantly for fluids without affecting the fluid motion 
and that the minimum speed of sound should be about ten times faster than the 
maximum fluid velocity in order to maintain the changes in fluid density at less 
than 1%. The optimal value of the speed of sound is determined by considering 
the balance of time stepping and the incompressible behavior of the artificial 
compressible fluid. This artificial compressibility considers that every 
theoretically incompressible fluid is actually compressible. 

2.4 Boundary Conditions 

The simulation domain is surrounded by fixed boundaries, or, in the case of 
water waves, a free surface. For fixed surfaces, the fluid particles next to the 
surface cannot pass through the surface, which is specified by a no-flow 
condition: u.n = 0 where n is the normal vector. In this work, the calculations 
were made with boundaries defined by lines of particles that exert repulsive 
forces on the fluid particles [8]. 

2.5 Bookkeeping Method 

The conventional SPH method is highly time-consuming because the particle 
approximation is calculated for all particles. To accelerate the runtime of SPH, 
calculating only the nearest neighboring particles for the concerned particle 
should be considered. The smoothing function of SPH has a compact support 
domain, thus only a finite number of particles within the support domain of 
dimension κh of the concerned particle are used in the particle approximations.  
The process of finding the nearest particles is commonly referred to as nearest 
neighboring particle searching (NNPS). According to Monaghan and Gingold 
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[2], a substantial saving in computational time can be achieved by using cells as 
a bookkeeping device. Monaghan [9] describes the procedure for carrying out 
nearest neighboring particle searching using the linked-list algorithm. 

In the implementation of the linked-list algorithm, a temporary mesh is overlaid 
on the problem domain, as illustrated in Figure 2. The mesh spacing is selected 
to be the same as the dimension of the support domain. Then, for the i-th 
particle its nearest neighboring particles can only be in the same grid cell or the 
immediately adjoining cells. Therefore, the search is confined to 3, 9 or 27 cells 
for one-, two-, or three-dimensional space, respectively. The linked-list 
algorithm allows each particle to be assigned to a cell and for all the particles in 
a cell to be chained together to ensure easy access. 

 

Figure 2 Illustration of the bookkeeping method. 

The following pseudo-code computes NB(K,J), the number of particle in the 
(K,J)-th bin, and LIST(1 ,… ,NB(K, J),K,J), a list by index number of the 
particles in the (K,J)-th bin. For typical kernels L = 2h, where h is the 
‘interactions’ parameter. 

For 2D cases, the grid construction and bookkeeping algorithms are: 
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Algorithm 1: Grid construction algorithm 
DO I=1,N 
       K=Y(I)/L 
       J=X(I)/L 
       NB(K,J)=NB(K,J)+1 
       LIST (NB(K,J),(K,J)=I 
ENDDO 

 

Algorithm 2: Bookkeeping algorithm 

DOI=1,N 

K=Y(I)/L 
J=X(I)/L 
DO JNDEX=J-1,J+1 
DO KNDEX=K-1,K+1 

DO INDEX=1,NB(KNDEX,JNDEX) 
M=LIST(INDEX,KNDEX,JNDEX) 

W(I,M)=EVALUATION OF W 
ENDDO 

ENDDO 

ENDDO 

ENDDO 

In 2D cases, a particle in the (K,J)-th bin can only interact with particles in a 
total of 9 bins, while in 3D cases in a total of 27 bins. 

3 CUDA Parallel Approach for SPH 

In this section, CUDA parallel programming for fluid simulation of smoothed 
particle hydrodynamics is described, covering the profiling of the SPH code 
sequence steps, implementation of the bookkeeping method on the GPU, and 
computations of density and force. 

3.1 Profiling the SPH Code Sequence 

The main part of our SPH code is the time stepping function, which consists of 
the right-hand side (RHS) of the Navier-Stokes equations, grid calculation for 
neighbor particle search, position updating, equation of state calculation, and 
stepping time calculation based on the CFL condition. The second order of the 
Runge-Kutta time-stepping scheme is used.   

Code profiling was conducted for 1000 iterations, as shown in Figure 3. The 
result shows that the most time-consuming part occurs in the calculation of 
particle interaction for the continuity equation and the momentum equation. The 
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computation time of the particle interaction part increases according to the 
number of particles. This makes it difficult to simulate fluid dynamics using 
SPH, where the precision of the method depends on the number of particles.  

The neighbor search algorithm can accelerate the SPH code by increasing its 
efficiency owing to the fact that particle interaction calculations are only 
conducted for the nearest particles of the concerned particle. In addition to using 
neighbor search, calculation of the particle interaction part is conducted in 
several blocks on the GPU in a parallel way, as depicted in Figure 4.  

The calculations of the continuity equation, the conservation of momentum, and 
equation of states are conducted on a device with a CUDA scheme. The grid 
calculation for neighboring particles is constructed and carried out on the host, 
from which the result is subsequently copied to the device. 

3.2 Bookkeeping Method on GPU 

Neighbor searching is usually the most computationally expensive step in 
particle simulation since it is applied to each particle at every step. In our 
bookkeeping code there are three main calculation parts. For 2D cases, each 
particle is located in a grid and stored in two 1D arrays. The first and the second 
1D array represent the index of small boxes on the x-axis and the y-axis 
respectively. The size of the array is the same as the number of particles. The 
next step is listing the neighbor boxes of the concerned box. The list of neighbor 
boxes is stored in two 3D arrays, where the first 3D array and the second 3D 
array represent the index of neighbor boxes on the x-axis and the y-axis, 
respectively.  

The size of the 3D array is the maximum number of boxes on the x-axis 
multiplied by the maximum number of boxes on the y-axis multiplied by the 
maximum number of neighbor boxes of the concerned box. Finally, the index of 
neighbor particles is calculated from the particles in each neighbor box. The 
index of neighbor particles is stored in one 3D array. This calculation scheme 
requires many arrays to be reserved and therefore has a large computational 
cost. 

Algorithm 1 (grid construction) and Algorithm 2 (bookkeeping) are both 
implemented on the GPU. All 3D arrays (ix,iy,iz) must be converted to 1D 
coordinates by 

    
x y width z width height
i i grid i grid grid .  
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Then, after all grids have been constructed and calculation of the boxes of 
particles in time-stepping has been done on the host, all data are copied to the 
device.  

3.3 Density and Force Computations 

The main calculation in the SPH method deals with the continuity equation 
(density) and the momentum conservation equation (velocity). CUDA parallel 
programming is implemented in this part to speed up calculation. 

Algorithm 3: Parallel density and force calculation algorithm 

define inttid=threadIdx.x+bloxkDim.x*blockIdx.x; 
while (tid<n){ 

       K=Y(tid)/L 
       J=X(tid)/L 

    DO JNDEX=J-1,J+1 
          DO KNDEX=K-1,K+1 

          DO INDEX=1, NB(KNDEX, JNDEX) 
            M=LIST(INDEX, KNDEX, JNDEX) 

                          dvdt[tid]=(tid, M) EVALUATION FOR VELOCITY                                       
           OR 
           drhodt[tid]=(tid, M) EVALUATION FOR VELOCITY 

          ENDDO 

          ENDDO 

  ENDDO  

       tid+=blockDim.x*gridDim.x; 
} 
 

Since our simulation is divided into blocks with a size equal to the global 
support radius, the neighbors of any particle in a box are particles in the 
neighboring box or in the box of the concerned particle. On devices, number of 
particles N is divided into (N+511)/512 blocks and 512 threads per block, which 
are launched in the kernel. In Algorithm 3, threadIdx, blockDim, and blockIdx 
are built-in variables in CUDA programming. 

4 Results and Discussion 

A two-dimensional Scott Russell wave generator problem and a three-
dimensional dam-break problem were adopted as test cases. The objective of 
this work was to speed up the runtime simulation by using GPU-CUDA 
programming while simultaneously increasing the number of particles to 
achieve high accuracy in the simulation results. The accuracy of the simulation 
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was evaluated using an analytical solution of the solitary wave of Scott 
Russell’s wave generator problem. 

 

Figure 3 Profiling SPH code. 

 

Figure 4 Particle interaction scheme on the GPU. 
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4.1 Precondition of Simulation 

Scott Russell’s wave generator was used to simulate a falling avalanche in a 
dam reservoir. In this case, a solitary wave generated by a heavy box falling 
vertically into the water was considered. The geometry of tank and weighted 
box were chosen according to the simulation configuration used by Ashtiani and 
Rezaei [10]. The simulation involved a weighted box (0.3 m x 0.4 m) dropping 
vertically into a 0.21 m deep wave tank filled with still water. The bottom of the 
box is initially placed 0.5 cm below the water surface to avoid splashing. The 
initial condition of the problem is shown in Figure 5. The vertical velocity of 
the box is computed using the following Eq. (12) [11]: 

 
1/2
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where d is the depth of the water, Y is the height of the bottom of the box above 
the bottom of the tank at time t, g is the acceleration of gravity, A is a constant 
value equal to 0.7, and V is the vertical falling velocity of the box at time t. 

 

 

Figure 5 Sketch of Scott Rusell’s problem considered in this paper. 

The analytical form of the solitary wave generated by the falling box calculated 
by Lo and Shao [12] is in Eq. (13) as follow: 
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where H is the water surface elevation, a is wave amplitude and  c g d a 

is the solitary wave’s velocity. The analytic solution was used to validate the 
simulation. In the simulation, the fluid surface was detected using the fast-free 
surface detection method proposed by Marrone and Colagrossi [13]. 

The concept of fast-free surface detection is based on the minimum eigenvalue 
of the normalization matrix of the kernel function and the scan region 
algorithm. The first step of the algorithm, which is based on the work of Doring 
[14], exploits the eigenvalues of the renormalization matrix, which is defined in 
Eq.(14) as follow: 
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i j i j i j
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where ∆��  is the volume of j-th particle. Doring [14] showed that the value of 
the minimum eigenvalue � of B

-1 depends on the spatial organization of the 
particles in the neighborhood of the considered i-th point calculation. The 
minimum eigenvalue � tends to change towards 0 when a particle is going away 
from the fluid domain and tends to switch to 1 when said particle is located 
inside the fluid domain. The second step of the algorithm detects particles that 
actually belong to the free surface by means of their geometric properties and 
evaluates their local normals.  

A quantitative comparison between the simulation and the analytic solution is 
shown, using the relative error at each time t as expressed by the following Eq. 
(15): 

100%
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        (15) 

where ε is the relative error (%), i is the index of particles detected on the 
surface, N is the number of particles detected, yi is the height of the analytical 
solution at position xi, and y'i is the height of the fluid surface detected at 
position xi. 

SPH simulations were conducted on a GPU for single precision and double 
precision only up to 1000 iterations, but several full-time simulations were also 
performed. The speed-up was almost the same for both simulations, as can be 
seen in Tables 3 and 4, ensuring that all simulation results with 1000 iterations 
were acceptable. The speed-up value was defined as the ratio between GPU 
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time computation and CPU time computation. For the single precision 
simulations, two different computers equipped with different GPU cards and 
different CPU processors were used. The specifications of the first computer 
were: NVDIA GTX 560 Ti with intel Core i7 and RAM 16 GB, and for the 
second one: NVDIA GT 220 with intel Core i5 and RAM 4 GB. However, only 
the first computer was used for the double precision simulation. The details of 
the specification are listed in Tables 1 and 2. 

Table 1 GPU card specification. 
Gpu Multiprocessor CUDA Cores Compute Capability 

GTX 560 Ti 8 384 2.1 
GT 220 6 48 1.2 

 
Table 2 CPU Specification 

Processor Cores Thread Clock speed Cache 

Intel Core i7-2600K 4 8 3.4 GHz 8 M 
Intel Core i5-2400 4 4 3.1 GHz 6 M 

 
Table 3 Runtime for full-time simulation on GT 220. 

Number of Particles CPU (hours) GPU (hours) Speed up 

1465 0.3832 0.1261 3.0394 
3300 1.6857 0.5409 3.1165 
5873 4.8352 1.5632 3.0931 

 
Table 4 Runtime for 1000-iteration simulation on GT 220. 

Number of Particles 
CPU 

(hours) 
GPU (hours) Speed-up 

1465 0.0419 0.0141 2.972 
3300 0.1129 0.0365 3.0932 
5873 0.2165 0.069 3.1376 

4.2 Single Precision Simulation 

Figures 6 and 7 depict the runtime speed-up for the simulation with single 
precision SPH, which has only float numbers. The implementation of GPU 
parallel code for SPH successfully reduced the computation time. The speed-up 
for the GT 220 was from 2.9 up to 3.2, whereas for the GTX 560Ti it was from 
3.7 up to 4.15. Since the GTX 560 Ti has a higher computation capability (that 
is 2.1) compared to the GT 220 (1.2), the result also shows that the speed-up of 
the calculation with the GTX 560Ti was higher than with the GT 220. 

 



244 Wahyu Srigutomo, et al. 

 
Figure 6 Computation time for single precision SPH using GT 220 and GTX 
560 Ti. 
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Figure 7 Speed-up by GT 220 and GTX 560 Ti for single precision SPH. 

4.3 Effect of Single and Double Precision 

Figures 8 and 9 depict a comparison between single precision and double 
precision with regard to the computational speed-up. The results show that the 
runtime for double precision code was faster than that for single precision for 
both CPU and GPU calculations. The GPU calculation with single precision had 
more speed-up than with double precision.  

The GTX 560 Ti did not exhibit better performance in double precision than in 
single precision. This is due to the execution time that is expressed as floating 
point per second for single precision being higher than for double precision. 
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Figure 8 Computation time for single precision and double precision SPH. 
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Figure 9 Speed for GTX 560 Ti with single and double precision SPH. 

4.4 Accuracy of Simulation Depending on Number of Particles 

The accuracy of the simulation depends on the number of particles. The 
particle-based fluid solver SPH requires a large number of particles to achieve a 
smooth surface. The Scott Russell wave generator was simulated, which with 
21270 particles yielded a runtime of 15.977 hours for a full-time simulation 
(2.15 second simulation time). The simulation was carried out using an Intel i5 
computer and a GT 220 graphic card. Figure 10 shows the free-surface profile 
for a time instance compared with the analytic solution (black solid-line).   

Figure 11 depicts the relative error of the free surface compared to the analytic 
solution. The smallest error was achieved by the simulation with 21270 
particles. It can be clearly seen that the effect on simulation accuracy with a 
large number of particles is that the larger the number of particles, the better the 
simulation. For the three-dimensional case, a dam-break problem was adopted 
(Figure 12). A simulation was performed using 30976 particles, which resulted 
in a runtime of 14.972 hours for a full-time simulation (5 second simulation 
time). The simulation was carried out using an Intel i7 computer with a GTX 
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560Ti graphic card. The results also demonstrate that a smooth fluid surface is 
achieved by using a large number of particles. 

 

Figure 10  Simulation of Scott Russell’s wave generator: a) number of particles 
= 5,873, b) number of particles = 21,270. The free surface in the simulations is 
compared with the analytic solution (solid line) and relative errors are indicated. 
The red boxes are close-up views of the free surface.  

It can be seen from Figures 10 and 11 that the relative errors for both cases of 
Scott Russel’s problem with smaller and larger number of particles tended to 
decrease with time. Furthermore, the overall relative errors with a larger number 
of particles were about one half times lower than with a smaller number of 
particles. The relative errors oscillated between 5.7% at later times and 10.2% at 
early times for cases where the number of particles was 5873 and 9210 and 
decreased to a level between 5.5% and 3% for the case where the number of 
particles was 21270. These results generally confirm the need of a sufficient 
number of particles to produce simulations with an acceptable resolution.  
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Figure 11  Relative error curve for Scott Russell’s wave generator. 

The results of the 3D dam-break flow simulation are depicted in Fig. 12. A 
water column of 0.3 m height is initially bounded by three vertical walls, a 
vertical gate (0.5 m from the back vertical wall) and a bottom wall whose area is 
0.5 x 0.5 m2. The gate is then instantaneously removed allowing the water to 
collapse and flow along a horizontal passage under the influence of gravity. The 
distance between back and front vertical wall is 2.0 m.  

The figure shows the flow simulation in the form of normalized velocity,  

 
1

2v gh  at three successive times t = 1, 2.5 and 5 s. At early times, high 

velocity distribution appears at the vicinity of the gate’s bottom. As time passes, 
the height of the water column decreases and higher velocity distribution grows 
forward and backward from the area near the removed gate. Longer distribution 
of high velocity now fills in the passage and continues until it collides with the 
front vertical wall, yielding a vertical jet rising along the wall, which tends to 
overturn backward. Within the scope of this study, the rapid drop of the water 
column’s height also ignites a splash in the area near the back vertical wall, but 
nevertheless smooth velocity and surface distribution were achieved using 
30976 particles.  
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Figure 12  Normalized velocity distribution for 3D dam-break problem at three 
different times (number of particles = 30976). 

5 Conclusions 

In this work, the SPH method was implemented on a GPU with CUDA parallel 
programming. Single precision simulations were calculated on different GPU 
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cards (NVDIA GTX 560 Ti and GT 220), each with various total numbers of 
particles. The speed-up of the calculation with the GTX 560 Ti was 3.7 up to 
4.15 while with the GT 220 it was 2.9 up to 3.2. The runtime for double 
precision was shorter than for single precision for both CPU and GPU 
calculations, but single precision had a higher speed-up than double precision. 
The last section showed that the accuracy of the method depends on the number 
of particles. Scott Russell’s wave generator was simulated with 21270 particles, 
producing the smallest relative errors. The 3D case was represented by a dam-
break problem with 30976 particles. The overall results show that a runtime 
improvement of fluid simulation using SPH was achieved using the method 
proposed in this paper. 
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