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Abstract Muscle strength training for stroke patients is of
vital importance for helping survivors to progressively
restore muscle strength and improve the performance of
their activities in daily living (ADL). An adaptive
hierarchical therapy control framework which integrates
the patient’s real biomechanical state estimation with
task-performance quantitative evaluation is proposed.
Firstly, a high-level progressive resistive supervisory
controller is designed to determine the resistive force base
for each training session based on the patient’s online
task-performance evaluation. Then, a low-level adaptive
resistive force triggered controller is presented to further
regulate the interactive resistive force corresponding to
the patient’s real-time biomechanical state - characterized
by the patient's bio-damping and bio-stiffness in the
course of one training session, so that the patient is
challenged in a moderate but engaging and motivating
way. Finally, a therapeutic robot system using a Barrett
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WAM™ compliant manipulator is set up. We recruited
eighteen inpatient and outpatient stroke participants who
were randomly allocated in experimental (robot-aided)
and control (conventional physical therapy) groups and
enrolled for sixteen weeks of progressive resistance
training. The preliminary results show that the proposed
therapy control strategies can enhance the recovery of
strength and motor control ability.

Keywords rehabilitation robot; muscle strength training;
hierarchical control; biomechanical state estimation

1. Introduction

Patients suffering from strokes or spinal cord injuries

require specific training to improve motor learning and
recovery [1]. Conventionally, these therapy programmes
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are manually implemented by physical or occupational
therapists. However, the efficacy of such therapist-centred
therapy methods is often dependent on the therapist’s
experience and subjective judgment. Robotic-aided
neurorehabilitation is becoming increasingly common in
motor rehabilitation, because they are not only able to
provide a variety of highly reproducible, repetitive
movements and training protocols, but they are also able to
offer objective measurements and an estimation of the
patient’s motor performance and functional improvement
[2]. In recent years, several categories of therapy control
strategies for robotic-aided rehabilitation training have
been explored in some existing robot-assisted rehabilitation
training systems, including impedance, admittance and
EMG/EEG-based controllers, as well as force/haptic
stimulation and other virtual reality-related control
methods [3]-[6]. Although shown to be effective to some
extent, most of these therapy control algorithms are focused
on providing active-assisted exercises by designing a low-
level controller, with only a few attempts being made to
incorporate muscle strength training into robot-aided
therapy[7][8]. Moreover, these robotic devices - including
resistance-based training options - often apply constant
resistive forces to the affected limb all the time. From motor
learning and neurorehabilitation theories, it is known that
the learning rate and rehabilitation outcome are maximal at
a positively challenged task difficulty level [9]. With regard
to the progressive resistance muscle strength training of
stroke patients, an exerted resistive force that is too small for
the subject will be perceived as boring and a force that is too
large will overstress the subject; meanwhile an adaptive
resistive force that adjusts in real-time to challenge the
patient all the time should induce maximal engagement and
optimal physical participation.

The provision of adaptive functional training
corresponding to the patient’s progress has been received
much attention from rehabilitation robot researchers over
the past few years. K. Kiguchi et al. [10] proposed an
adaptive impedance controller for an upper limb
rehabilitation robotic exoskeleton system where the
desired impedance control parameters were regulated
based on the EMG signals of human muscles.
Experimental results based on healthy human subjects
verify the effectiveness of the proposed adaptation
scheme. Y. Choi et al. [11] presented a novel robotic
adaptive and automatic presentation of tasks (ADAPT)
which can adaptively present simulated ADL functional
tasks, implement performance-based task scheduling and
generate the desired trajectories for motor control based
on learned models of task dynamics. M. Duff et al. [12]
have successfully shown that an adaptive mixed reality
rehabilitation system can provide customized reaching
and grasping training for chronic stroke survivors based
on the retention of goal completion and activity recovery
conditions. One common aspect of the majority of these
adaptive therapy control algorithms is that they mainly
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concentrate on the modification of controller parameters
or task difficulty levels according to the patient’s motor
performance evaluation after one or more training
sessions. Their focus is still on assistive exercises and,
moreover, these adaptive therapy controllers are all
developed within the framework of predefined
trajectories and related task-performance motoring.
Crucially, they do not offer an insight into the patient’s
real-time state estimation and monitoring.

The integration of the patient’s real-time state into the
control loop while making the system bio-cooperative has
been shown to be crucial for motor learning and
rehabilitation [13]. A robot-aided progressive resistance
muscle strength training system that can provide moderate
challenge-based resistive exercises in agreement with the
patient’s actual muscle force changes will be more effective
than the one that does not. As a consequence, estimating
the patient’s real-time biomechanical state corresponding
to his/her actual muscle force changes and integrating the
estimated state into the resistive controller design - and
thus providing progressive resistive force up to the limit
of what the patient can do - may have a positive effect on
the success of muscle strength recovery.

An adaptive hierarchical control framework that
combines a high-level progressive resistive supervisory
controller with a low-level adaptive resistive force
triggered controller is proposed. The former is presented
to implement performance-based resistive force base
scheduling for each training session while the latter is
designed to further regulate the interactive resistive force
in agreement with the patient’s real-time biomechanical
state during one training session. To verify the clinical
efficacy of the hierarchical therapy controller, the stroke
participants were allocated to robot and conventional
groups and participated in a 16-week session of robot-
aided or conventional physical therapy, respectively. The
remainder of this paper is organized as follows: Section 2
presents  the design, the
experimental setup and the clinical training protocols. In
section 3 and 4, the details of the results and discussions
about the motion control and the rehabilitation
evaluation of the proposed therapy control algorithm on
the two groups of recruited stroke patients are presented.

hierarchical controller

2. Methods
2.1 Subjects

Stroke patients with upper extremity motor impairments,
aged 55 years and above, 6 months to 2 years after a
single mild to moderate stroke, were recruited as
representative participants. Participants were excluded
from the study if they had epilepsy, severe neurological
disorder or psychological  or
impairment [14]. Subjects were also excluded if they were

serious cognitive
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incapable of overcoming their own arm gravity - ie,
Grade 3+ at least in the Medical Research Council (MRC)
scale for the muscle strength test. Following the above
inclusive and exclusive criteria, participants including
five inpatients and thirteen outpatients from Zhongda
Hospital (affiliated with Southeast University) and
Nanjing Tongren Hospital were recruited and
randomized into one of two groups: an experimental
group (robot-aided therapy) and a control group
(conventional therapist therapy). Their demographic

characteristics are shown in Tables 1 and 2.

ID Age Gender Muscle | Hemiparesi
R1 58 female Grade 4+ L
R2 55 male Grade 4- R
R3 60 male Grade 3+ L
R4 62 female Grade 4- R
R5 59 female Grade 4 L
R6 56 male Grade 4 L
R7 52 male Grade 4- R
R8 56 male Grade 4+ R
R9 53 female Grade 3+ R

Table 1. Demographic characteristics of the stroke patients in the
experimental group

ID Age Gender Muscle | Hemiparesi
C1 49 male Grade 4- L
C2 56 male Grade 3+ L
C3 54 male Grade 4 L
C4 56 male Grade 4+ R
C5 51 female |Grade 4- L
Co6 55 male Grade 4 R
Cc7 53 female |Grade 3+ R
C8 65 male Grade 4 L
9 57 female | Grade 4+ L

Table 2. Demographic characteristics of the stroke patients in the
control group

2.2 Experimental setup

The prototype therapeutic robotic system for the upper-
limb progressive resistance training shown in Fig. 1
consists of a Barrett WAM™ Arm (W), a 3-D force sensor
(S), a handle (H) and an external PC offered by Barrett
Technology. The standard WAM is a four degree-of-
freedom (DOF), highly dexterous, naturally back-drivable
manipulator. In order to record the force between the
impaired limb and the WAM end-effector, an improved
3-D force sensor [15] was designed and attached to the
end-effector. With the handle attached to the WAM outer
link, the recruited stroke participant may grasp it and
perform progressive resistance exercises. The external PC
(running with the Ubuntu Linux system and a real-time
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module Xenomai) was responsible for running the control
loop and providing the high-level command of the
WAM-aided rehabilitation system. In the progressive
resistance training, a graphical user interface (G) was
developed in which the impaired limb’s actual movement
trajectories in a Cartesian Space and other robot control
widgets are displayed on the screen. All the real-time
communication between the external PC and the motor
Pucks™ may be done via an internal high-speed CAN
bus, a high-speed Ethernet cable or a wireless Ethernet.
High-speed CAN bus communication was used for this
research.

Figure 1. Therapeutic robotic system prototype with Barrett WAMT™

2.3 Training protocol
2.3.1 Experimental group

Individuals randomized to the experimental group
WAM-aided progressive
rehabilitation therapy. No other therapy methods were
provided in this group. The clients are seated in a chair
or wheelchair in front of a computer screen at a height
adjustable table. In this study, the robot is restricted in
the vertical plane with control threads and a pilot study
of elbow flexors resistance recovery training in one
plane was performed, which is commonly adopted in
traditional therapist-centred muscle strength training.
The stroke participant grasps the WAM robot and
performs lift-and-reach exercises, whereby the exercises
require the patient to move the WAM through several
target points with different task difficulties, though no
predefined trajectory was needed. Fig. 2 shows a side
view of the graphical user interface used for the
progressive resistance training. An adaptive resistive
force regulated by the proposed hierarchical controller
is exerted at the robot end-effector. These exercises are

received resistance

designed to allow the patient to perform some
meaningful functional activities, such as reaching and
lifting objects during the activities involved in daily
living.
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Figure 2. A side view of the graphical user interface for the
progressive resistance training

2.3.2 Control group

Similarly, individuals randomized to the control group
received conventional therapist therapy. Assorted
techniques and progressive resistance programmes for
upper extremity retaining were used by the treating
therapists. For both groups, the resistance training
programme consisted of three sets of 15 repetitions per
exercise session, 2 exercise sessions a day, 3 days a week
over a period of 16 weeks.

2.3.3 Outcome measure

A robot-aided rehabilitation training system is used as the
main therapy outcome test platform and the robotic
measured parameters are objectively selected as
quantitative evaluation indices. A standard assessment
procedure is used at the start and at the end of treatment
for both groups. To ensure that there is no bias in
comparing the two groups, the patients allocated in the

conventional group had to be familiarized with the robot-
aided training environment before the therapy outcome
evaluation procedure could be carried out. This procedure
includes the following outcome evaluation parameters:

Movement smoothness. A normalized jerk score (NJS) [16]
is used to characterize the movement smoothness, which
provides information about the smoothness and
efficiency of a movement. A lower NJS indicates a
smoother and more efficient movement. This is because
jerk increases dramatically with the movement duration
and the distance travelled during the movement. The NJS
may be computed using the following formula:

(s (@) (22 a2
vl () (3 (@ ) o

where x , y and z are the position of the WAM end-

effector on the x , y and z axis, respectively, t is the

movement time and s is the movement distance.

Mean Movement velocity. The average movement
velocity at the robotic end-effector is measured with
certain trials at a predefined resistive force.

Maximum resistive force. The maximum resistive force
measurement is used to assess the recovery of the
impaired limb’s muscle strength. The WAM™ is set to
IDLE/Position mode and the resistive force generated
from the WAM control program is progressively
imposed on the The stroke
participant grasps the WAM handle, which is similarly
expressed by the configuration in Fig. 1, and keeps their
upper arm and forearm at vertical and horizontal
attitudes, respectively.

robot’s end-effector.
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Figure 3. Block diagram of the robot-aided progressive resistance adaptive hierarchical control framework
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2.4 Hierarchical controller design

With the progressive resistance training, it is desirable
that the resistive force be exerted in a moderate and
challenging, but engaging and motivating manner,
without causing boredom, frustration or harm. Fig. 3
gives the block diagram of the robot-assisted progressive
resistance hierarchical control framework which is
composed of a high-level progressive
supervisory controller and a low-level adaptive resistive
force triggered controller.

resistance

2.4.1 High-level progressive resistance supervisory controller

The high-level progressive resistance supervisory
controller is mainly used to determine the resistive force
base for each training session based on the participant’s
motion performances, which are characterized by the
impaired limb’s movement velocity and the resistive
force endured. The fuzzy regulator is designed to provide
the adaptive resistive force base in agreement with the
impaired limb’s muscle power restoration, where the
) and

movement velocity AAvg(v) are selected as inputs while

changes of the average resistive force AAvg(f,

T

the resistive force base adjustment coefficient Au, is used

as the output. The resistive force base control law is
defined as:

fini(i + 1) = fini(i) + uf.AbS(Avg(fres(i)) - Avg(fves(i - 1))) (2)

where f,. is the determinate resistive force base, f,, is

res

the actual resistive force exerted on the impaired limb, u s

is the adaptive factor regulated by the resistive force base
fuzzy regulator, Abs(+)and Avg(+) denote the absolute

and average value, and i-1, i and i+1 refer to the
(i-1)", i" and (i+1)" training session.

During the fuzzification process, the input and output of
the fuzzy regulator are scaled to five triangle-shaped or
trapezoidal membership (MFs), namely,
negative big (NB), negative small (NS), zero (ZE), positive
small (PS) and positive big (PB). Table 3 and Fig. 4 show
the inference rules and MFs for the fuzzy regulator.

functions

Auy AAvg(f..)
NB NS ZE PS PB
NB | NB NS NS NS NB
AAvg(v) NS | NB NS ZE ZE NS
ZE NS NS ZE ZE PS
PS PS PS ZE PS PS
PB PB PS PS PS PB

Table 3. Fuzzy inference rules for the coefficient Au ;
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Figure 4. MFs for the high-level resistive force base fuzzy regulator

Generally, if AAvg(f,

..) and AAvg(v) are both positive -
which implies that the patient has good muscle force
recovery then a bigger resistive force base value may be
exerted. Otherwise, a smaller resistive force base value
should be added. In addition, if the changes of

AAvg(f,.)and AAvg(v) are opposite, positive or negative

increments must be supplied relying on the resistive force
and movement velocity change characteristics.

2.4.2 Low-level adaptive resistive force triggered controller

With regard to the high-level progressive resistive
supervisory controller, the resistive force base is not
determined until one training session is finished. It is well
known that any progressive resistance training which
constantly challenges the patient will produce the maximal
therapy outcome. In each training session, several (or more)
training sets are included and the exerted resistive force
may not be challenged during one training session if only
the high-level progressive resistive force supervisory
controller is applied. The idea behind a low-level adaptive
resistive force triggered controller is to further regulate the
interactive resistive force in a triggered and challenged
way based on the changes of the impaired limb’s
biomechanical state in one training session.

A. Estimation of the patient’s biomechanical state

As mentioned in Refs.[17][18], the human arm’s bio-
impedance parameters, bio-damping and bio-stiffness can
sensitively reflect the arm’s muscle power changes. Based
on our previous work in Ref.[6], the impaired limb’s bio-
impedance characteristics can be modelled as the
following linear time-variant system:

f.(t) =b,(t)ox(t) + k,(£)ox(t) 3)

where f, denotes the interaction force between the robot

and the impaired limb, 6x=x-x, is the displacement
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between the actual position and the equilibrium position
of the impaired limb, 6x is the velocity vector, and b, and

k, denote the impaired limb’s bio-damping and bio-

stiffness respectively.

Using the bilinear transformation in Ref.[19] where the
robot environment was modelled as a linear time-
spring-damper system, Eq. (3)
reorganized in the discrete-time domain as:

flo)= {bg(z)@j[ ;;; J " ke(z)}éx(z) )

invariant can be

where T is the sampling period and z" is one shift step
in the time domain. According to Eq. (4), the continuous
linear time-variant model is discretized to provide a
model for linear estimation:

L0+ fik-1) =a,00x(k)+a,00x(k-1)  (5)

where:
2 2
a,(k)= ka)(;j +k,(k),a,(k) = k,(k)- bt,(k)(?j (6)

Furthermore, Eq. (5) can be represented as regression
vector as follows:

ylk] =" [KIO[K] ,
ikl = [6x(k),6x(k - 1)]",

O1K] = [a,(k),a,(K)]",
ylkl = £.00)+ f.(k-1)  (7)

where O[k] is the estimated parameter vector, and h[k]
and y[k] represent input and output regression vectors,

respectively.

According to the regressive least square method with the
forgetting factor (FRLS), we have:

Plk - 1Jh{K] (K] - h" [KIO[k - 1])

Olk]=06[k-1
K] = Ok = 1 bl - Tk

where A is the constant forgetting factor, which
influences the weight given to earlier data relative to the
newly acquired data. The covariance matrix P[k] can be
calculated as:

©)

T
Pl - % [P[k_ 1. Pl -1nlKIh [k]P[k—I]J

A+h"[k]P[k - 1]hlk]

In Ref.[19], the estimated results using the above FRLS
method were still not satisfactory - especially for the
damping coefficient - although the given environment
parameters, stiffness and damping are constant. In robot-
aided rehabilitation, the
dynamics vary randomly and its
parameters are time-variant throughout the whole
rehabilitation process. It is suggested that the estimation

clinical impaired limb’s

bio-impedance
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of the impaired limb’s bio-impedance parameters using
RLS with an adaptive forgetting factor (AFRLS) is
superior to that with a fixed forgetting factor. The
forgetting factor may be adapted as:

T
Mk]=1—[1 h(k-l-l)P[k-l]h(k-l-l)}

14K (k-1-1)Plk-1Th(k-1-1)
(yIkI- " [KI6[K - 1])
X
R

(10)

where land Rare the forgetting step and parameter. In
addition, the maximum and minimum forgetting factors
Awe and A may be set to prevent unfortunate

max min

disturbance. After the vector 0 is estimated, the impaired
limb’s bio-damping b, and bio-stiffness k, can be
obtained from Eq. (6):

k,(k) = 11)

; (k)zT[al(k)-az(k)j
e 4 7

a,(k)+a,(k)
2

B. Fuzzy adaptive resistive force triggered controller

The low-level adaptive resistive force triggered controller
consists of two parts: activation and regulation. As to
activation, the changes of the patient’s bio-damping and bio-
stiffness are calculated first, and if the patient's bio-
impedance changes exceed the predefined thresholds, the
patient is considered to have good muscle strength
endurance with the current resistive force level. Accordingly,
the triggered controller is activated to provide a slightly
bigger but challenged resistive force. On the contrary, the
triggered controller doesn’t work. After activation, the fuzzy
regulator is designed based on the patient’s bio-impedance
changes so as to adjust the velocity-based adaptive
coefficient and to further regulate the resistive force.

Note that each participant requires some settling time to
generate a certain amount of muscle strength and to
perform resistive exercise. In addition, the estimated
impaired limb’s biomechanical state parameters may
witness sharp changes resulting from the unknown noise
disturbance. Therefore, the triggered controller will not be
activated if only the changes of the impaired limb’s
instantaneous bio-impedance values exceed the predefined
thresholds. The averages of the impaired limb’s bio-

damping/stiffness ( I;e_wg , k
(Ab, ., , Ak

used to decide whether the triggered resistive force is
needed. The following equations are calculated:

) and their changes

e_avg

. g ) are calculated in a given time interval and

A t g, t

be_uvg = ¢ : ® th (t) 4 Ize_zzvg = :

-t 4 t-t,

-ny%f(t) (12)
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Aéng = ée?uvg (]) - Eefuvg (] - 1) ’ Algeﬁuvg = Izeﬁavg(j) - ]gﬂfzwg (] - 1) (13)

where t,,t, and ¢ are the starting time, final time and

sample time, respectively, b,(¢) and k, (¢) are the

estimated impaired limb’s bio-damping and bio-stiffness,
while j-1 and j denote the (j-1)" and j" activation.

The adaptive resistive force triggered strategy is defined as:
FugG+ D= fio )+ 1,2 Abs( Avg (v(7)) - Avg(v(j- 1)) - (14)

where f,.is the triggered resistive force, v is the

impaired limb’s movement velocity, u, is the velocity-

v

based coefficient regulated by the triggered resistive force
fuzzy regulator, Abs(+)and Avg(+) denote the absolute

and average value, and j-1, j and j+1 refer to the

(G-1)", j" and (j+1)" resistive force trigger.

In the fuzzy triggered regulator, the patient’s average bio-
Ak, ) and the

velocity-based adaptive coefficient Au, are selected as

damping/stiffness changes ( Ab

e_avg 7

input and output variables, respectively. All these input
and output variables are mapped to five skewed
triangular or trapezoidal MFs (NB, NS, ZE, PS, PB). Fig. 5
depicts MFs for the input and output variables,

and Ak

e_avg e_avg

respectively. If Ab are positive - which
implies that the impaired limb’s muscle force is
strengthened - then the positive increment Au, may be

added to the velocity-based factor u,. On the contrary, if
Ab, .. and Ak

e_avg g are negative, this means that a small
amount of muscle strength is generated and that a
proportional negative increment Au, should be supplied.
Fig. 6 shows the control surface of the proposed fuzzy

adaptive resistive force triggered controller.
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Figure 5. MFs for the resistive force triggered fuzzy regulator
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Figure 6. Control surface of the fuzzy triggered regulator
2.5 Safety

Ensuring safety of the participants constitutes a very
important issue when designing a robot-aided
rehabilitation system. The WAM Arm rehabilitation safety
safety
board/module which are used to monitor the joint torque
and velocity, communication between the computer and
the Pucks™ (motor controllers), the voltage levels to the
WAM and the various safety states, including E-STOP,
IDLE and ACTIVATED. The safety module will register a
heartbeat fault and shut down the WAM manipulator in the
case where the corresponding joint torque, velocity and
voltage levels exceed the predefined limits or else any motor
controllers fail to issue any communication. In addition, the
robot can also be stopped by shutting down the power
supply with an emergency button activated by either the
stroke patients themselves or else the physical therapist.

system consists of the pendants and the

3. Results
3.1 Resistive force base and its coefficient adjustment result

According to DeLorme’s progressive resistive training
method [20], the stroke patients are first asked to perform
ten-repetition maximum (10RM) resistive exercises and 60-
65% of 10RM is set as the resistive force base of the first
training session. The fuzzification input variables AAvg(v)

and AAvg(f,.) are set from -1.5 to 1.5 and -5N to 5N,
respectively. The output variable Au, is defined from -1.5 to

1.5. Fig. 7 shows the representative results of the resistive
force base and its corresponding coefficient adjustment for
patients R3 and R4 during the course of continuous twenty-
four training session samples. It is clear that the resistive
force bases for R3 and R4 can be progressively and steadily
increased with the progress of resistance training. There
were still some trivial fluctuations in resistive force base
regulation. This is because the original resistive force base
may be set beyond the patient’s actual muscle strength and
the fuzzy supervisory controller can then adjust the force-
based adaptive factor so that the resistive force base values
can match the patient’s muscle force changes.
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3.2 Low-level adaptive resistive force triggered control result
3.2.1 Estimation result of the arm’s bio-impedance parameters
To investigate the relationship between the arm’s bio-

impedance characteristics and
changes, the participant was asked to actively perform

its muscle power

the same sinusoidal trajectory exercise in a vertical
plane under three different conditions: full, zero gravity
compensation for the WAM robot and the participant’s
intentionally increased muscle force. The parameters x,,

T, A, A I, R, 6, and P, of AFRLS were

chosen as 0.576, 0.05, 0.99, 0.1, 5 and 20 respectively. Fig.
8 shows the estimation of the arm’s bio-damping and
bio-stiffness parameters with full and zero gravity

min 7

compensation. Compared with the results at full and
zero gravity compensation, it is observed that the arm’s
bio-damping and bio-stiffness are close to zero under
the former condition while those in the latter case
increase significantly. This is because very little muscle
strength is needed with full gravity compensation, but
with zero gravity compensation the subject has to
generate a certain muscle force to overcome the WAM
robot’s gravity. Further verification was conducted by
asking the subject to apply intentional force when
performing the gravity
compensation, shown in Fig. 9. It is obvious that the
estimated bio-impedance parameters show a substantial

same exercise at full

increase at the moment when the arm generates
intentionally increased muscle force. All these results
confirm that both the arm’s bio-stiffness and its bio-
damping can sensitively reflect the arm’s muscle power
changes by using the AFRLS algorithm, which is an
improvement compared with the results obtained in
Refs.[17][18] and may be used as objective indices for
evaluating the patient’s muscle strength recovery.
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Figure 8. Estimation of the arm’s bio-impedance parameters with
full and zero gravity compensation for the WAM robot
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Figure 9. Estimation of the arm’s bio-impedance parameters with
the participant’s intentionally increased muscle force

3.3 Fuzzy adaptive resistive force triggered controller

limb’s  bio-

IQUUS ) and their changes

The averages of the impaired

damping/stiffness ( b

e_avg 7/
( Al;e_avg 4 Al%
intervals. Thresholds for the patient’s bio-impedance
changes are set as Abs(Al;Uvg)ZS and Abs(AlEUvg)ZéLO,

) are calculated every five-repetition (rpt)

e_avg

respectively. To avoid substantial changes resulting from
any unknown disturbance and ensure the patient’s safety,

the upper limits are also set as Abs(Al;Uvg) <20 and
Abs(AleUg) <65 . The triggered resistive force controller

of the WAM-based progressive
strength training system monitors the patient’s bio-

resistance muscle

damping and bio-stiffness changes over the course of one
training session. Once the changes simultaneously enter
into the triggered band, the triggered controller is
activated and the fuzzy regulator begins to work. The
activation of the triggered controller for each patient in
the control group is recorded.
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Figure 10. Average changes of bio-damping/stiffness and the
activation of the triggered controller for patients R1 and R7
during resistive exercise

The activation segments of the resistive force triggered
controller for patients R1 and R7, as examples, are shown
in Fig. 10. The patient’s bio-impedance average changes
are calculated at rpt=5, 10, 15,...., 45 for one training
session.

Fig. 11 describes the velocity-based coefficients and
triggered resistive force regulation profiles. Synthesizing
the results of activation with fuzzy regulation for the
resistive force triggered controller, it is obvious that
positive activation and progressively increased resistive
force for R1 can be found. With further analysis for R7, a
negative velocity-based coefficient and triggered resistive
force regulation are observed at the 15" repetition
interval. The reason for this is that the negative changes
of the bio-impedance values for R7 resulting from
triggered force or other
psychophysiological  factors triggered
thresholds and the fuzzy regulator has to revise the
triggered resistive force in order that it can be in
agreement with the patient’s muscle force recovery.
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Figure 11. Results of velocity-based coefficient adjustment and
triggered resistive force for patient R1 and R7
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3.3 Therapy outcome evaluation and statistical analysis

Data is compared to determine the effectiveness of robot-
assisted versus conventional therapy treatments. As
mentioned in 2.3.3, movement smoothness, movement
velocity and maximum resistive force are selected as the
primary outcome measures for the robot-assisted and
conventional groups. The subjects in both groups are
requested to perform five successful trials and the
average test values are used as final evaluation results.
The difference in each outcome measure from pre- to
post-training is statistically analysed with Student’s t-test
methods using SPSS = Statistical ~Software (Lead
Technologies, Inc., Chicago, USA). Those P-values of 0.05
or less are considered as statistically significant. Table-4
shows the results of the therapy outcome evaluation and
statistical significance.

At the functional level, both groups perform well, with
improvement in the scores on three outcome measures and
showing clinical and statistical significance. Individuals in
the robotic therapy group, on average, improve by (381.9,
p=0.001), (12.5, p=0.002) and (33.8, p=0.000) on movement
trajectory smoothness, mean movement velocity and
maximum resistive force, respectively. Under the
conventional therapy, three outcome measures all see certain
improvements, but not significantly so for movement
smoothness (238.4, p=0.002), the mean movement velocity
(10.8, p=0.002) or the maximum resistive force (25.1, p=0.001).
Compared with the differences in treatment for movement
smoothness (143.5, p=0.041), mean movement velocity (1.7,
p=0.142) and maximum resistive force (8.7, p=0.025), it is
clear that the improvements of the three outcome measures
under robot-assisted therapy are significantly greater than
those under conventional therapy. Significant differences
in both movement smoothness and maximum resistive
force measures are revealed between pre- and post-tests
except for the mean movement velocity.

0.9 T T T T T T T
post-training

081 pre-training
unaffected arm

0.7

o
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Movement trajectory changes(m)

0
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Figure 12. Sample movement trajectory smoothness comparison at
pre- and post-training for patient R3. 5N and 10N resistive force is
exerted at the pre- and post-evaluation procedures, respectively.
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Movement | Movement 1\1[:;1;2:/1:1
Smoothness |velocity(cm/s) force(N)
Control group(n=9)

Pre-training 577.8 13.4 14.5
Post-training 3394 24.2 39.6
Mean change 2384 10.8 25.1

St error change 40.8 0.59 2.05
P-value 0.002 0.002 0.001
Experimental group (n=9)

Pre-training 586.6 13.2 15
Post-training 204.7 25.7 48.8
Mean change 381.9 12.5 33.8

St error change 524 0.89 2.49
P-value 0.001 0.002 0.000
Difference in
troatments 143.5 1.7 8.7
Standard error| - | 1.08 3.23
Difference
P-value 0.041 0.142 0.025

Table 4. Average improvements of three outcome measures for
the experimental and conventional groups

The robotic assessment sample given in Fig. 12 shows the
movement trajectory change at pre- and post-training for
patient R3 while moving the WAM through the predefined
target points. 5N and 10N resistive forces are exerted at the
pre- and post-evaluation procedure, respectively. As a
further comparison, the movement trajectory performed by
the unaffected arm is also demonstrated. Compared with
the three profiles, it is clear that patient R3 displays a more
normalized movement trajectory - even with a larger
resistive force at post- versus pre-therapy - as the training
trial progresses, which indicates that their muscle strength
and motor capability have made great
improvement over the course of robot-aided treatment. Fig.
13 displays an example of hand movement velocity curves
at pre-and post-training with one repetition for patient R4
in which 9N resistive force is exerted at the robotic end-
effector. In spite of a small oscillation existing in the post-
training speed profile, a much smaller oscillating frequency
and amplitude is achieved after sixteen weeks of training.
It is further verified that robot-aided resistance training not
only enhances the impaired limb’s muscle strength but also
that it improves the affected arm’s motor control ability.

control

Fig. 14 and Fig. 15 describe the sustained average
maximum resistive force and mean movement smoothness
computation results for the patients in the robot group for
pre- and post-test measures with five successful trials,
respectively. The latter is implemented under conditions of
5N resistive force. There are significant increases in the
average maximum resistive force outcome measure, where
the least improvement for patient R9 is 19.6N+1.8166.
Further analysis of the patients’ lifting and reaching
abilities show substantial decreases in Fig. 15, with mean
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changes of 381.9+52.4 observed on NJS computation, which
indicate that jerk decreases dramatically and that more
efficient and smoother training movements are achieved
with the progress of resistance exercises.

pre-training
post-training

Movement velocity(m/s)

0 ‘ 03 ‘ ) 06 ‘ ‘ 1
repetition
Figure 13. Representative movement velocity profiles comparison
at pre- and post-treatment with one repetition for patient R4. 9N
resistive force is exerted at the pre- and post-evaluation
procedures, respectively
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Figure 14. Average maximum resistive force at pre- and post-

training for patients in the robot group (9 subjects). The error bar

is the standard error of the mean.
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Figure 15. Average movement smoothness at pre- and post-
training for patients in the robot group (9 subjects). The error bar
is the standard error of the mean.
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4. Discussion

The primary goal of this study is to carry out clinic
experimental studies and to explore the effect of an adaptive
hierarchical therapy control algorithm on the muscle
strength recovery of stroke survivors which integrates a
high-level resistive force base fuzzy supervisory controller
and a low-level fuzzy adaptive resistive force triggered
controller. This is compared with a conventional therapist-
centred therapy method for a control group. Preliminary
therapy evaluation results with the three outcome measures
show that robot-aided progressive resistance exercises over a
16-week period can not only improve the muscle strength
of the impaired limb but also enhance the motor control
and coordination capability for the hemiparetic arm.
Moreover - and in comparing the differences between the
two treatments - on average, stroke patients in the robot
group display better clinical improvements than those in
the conventional group. This also indicated that the robot-
aided progressive training method that
integrates a resistive force base determination with real-
time resistive force triggered regulation has the potential to
improve stroke patients’ muscle strength.

resistance

With the WAM-aided progressive resistance training, the
question of how to challenge stroke participants in a
moderate but engaging and motivating manner formed the
main idea behind this study. To do this, adaptive and
triggered mechanisms in the form of a hierarchical
supervisory control are presented. The proposed low-level
adaptive resistive force triggered controller intermittently
optimizes the exerted resistive force base in a bio-
cooperative way based on the average changes of the

impaired limb’s bio-impedance during one training session.

In other words, if the resistive force base is set too high or
too low, the resistive force triggered controller will
decrease or increase the unreasonable resistive force so as
to prevent secondary injury to the impaired limb’s muscle
tissue and to challenge the patient in an encouraging way.
This is beneficial to aid the stroke patient’s active effort and
self-initiated movements as well as to improve the
impaired limb’s muscle strength. Another important
advantage of the proposed therapy control framework in
this study is that the resistive force between the WAM and
the impaired limb is exerted in a hierarchical and
progressive way, and this is helpful in performing a stable
interaction and avoiding any fluctuation in hemiparetic
arm’s motor control or coordination.

As a preliminary investigation, the proposed robot-aided
hierarchical progressive resistance training method shows a
clinical therapeutic effect. However, and in the resistive force
triggered controller, the triggered bands for the average
changes of the impaired limb’s bio-damping/stiffness are
still predefined by the therapist. An adaptive mechanism
should be explored for the determination of the bio-
impedance changes triggered thresholds.

www.intechopen.com

5. Conclusions

An adaptive hierarchical therapy control framework
integrating a high-level resistive force base fuzzy
supervisory controller and a low-level resistive force
triggered fuzzy regulator is developed. Two groups of
post-stroke patients are randomly allocated in WAM-
aided and physical therapy groups,
participating over sixteen weeks in progressive resistance
training. Preliminary clinical therapy outcome measures
indicate that robotic-aided rehabilitation therapy alone
(i.e., without additional physical therapy interventions)
tailed to the paretic arm is as effective as conventional
therapist-centred rehabilitation training and even more
effective than standard physiotherapy treatment for those
patients with a mild or moderate physical condition. A
further conclusion that can be drawn from our findings is
that robot-aided progressive resistance training with the
proposed therapy control algorithm can not only enhance
a patient’s muscle strength but also improve the
hemiparetic arm’s motor control and coordination. This is
very important for stroke patients to improve their daily
living.

conventional
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