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Abstract: We present an important aspect of our human-robot communication interface which is being developed 
in the context of our long-term research framework PERSES dealing with highly interactive mobile companion 
robots. Based on a multi-modal people detection and tracking system, we present a hierarchical neural architec-
ture that estimates a target point at the floor indicated by a pointing pose, thus enabling a user to navigate a mo-
bile robot to a specific target position in his local surroundings by means of pointing. In this context, we were 
especially interested in determining whether it is possible to accomplish such a target point estimator using only 
monocular images of low-cost cameras. The estimator has been implemented and experimentally investigated on 
our mobile robotic assistant HOROS. Although only monocular image data of relatively poor quality were util-
ized, the estimator accomplishes a good estimation performance, achieving an accuracy better than that of a hu-
man viewer on the same data. The achieved recognition results demonstrate that it is in fact possible to realize a 
user-independent pointing direction estimation using monocular images only, but further efforts are necessary to 
improve the robustness of this approach for everyday application.
Keywords: Human-Robot Interaction, Man-Machine-Interfaces, Gesture Recognition,  Robotics

1. Introduction and motivation 

In recent years, a lot of research has been done to develop 
mobile robotic assistants that can interact with - and be 
controlled by - non-instructed users, making them suit-
able for application in everyday life. To achieve this, it is 
essential to integrate man-machine-interfaces that are 
natural and intuitive to use. In our ongoing long-term 
research framework PERSES (PERsonal SErvice Systems) 
we aim to develop such highly interactive mobile robotic 
assistants for a wide spectrum of demanding everyday 
life applications, like shopping assistants for supermar-
kets or home stores (Gross, H.-M. & Boehme , H.-J., 2000), 
(Gross, H.-M., Koenig, A., Boehme, H.-J. & Schroeter, C., 
2002) or mobile information kiosks for public buildings or 
areas (Martin, C., Boehme, H.-J. & Gross, H.-M., 2004), 
(Martin, C., Schaffernicht, E.,   Scheidig, A. & Gross, H.-
M., 2006).

From the human-robot interaction (HRI) point of view, 
such an interactive mobile service robot must be able to 
autonomously observe its operation area, to detect, local-
ize, and contact potential users, to interact with them con-
tinuously, and to adequately offer its specific services 
considering the current status of the ongoing dialog. Spe-
cific service tasks we want to tackle in this research 
framework are to interactively guide users to desired 
areas, rooms or people within its operation area (guid-
ance function) , or to follow the user as a smart user-
oriented mobile assistant that is able to continuously ob-

serve the user and to immediately react on his/her in-
structions (service companion function). 

Figure 1. Non-verbally commanding a mobile companion 
robot to a parking position defined by a pointing pose.    
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To be a really smart companion, a highly interactive robot 
should be able to analyze both the current user state de-
scribed for example by gender, age, facial expression, or 
body language of its interaction partner, and to interpret 
his verbally or non-verbally given instructions. In this 
article, we will only focus on a particular aspect of  HRI, 
the video-based recognition of pointing poses and estima-
tion of pointing directions.  

The estimation of a pointing direction offers the possibil-
ity for different interesting modes of interaction: Know-
ing where a user is pointing to might help to clarify his 
intentions or instructions, e.g. when commanding the 
robot to pick up or manipulate an object. It could also be 
used to divert the robot’s attention to an object or a dif-
ferent interaction partner and, most obvious, to command 
a robot’s movements, e.g. send it to a specific target posi-
tion in the local surroundings of the user (Fig. 1). The 
latter is the application we are particularly interested in: 
Our intention is to command a mobile robot to approach 
a parking position indicated by pointing on the floor in its 
vicinity. I.e. the task is to estimate the pointing direction, 
use it to infer the location on the floor the user is referring 
to, and then navigate the robot to this location. Note that 
while the size of the valid area for pointing targets is con-
strained in this work (see Section 3.2 a ), we do not as-
sume the target to be near any object or marker, i.e. the 
user is able to command the robot to freely selected posi-
tions

Besides the methodical background of this recognition 
technique, we are presenting results of a series of experi-
ments obtained with our mobile experimental robot 
HOROS (HOme RObot System). 

HOROS’ hardware platform is an extended Pioneer II 
based robot from ActiveMedia. It integrates an on-board 
PC (Pentium M, 1.6 GHz) and is equipped with a laser 
range-finder and sonar sensors (see Fig. 2). For the pur-
pose of HRI, the robot was equipped with different inter-
action oriented modalities. This includes a tablet PC for 
touch-based interaction, speech recognition and speech 
generation. HOROS  was further extended by a simple 
robot face which integrates an omnidirectional fisheye 
camera situated in the center of the head, a camera with a 
telephoto lens mounted on a tilting socket on the ”fore-
head”, and a wide-angle camera in one of the eyes. In 
answer to the manifold possible applications of this robot 
service companion, the two frontal cameras (eye and 
forehead) have very different fields of view: The task of 
the forehead camera is to obtain close-up views of objects, 
e.g. faces for person identification or facial expression  
recognition. In contrast to this, the eye camera is desig-
nated to deliver wide-angle images of the scene in front 
of the robot. Therefore, the cameras cannot be reliably 
combined to form a stereo vision system. 

Figure 2. Equipment of the interaction-oriented mobile 
robot  HOROS. 

Since one objective of the PERSES-project is the develop-
ment of a low-cost prototype of a mobile and interactive 
robot assistant, we are especially interested in vision 
technologies with a good price-performance ratio. There-
fore, for the two frontal cameras, low-cost fixed-lens web-
cams were utilized. This forces us to develop powerful 
and robust recognition algorithms in order to compensate 
for the  deficits  of  the hardware. In this context, we were 
interested if it would be possible to robustly estimate a 
target position on the floor from a pointing pose using 
only inexpensive hardware and monocular images. 

The remainder of this article is organized as follows: First, 
in Section 2 we give a very brief overview over our multi-
modal people detection and tracking system. A thorough 
description of this system is not subject of this article, but 
we show how it is exploited as a required prerequisite for 
the pointing direction estimator, which we present in 
detail in Section 3. Section 4 describes the experimental 
investigations we conducted in order to assess the overall 
performance and drawbacks of our estimator, and pre-
sents the results. We conclude with a summary in Section 
5 and give an outlook on possible improvements we plan 
to examine in the near future.  

2. Multi-modal people detection and tracking 

A fundamental prerequisite for the video-based recogni-
tion of user instructions is a stable detection and tracking 
of the interaction partner in the local surroundings of the 
robot.  Therefore, we recently developed a new approach 
for the integration of several sensor modalities and pre-
sented a multi-modal, probability-based people detection 
and tracking system and its application using the differ-
ent sensory systems of our mobile interaction robot 
HOROS . This approach can be characterized by the fact 
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that all used sensory cues are concurrently processed and 
integrated into a robot-centered, local hypothesis map 
using a probabilistic aggregation scheme.  Up to now we 
utilize the laser-range-finder, the sonar sensors, the om-
nidirectional and the frontal eye-camera of our experi-
mental platform HOROS  (see Fig. 2) as sensor inputs for 
our probabilistic tracker illustrated in Fig. 3.  A detailed 
discussion of the advantages and drawbacks of the sev-
eral sensory modalities, the mathematical details of the 
probabilistic aggregation scheme, and experimental re-
sults of this multi-modal and multi-person tracker are 
given in (Martin, C., Schaffernicht, E., Scheidig, A. & 
Gross, H.-M., 2006).  

By turning the robot towards that tracker hypothesis with 
the largest weight (defined, e.g., by the smallest distance 
to the robot), the potential user can be directly localized 
in front of the robot, allowing the frontal cameras to 
evaluate if that person could be willing to interact with 
the  robot. As a very simple criterion, we assume that a 
tracked person may be considered to be a user willing to 
interact if  the upper part of  his body is oriented towards 
the robot. This decision is taken by means of a Viola & 
Jones detector (a cascaded feature detector that uses 
Boosting to obtain strong classifiers from simple Haar-
like box filters, see (Viola, P. & Jones, M., 2001) for details) 
- in this case a head-shoulder detector. If this proves to be 
true, in the next step the robot can try to recognize the 
user’s instructions. In the case presented here, we are 
interested in estimating the target position of a pointing 
pose triggered by a preceding voice command, like the 
call ”HOROS!”, to attract the robot’s attention. 

Figure 3. General architecture of the multi-modal tracking 
system presented in (Martin, C., Schaffernicht, E., 
Scheidig, A. & Gross, H.-M., 2006) : The observations 
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ferent sensory cues modeled as Gaussian hypotheses are 
combined in a robot-centered local map Mt that contains a 
time varying number n(t) of object hypotheses jtx ,  mov-

ing around the robot. Hypotheses are fused by means of  
the Covariance Intersection rule (Julier, S. & Uhlmann, J., 
1997).

3. Monocular pointing pose estimation 

3.1 State-of-the-art in pointing pose estimation 
Inter-human communication is based on many different 
facets. Speech, gestures, body pose, facial expression and 
many other aspects influence the way information is 
transferred, and the information itself. Many of these as-
pects are difficult to observe and distinguish or are even 
not yet understood completely. Even we humans, having 
cognitive skills superior to every technical system, some-
times fail to understand all of them and therefore misin-
terpret the intentions of our communication partner. This 
makes it particularly difficult to implement human-
machine interfaces that are really natural. However, inte-
grating some of these aspects into an interface helps to 
make it more intuitive and natural-looking.  

Not only is interaction with the robot simplified for the 
human user, under the view of “social robotics”, enrich-
ing a robot with the ability to show such “social skills” is 
considered even more essential. For example, when re-
viewing basic requirements and design principles for 
socially interactive robots, (Fong, T., Nourbakhsh, I. & 
Dautenhahn, K.,  2003) state that “a socially interactive 
robot must proficiently perceive and interpret human 
activity and behavior. This includes detecting and recog-
nizing gestures, monitoring and classifying activity, 
discerning intent and social cues, and measuring the hu-
man’s feedback.“ So, if we want to design a robot service 
companion that is fully accepted as a competent interac-
tion partner by its users, it must have the ability to react 
to natural human behaviour in a suitable manner. 

One of the most important and informative aspects of 
nonverbal inter-human communication are gestures and 
poses. In particular, pointing poses simplify communica-
tion by linking speech to objects or locations in the envi-
ronment in a well-defined way. Therefore, a lot of work 
has been done in recent years focusing on integrating 
gesture recognition into man-machine-interfaces.  
However, most of this work concentrates on distinguish-
ing a fixed symbolic set of gestures, creating a ”command 
alphabet” for robot control. Figure 4 shows a non-
exhaustive overview of viewpoints that can be used to 
describe and classify vision-based gesture recognition 
and pointing pose estimation approaches. They can be 
distinguished by the used camera configuration and im-
age quality, the amount of preprocessing (like user-
background segmentation) that is utilized, the way, fea-
tures are extracted, encoded and represented, the applied 
recognition algorithm, the mechanism that triggers the 
recognition process, and – of course – the application 
fields they are suitable and intended for. 

A good introduction and overview on the subject of ges-
ture recognition for human-computer interaction (HCI) – 
including gesture taxonomy, different approaches for 
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spatial and temporal gesture modeling, and analysis – is 
given in (Pavlovic, V., Sharma, R.. & Huang, T., 1997). 

Figure 4. Overview of significant criteria and aspects to 
describe and distinguish vision-based gesture recognition 
and pointing pose estimation approaches. 

(Rogalla, O., Ehrenmann, M., Zoellner, R., Becher, R. & 
Dillmann, R., 2002) presented a system that classifies 
hand postures for robot control. They use monocular 
high-resolution color images and extract a hand contour 
by means of skin color segmentation.  This contour is 
sampled with a fixed number of sampling points, normal-
ized and Fourier-transformed. The Fourier descriptors 
represent the feature vector that is classified using a 
model database and a distance measure.  

(Triesch, J. & von der Malsburg, C., 2001) detect and clas-
sify hand postures in monocular images by using com-
pound bunch graphs. No explicit segmentation is needed, 
since their system can cope with highly complex back-
grounds. The features used are the responses of Gabor 
wavelets and color information at the graph nodes. Hand 
postures are classified using a distance measure to a 
model graph, taking into account deformation and scal-
ing.  

Up to now, there are only a few authors who tried to ac-
tually estimate a pointing direction out of a deictic ges-
ture.  (Jojic, N., Brumitt, B., Meyers, B., Harris, S. & 
Huang, T., 2000) did so by detecting a person using dense 
disparity maps (from a stereo system) and color informa-
tion in low-resolution images. In their approach, after an 
explicit background subtraction using a statistical back-
ground model, a simple Gaussian mixture model of the 
body and outstretched arm is fitted to the person. If a 
pointing gesture is detected (when the angle between the 
main principal components of the arm and body “blob” 
exceeds a threshold), the pointing direction is determined 
from the largest principal component of the ”arm-blob”. 

(Noelker, C. & Ritter, H., 1998) use low-resolution mono-
chrome images from two infrared cameras. The images 
are Gabor-filtered and then a Local Linear Map (LLM) 

classifier calculates the 2D positions of landmarks (shoul-
der, elbow and hand of the pointing arm). This is done 
separately for the two camera images. A Parametrized 
Self-Organizing Map (PSOM) then estimates the 3D coor-
dinates of these landmarks, making it possible to calcu-
late a pointing direction. The approach is used to control 
a Virtual-Reality-System and therefore the working con-
ditions for their system can be very restrictive.  

(Nickel, K. & Stiefelhagen, R., 2003) classify dynamic ges-
tures by means of Hidden Markov Models (HMM). They 
extract candidates for heads and hands using color and 
disparity information from a stereo camera system. These 
candidates are transformed into a user-centered polar 
coordinate system, yielding a three-dimensional feature 
vector. Tracking is performed by maximizing a product 
of three quality scores. For detection of pointing gestures, 
they model three gesture phases - begin, hold and end – 
and train a HMM for each of these phases. If a pointing 
gesture is recognized, the pointing direction is estimated 
by calculating the connecting line between the center of 
the head and the hand for the hold-phase. 

(Hofemann,  N. Fritsch, J. & Sagerer, G., 2004) identify 
pointing gestures and referred objects in monocular color 
images. Hand regions are extracted by skin-color segmen-
tation and tracked over time with a Kalman filter. Activ-
ity recognition is achieved with a modified version of the 
CONDENSATION algorithm (Isard, M. & Blake, A., 
1998): Activities are classified via matching with pa-
rametrized models. By adding a context area to each par-
ticle, the authors link a pointing gesture to a referred ob-
ject and therefore can identify objects the user points at. 
However, they do not really estimate a pointing direction, 
links are only established because of spatial proximity in 
the image. 

With our approach, we are interested to determine 
whether it is possible to accomplish a pointing position 
estimator using only monocular images of low-cost cam-
eras as input data. No explicit background segmentation 
is utilized, and we use an appearance-based approach. 
Feature extraction is done by means of Gabor wavelets. A 
cascade of Multi-Layer Perceptron (MLP) neural function 
approximators serves as pointing direction estimator. The 
estimation process is triggered by a simple voice com-
mand, e.g. the call “HOROS!”, so no explicit recognition 
of pointing poses (or distinction from non-pointing ac-
tions and meaningless gesticulation) is necessary. Note 
that this distinction is itself a non-trivial problem com-
monly referred to as “gesture spotting”. Different ap-
proaches have been proposed to tackle this task. (Ne-
haniv, C. et al., 2005), for example, suggest using the in-
teraction history and context knowledge to infer the type 
of gesture performed. In a way, (Hofemann, N. Fritsch, J. 
& Sagerer, G., 2004) realize this by assuming a pointing 
gesture when an object is present in a context area near 
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the hand. Other authors approach the problem by classi-
fying hand shapes (e.g. Stoerring, M., Moeslund, T., Liu, 
Y & Granum, E., 2004) or trajectories (e.g. Nickel, K. & 
Stiefelhagen, R., 2003). By utilizing a voice command, we 
elude the gesture spotting problem. We do not believe 
this to be a serious constraint of our system, since it is 
natural behavior to use a speech utterance in order to 
catch the attention of an interaction partner. 

We implemented this approach on our mobile robot 
HOROS, making it navigate to specified targets, thus 
enabling a user to control HOROS only by means of 
pointing. To the best of our knowledge, there are no other 
low-cost oriented approaches that are comparable to the 
one presented here. 

3.2 System Overview 
a) Pointing Area, Training Data and Ground Truth:
We encoded the target points on the floor as (r, ) coor-
dinates in a user-centered polar coordinate system. This 
requires a transformation of the target estimate into the 
robot’s coordinate system (by simple trigonometry), but 
the estimation task becomes independent of the distance 
between user and robot. Moreover, we  limited the valid 
area for targets to the half  space in front of the robot with 
a value range for r from 1 to 3 m and a value range for 
from 120°  to +120° . The 0° direction is defined as user-
robot-axis, negative angles are on the user’s left side. 
With respect to a predefined maximum user distance of 2 
m, this spans a valid pointing area of approximately 6 by 
3 m on the floor in front of the robot in which the indi-
cated target points may lie. 

Fig. 5 shows the configuration we chose for recording the 
training data. We used  three markers (at distances of 1, 
1.5  and  2 m  from  the  robot)   specifying   different  user 
positions, however, in Fig. 5 for reasons of clarity only the 
marker in 1.0 m distance is shown.  Around each marker, 
three concentric circles with radii of 1, 2 and 3 m are 
drawn, being marked every 15°. Positions outside the 
specified pointing area are not considered. The subjects 
were asked to point to the markers on the circles in a de-
fined order and an image was recorded each time (see 
Fig. 6, right). Pointing was performed as a defined pose, 
with outstretched arm and the user fixating the target 
point.   All  captured  images   are  labeled  with  distance, 
radius and angle, thus representing the ground truth 
used for training and for the comparing experiments with 
human viewers (see Section 4.1).  

This way, we collected a total of 900 images of 10 differ-
ent interaction partners During preprocessing, the Re-
gions of Interest (ROI - see next section) were calculated 
from manually marked starting points and then moved a 
few pixels in each direction to receive a slight variation of 
the data.  This way, nine samples per training image were 
extracted, resulting in a sample database of 8,100 labeled 

images. This database was divided into a training subset 
and a validation subset containing two complete pointing 
series (i.e two sample sets each containing all possible 
coordinates (r, ) present in the training set). The latter 
was composed from different persons and includes a total 
of 1620 images (18 samples for each valid (r, ) coordi-
nate). This leaves a training set of 6480 samples (72 sam-
ples for each valid (r, ) coordinate). 

Figure 5. Configuration used for recording the ground 
truth training and test data. Here, for reasons of clarity 
only one of the marked positions in front of the robot (at 
1m distance) to generate pointing poses to predefined 
target points is shown. 

b) Preprocessing and Feature Extraction:
Since the users standing in front of the camera can have 
different height and distance, an algorithm had to be de-
veloped that can calculate a ”normalized” region of inter-
est, resulting in similar subimages for subsequent proc-
essing. We determined the ROI by using a combination of 
head-shoulder-detection (based on the Viola & Jones De-
tector cascade mentioned above), empirical factors, and 
the distance measurement from the multi-modal person 
tracker described before (Fig. 6). 

The head-shoulder detector will typically yield a center of 
detection  somewhere  in  the  throat  area  of  the user. Its 
coordinates are used as starting point.  

Figure 6. Example for an image provided by the low-cost 
eye-webcam. Moreover, this figure sketches how the re-
gion of interest (ROI) in the camera image is determined: 
a combination of empiric factors, head coordinates of the 
head-shoulder-detector and distance estimation given by 
the multi-modal tracker (see Section 2) is used to achieve 
a normalized ROI (right). 
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Since this center of detection will have different vertical 
image coordinates (y-coordinates) for different user 
heights given a constant user-camera distance, it can be 
used to implicitly include the user’s height into the calcu-
lation. Next, the size of the ROI has to be determined 
based on the head-shoulder detection result. To this pur-
pose, we measured  the  maximum  distances between the 
center of detection and the tip of the pointing arm in both 
x and y direction for different subjects. We also deter-
mined these values for different user-camera distances for 
each subject. 

Let xi , d and yi ,d be the measured maximum distances 
between the center of detection and the tip of the pointing 
arm in pixels for subject i given user-camera-distance d.
x i and yi are the coordinates of the center of detection 

yielded by the head-shoulder detector. We calculate  

i

di
di,x, y

x
=fac , ,

i

di
di,y, y

y
=fac ,      (1) 

and obtain two factors facx ,i , d and facy , i , d specifying the 
maximum extension of the pointing arm for this particu-
lar user i and distance d dependent on the user's height in 
the image yi . In other words, these factors describe how 
big the ROI rectangle must be to ensure it contains the 
complete pointing arm for this person and the pose for 
which they were measured. Since we chose examples 
with maximum possible extension of the arm given  the  
valid  pointing area – more precisely  the cases 90° point-
ing direction with 3 m pointing distance (maximum ex-
tension in x-direction) and 0° pointing direction with 1 m 
distance (which means the user is pointing at the ground 
directly in front of himself, thus yielding the maximum 
extension in y-direction) – these two factors ensure that 
the calculated ROI always contains the complete pointing 
arm for this user, provided he is performing a valid 
pointing action. 

As mentioned before, these values were calculated for 
different subjects and for different user-camera distances, 
namely 1, 1.5 and 2 meters. Since facx ,i , d did not vary 
strongly for the subjects i given distance d, we took the 
mean values facx , d  for the calculation of the ROI width. 
By doing this, we assume that the ratio between height 
and arm length is the same for most humans, which is not 
true in general. But our experiments showed that this 
inexactness is minor compared to other error sources pre-
sent in the system. 

Thus, our ROI is 2 y i facx , d wide and has its center at the 
center of detection (xi, yi). Note that this width is depend-
ent on the user´s height in the image yi and this way 
compensates for different arm lengths due to different 
heights of users.  We determined the values of 

0.1,xfac as

1.6,
5.1,xfac  as 1.4 and

0.2,xfac as 1.2, respectively. Linear 

interpolation over the values for different distances d

(with a valid value range from 1.0 to 2.0) yielded the fol-
lowing expression for the ROI width w:

( )( )d+y=w −⋅⋅ 2.00.41.2 .    (2) 

Since facy , i ,d was almost exactly the same value for all 
subjects, we decided to discard this factor and simply fix 
the height of the ROI to the next whole-numbered width-
to-height ratio, which is 3:2. However, it is not reasonable 
to center the ROI vertically at the center of detection be-
cause we would like to extract an image region contain-
ing the head of the person as uppermost and the tip of the 
pointing arm as lowermost part, while avoiding as much 
noninformative background as possible. So we have to 
shift the ROI downwards (remember that the center of 
detection is in the throat area). We do this by calculating 
an offset oy using the following equation 

( )( )1.02560 −⋅− d=oy
,     (3) 

which was obtained in a similar way  as described above: 
Determining the appropriate offsets for different subjects 
and different distances d, calculating the mean values 
over all subjects and then interpolating linearly over the 
distance d. Please note that these parameters depend 
highly on the camera used to record the images. Note also 
that we use the distance estimation d from the tracking 
system to simply scale the ROI size and offset linearly 
according to the user-camera distance. Although this al-
gorithm is quite simple, it shows satisfactory results. Fig. 
7 shows typical ROI extracted this way.  

The cropped  ROI is scaled to 81x81 pixels, and then an 
illumination correction and histogram equalization is 
applied. After this, the preprocessed image is Gabor-
filtered (4 frequencies with 8 orientations each, absolute 
values of filter responses) using an equidistant 4x5 grid to 
extract a pose-describing feature vector as input for the 
first stage of the pointing estimator. For later stages, the 
ROI is modified again to create two subimages (using a 
modified version of the algorithm described above), one 
of them containing the pointing arm, the other one the 
head (Fig. 7, bottom). By doing this, the head pose of the 
instructor is directly integrated into the pointing pose 
estimation as additional information. 

c) Architecture of the Classifier Cascade:
A series of experiments showed that it is not possible to 
tackle the function approximation problem with a single 
neural network estimating both radius and angle in one 
step. It also became clear that, while the radius estimation  
works quite well, it is more difficult to robustly estimate 
the angle. Therefore, we decided to use a cascade of neu-
ral classifiers and function approximators (typically 
three-layered MLPs trained by means of the RPROP 
learning rule (Riedmiller, M. & Braun, H., 1993)).  
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Figure 8. System overview of the target point estimator cascade. The Gabor-filtered subimage is first fed into a left/right 
- classifier. The result of this classifier enables it to extract the finer image ROIs shown in Fig. 7, bottom. In the following
stage, the final pointing radius r is estimated, and the input is classified into one of three radius classes. For each class, a
coarse angle estimator is trained, yielding a classification into one of three angle classes. The last stage yields the final 
angle estimate. 

Figure 7. (Top) Captured ROI extracted with the de-
scribed normalization algorithm for three instructors with 
different height (from 1.65 to 2 m) all performing the 
same pose. (Middle) Extracted ROI for different distances 
person-robot ranging from 1-2 m. (Bottom) Examples for 
sub-images extracted from the ROI containing both the 
pointing arm and the head pose. By using these as input 
data for the target point estimator, the head pose is inte-
grated as additional information.  
Fig. 8 gives an overview over the architecture of the de-
veloped target point estimator cascade. After extracting 
and preprocessing the ROI, a left/right MLP classifier 
(topology: 640-40-20-2, i.e. 640 input neurons, two hidden 
layers with 40 and 20 neurons, respectively, and 2 output 
neurons.) first determines whether the person is pointing 
to the left or to the right. Knowing this, that half of the 

input image that does not contain the pointing arm can be 
discarded. This way two smaller ROIs containing the 
head and body-arm regions (see Fig. 7 (bottom)) can be 
extracted. Each of these two input images is also Gabor-
filtered (4 frequencies with 8 orientations, absolute values 
of filter responses) using an equidistant 5x5 grid resulting 
in 1,600 input features describing the head and arm pose 
sub-images. If the person is pointing to the left, the image 
is simply flipped. This allows us to use the same classifier 
for both directions.

In the following cascade stage the value for the pointing 
radius r is directly estimated by means of a first MLP 
function approximator (network topology: 1600-30-20-1 
neurons, i.e. 1,600 input neurons, 30 neurons in the first 
hidden layer, 20 neurons in the second hidden layer, and 
1 output neuron) with the single output neuron linearly 
coding the range from 1 to 3 m (output interval: 0 ...1.0). 
Since the estimation of the pointing angle  is less accu-
rate and prone to errors, this estimation is done later in 
the cascade to provide this stage  as  much supporting 
and simplifying information as possible. To that purpose, 
the arm and head ROIs are first classified into one of 
three coarse radius classes (see Fig. 8, bottom left). For 
each of these classes, there is a specialized MLP classifier 
assigning the input to a coarse angle class (network to-
pology: 1600-30-20-10-3, i.e. 1,600 input and 3 output neu-
rons, and 30, 20 and 10 neurons in the several hidden 
layers). Finally, within the respective coarse class, a finer 
estimation of  is determined by highly specialized MLP 
function approximators (with slightly different topologies 
for the 9 subclasses, typically 1600-20-10-5-1) leading to 
the final target estimation [r, ].
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The cascade contains a total of 14 MLP networks (1x 
left/right, 1x radius, 3x coarse angles, 9x fine angles), but, 
due to the hierarchical architecture, only four of these 
classifiers have to be activated during one pass.  

4. Experimental Results 

4.1 Estimation Results of Human Viewers:  
In order to get a reference value for the recognition per-
formance of the estimator, in particular experiments we 
determined how accurately a human viewer could esti-
mate the referred target point from a monocular image. 
Therefore, the images from the training and test data sets 
were presented to test viewers in random order using the 
graphical user interface shown in Fig. 9. The valid area 
for the pointing targets is specified by a circular arc. Sub-
jects were told beforehand that the targets can only lie 
within this area. The circular arc is skewed perspectively 
to create a 3D impression and adapted in size according 
to the distance between the person in the image and the 
camera. The test person marked a guessed target point by 
clicking with the mouse pointer on the interface. The 
found coordinates were then transformed  according  to 
the  given perspective  and the distance of the person, 
yielding the estimated target coordinates r  and . The 
estimates were then compared with the known image 
labels.  

These comparative experiments were performed with 8 
test viewers, resulting in 885 target estimates altogether. 
The  achieved  estimation  accuracy  is  shown  in  Fig.  10.  

On the top, the mean values and standard deviations of 
the angle estimates are shown versus the correct angle. 
Obviously, perfect estimates would lie on a straight line 
depicted by  the dotted line in the image.  

Figure 9. Graphical user interface for experiments with 
human viewers. The valid target area is marked  by the 
circle segment. 

Figure 10. Estimation results of human viewers. (Top) 
Mean values and standard deviations of the angle esti-
mate vs.  the correct angle. (Bottom) Average errors of the 
radius and angle estimates vs.  the correct angle. 

The mean values of the estimates deviate slightly from 
this ideal case. It is noticeable that angle estimates be-
tween (+/-) 45° and 90° are persistently too large in  mag-
nitude. What’s more, the standard deviations (depicted 
by the vertical lines) for these angles are significantly 
higher. So, it seems to be quite difficult for a human 
viewer to precisely estimate  from the monocular im-
ages in this area. 
At the bottom of Fig. 10, the average errors for the esti-
mates of r and  versus the correct angle are shown. For 
the radius r, the errors are significantly higher for small 
angle values compared to large angle values. The errors 
for  behave  inversely,   being   small  for  small   angle 
values, then getting bigger with increasing angle value. 
For an explanation of this behavior, consider the situa-
tions depicted in Fig. 11. 

The upper figure shows the top view of a person (P) 
standing in front of HOROS (H) (i.e. the camera) and per-
forming a pointing action with a small angle 1 (left) and 
a large angle 2 (right). A change of pose by angle 
results in a different length of the pointing arm’s projec-
tion (l1, l2) into the image plane. Obviously, this difference  
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Figure 11. Geometrical explanation for the experimental 
results shown in Fig. 10 (Bottom). Top view (Top) and 
frontal view (Bottom) of a person (P) performing a point-
ing pose with different indicated angles .

l is bigger for small angles . Or in other words, as the 
value of  gets larger, it becomes increasingly difficult to 
distinguish a pose change by , leading to larger esti-
mation errors. 

A similar explanation can be given for r (Fig. 11 bottom). 
This  time, the projection of a frontal  view of the user into  
the camera plane is shown. A change of the indicated 
radius r results in a significant change of the body pose. 
This change is measurable in the image by the values ,

p and l. Since the projections of and l into the im-
age plane depend on sin , they get smaller for smaller 
values of  given a constant change of radius r. Again, 
this means that changes of pose get harder to distinguish 
for small angles , thus yielding larger estimation errors 
and leading to the behavior visible in Fig. 10. For angles 
greater than 90°, the errors decrease again. This is due to 
the fact that pointing to a target behind one’s position 
results in a significant change of the body pose: The 
shoulder and the face are turned backwards, which is 
clearly visible in the images.  
Overall, in 50.1% of all cases, the human viewers esti-
mated  correctly within a tolerance of 10°. For r, 76.3% 
of all trials were within a tolerance of 50 cm. These results 
give a hint for valuating the following results of our neu-
ral estimator, keeping in mind that the presented data, 
the distorted monocular images, are very unfamiliar for a 
human. 

4.2 Results of the Neural Estimator Cascade:   
In the following experiment, static image sequences of 
different users performing pointing poses were used.  
These sequences were recorded using the same configura-
tion (and ground truth) as for the training set (see section 
3.2 a). 

Figure 12. Classification results of the different stages of 
the estimator cascade for 3 test subjects. (From left to 
right:) left/right classifier, radius classifier (radius 
classes), radius estimate (tolerance 50cm), coarse angle 
classifier, angle estimate (tolerance 10°) 

In each test image, the correct face position was labeled 
manually beforehand. By means of this step, the negative 
influence of positioning errors possibly generated by the 
automatic head-shoulder-detection could be completely 
eliminated. This way, the performance and properties of 
the developed ROI extraction algorithm and the neural 
estimator cascade could be analyzed without impair-
ments by deficits of preceding subsystems. Fig.12 shows 
the classification results of each cascade stage for three 
test persons. For comparison, person P2 is from the train-
ing data set. All results mentioned in the following pas-
sages refer to the two remaining subjects not included in 
the training data, i.e. previously unseen by the system.

The left/right classifier yields classification rates of almost 
100% for all subjects. This is especially important since 
further processing of the input image depends on the 
results of this stage, and misclassifications will lead to a 
totally erroneous target estimate. The radius estimator 
stage  shows a good  overall performance, with 84.4% and  
96.7% of the samples within an allowed  50 cm tolerance 
and classified into the correct radius class. Compared to 
this, the angle estimator stages perform poorly: While the 
performance of the coarse angle classifier stage is very 
good for all subjects, the fine angle estimate is not, with 
only 66.7 or 80% of the samples within the 10°  tolerance. 
These results show that the angle estimate is the major 
problem, limiting the performance and accuracy of the 
developed pointing direction estimator. 

When comparing the results for P0 and P1 in Fig. 12, it is 
noticeable that the performance for P0 is significantly 
worse. This shows a drawback of the current system: P0 
tended to perform the pointing gestures with the pointing 
arm not fully extruded, but slightly angled. Obviously, 
the neural estimator is quite sensitive to deviations from 
the pose it was trained for. 

For comparison with Fig. 10, the diagram for the mean 
values and standard deviations of the angle estimate is 
given in  Fig. 13 (top).  The results are close to the optimal  
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Figure 13. (Top) Mean values and standard deviations of 
the angle estimate vs. the correct angle determined on 
manually selected  ROIs (off-line estimation). The ideal 
case is depicted by the dotted line. (Bottom) Average er-
rors for radius and angle estimate vs.  the correct angle. 

straight line with small standard deviations for most an-
gles. Fig. 13 (bottom) shows the average errors of the an-
gle and radius estimates. The behavior of the angle esti-
mate  is quite  similar  to that observed  in Fig. 10.  The 
radius estimate behaves almost inversely to that observed 
before, apart from the large errors for 0°. So far, we have 
no complete explanation for this deviation from expected 
behavior, but we believe a correlation between the out-
puts r and  of the detector cascade to be the reason. 

Looking at Fig. 12 again, it can be seen that the neural 
estimator achieved a classification rate of 66.7% and 80% 
respectively for the fine angle estimate with a tolerance of  
10°, and 84.4% or 96.7% for the radius estimate with a 
tolerance of 50 cm. This is significantly better than the 
results  achieved by  human viewers  (50.1 / 76.3%). But of 
course, the latter are more reliable in the sense that they 
don’t produce outliers and large errors.  

Figure 14. Online classification results of the different 
stages of the estimator cascade for two test subjects. In 
these experiments the head-shoulder detector was acti-
vated for positioning of the ROI. 

When interpreting these results, we have to keep in mind 
that  they were achieved off-line with a perfect head de-
tection (and therefore a perfect ROI placement).  Fig. 14  
shows  the  performance  of the classifier stages for the 
two test persons when the Viola & Jones detector is acti-
vated and used online for head-shoulder-detection. This 
detector reliably finds persons in the camera image, but 
its center of detection is usually not centered exactly on 
the persons’s throat. In this case the recognition rate for 
the coarse radius becomes about 20% lower for person P0 
and stays constant for P1, while the fine angle estimates 
(with a tolerance of 10° ) get significantly worse for both 
persons (only 45%). This clarifies that of all possible error 
sources, the head shoulder detection is the most crucial: 
misplacements of a few pixels from the optimal position 
may already lead to greater errors in the final target esti-
mate. 

To determine the overall online performance and preci-
sion of the presented target point estimator while operat-
ing on the mobile robot HOROS , a random target point-
ing experiment was conducted finally: Standing at many 
different positions within the operation area, the instruc-
tor pointed to randomly selected target positions in his 
local surroundings, and the  robot had to navigate from 
its current rest position to the estimated target position. 
From a total of 72 trials, only six (8.3%) were totally erro-
neous outliers. The remaining trials yielded an average 
position error of 59 cm. 28 of them (38.9%) were within 50 
cm, 31 (43.1%) within 1 meter, and 7 (9.7%) within 1-2 m 
from the target point.

For a correct interpretation of these results, it should be 
taken into account that in this experiment all possible 
disturbances and localization errors superimposed: an 
imperfect person tracking and head-shoulder detection 
resulting in non-optimally placed ROIs, an erroneous 
target point estimation with many different reasons 
(changing background, badly executed pointing poses, 
image disturbances, etc.), and insufficiencies in the ro-
bot’s navigation system resulting, for example, in an im-
perfect self-localization and motion planning to the given 
target points. 
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5. Summary, Discussion and Outlook 

In this article, we presented a neural classifier cascade for 
appearance-based estimation of a referred target point on 
the floor from a pointing pose. Although we only use 
monocular image data of relatively poor quality, the sys-
tem accomplishes a good target point estimation, achiev-
ing an accuracy better than that of a human viewer on the 
same data. The achieved performance rates demonstrate 
that it is in fact possible to realize a user-independent 
pointing pose estimation system using monocular images 
only, but further efforts are necessary to improve the ro-
bustness of this approach for everyday application.  

There are several possible improvements to our system 
that need to be investigated in the near future: First, the 
used feature extraction (Gabor filtering using an equidis-
tant grid) seems to be too simple for a robust target point 
estimation. Several more sophisticated methods for fea-
ture extraction and representation are imaginable that 
may lead to better results. For instance, a foreground ex-
traction routine, e.g. based on active contours or shapes, 
could be applied, segmenting the pointing person from 
the background and thus limiting disturbing background 
influences.  

Second, further efforts are necessary to improve the accu-
racy of the head-shoulder detection preceding the target 
point estimation. Possibly this can be achieved by combi-
nation with the active contours to compensate for the 
deficits of a simple input-driven detector. It is also imag-
inable to use the Viola-Jones head-shoulder detector only 
as first step of a cascaded detector. The detections it 
yields could then be used to restrict the search area for a 
more specialized and accurate detector concentrating on 
features that are hard to find robustly in the complete 
camera image. 

An interesting approach that could potentially solve both 
problems mentioned above is described in (Treptow, A., 
Cielniak, G., and Duckett, T. 2005): The authors use a  
particle filter to find and track persons in thermal images. 
Each particle is labeled with a set of parameters that de-
scribe a simple body model. Edge features are used to 
evaluate how good the respective model fits to a person 
in the image, and the particles are weighted accordingly. 
Thus, the particle filter is used to optimally fit the model 
to a person in the image. This could help to solve the 
user-background segmentation problem and provides a 
good hint for ROI placement. Moreover, the model pa-
rameters could be used as additional cues for the classi-
fier. But since we intend to utilize low-cost hardware, the 
usage of thermal cameras is not possible. We are cur-
rently evaluating whether  a similar approach can be ap-
plied to normal monochrome images. 

We are also thinking of implementing an explicit head 
pose or gaze estimator (instead of implicitly including 
head pose by using a head sample as additional classifier 
input, see Fig. 7) and fuse the results of both classifiers to 
improve accuracy. 

Moreover, so far we only evaluated the performance of 
our target point estimator on single images of the final 
pointing pose. An interesting question is whether the 
dynamic movement of the pointing arm to the final pose 
contains additional information that could be exploited to 
enhance the precision of the estimator. In a first attempt 
to integrate the temporal history of the pointing gesture, 
we utilized a Kalman filtering algorithm using several 
very simple system models. The observable states of the 
system (e.g. the pointing user) are simply the indicated 
coordinates r and . As sensor model, we used the out-
puts of the estimator cascade in combination with a large 
uncertainty for  and a somewhat smaller uncertainty for 
r (the absolute values for these were derived according to 
the experiments described before and then slightly var-
ied). In a first experiment, r and  were assumed to be 
constant over time. Since this is not true for a dynamic 
pointing gesture, this model did not yield satisfactory 
results, as could be expected. We continued with models 
that allowed r and  to change with constant and arbi-
trary velocities. This very simple temporal filtering (real-
izing a temporal lowpass filter) did not improve the over-
all accuracy significantly, but helped to stabilize the esti-
mator outputs: The estimator showed a tendency to 
“jump over” certain value ranges - especially for the an-
gle estimate  – when used on single images. This ten-
dency could be  reduced. A more sophisticated filtering 
method, like a particle filter, might yield better results. 
Further investigations are required on this topic. 

Another critical issue we have to tackle is the speed of the 
estimator in combination with the motion planner and 
navigator. In the current implementation of our demo 
application (which was in no way optimized  for speed), 
the complete evaluation of a given pointing pose – in-
cluding person detection, ROI calculation and extraction, 
calculation of the neural pointing pose estimator cascade, 
transformation of the estimator results into the robot´s 
world coordinate system and navigator path planning to 
the target point - takes about four to six seconds on 
HOROS from the starting command to the beginning of 
the robot´s movement. Although this seems an acceptable 
delay for the scenarios we considered, it is desirable to 
speed up the whole estimation and target interpretation 
process allowing an immediate reaction of the mobile 
robot  to a given pointing pose command in real-world 
environments and tasks.
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