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Abstract The SCORPIO is a small-size mini-teleoperator
mobile service robot for booby-trap disposal. It can be
manually controlled by an operator through a portable
briefcase remote control device using joystick, keyboard
and buttons. In this paper, the speech interface is
described. As an auxiliary function, the remote interface
allows a human operator to concentrate sight and/or hands
on other operation activities that are more important. The
developed speech interface is based on HMM-based
trained using the SpeechDatE-SK
database, a small-vocabulary language model based on
fixed connected words, grammar, and the speech
recognition setup adapted for low-resource devices. To
improve the robustness of the speech interface in an
outdoor environment, which is the working area of the
SCORPIO service robot, a speech enhancement based on
the spectral subtraction method, as well as a unique
combination of an iterative approach and a modified LIMA

acoustic models

framework, were researched, developed and tested on
simulated and real outdoor recordings.

Keywords Service Robot, Automatic Speech Recognition,

Speech Enhancement, Spectral Subtraction, Human-
Robot Interaction
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1. Introduction

Service robotics represents a special subset of robotic
systems. There are several definitions of service robots,
proposed by the International Federation of Robotics.
According to [1], a service robot is a mobile device carrying
out services either partially or fully automatically. In [2], itis a
robot that operates partially or fully autonomously to perform
services useful to the well being. They are mobile or
manipulative or combination of both.

To help us describe such devices we can look at the
primary application domains of service robots, which are
services like manipulation, security monitoring, short
distance shuttle transports, automatic cleaning, robot
assistance or fire fighting, rescue and pyrotechnic
assistance.

The level of robots’ autonomy determines their
controlling mechanisms. Most robots are not fully
autonomous and often work in teleoperator mode. They
are controlled remotely using a wired control panel
(computer) or wirelessly using PDA or control panel
hardware. These devices can also display a video stream
from cameras on robots, as well as other important values
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measured by the robotic system. They can also present
the current state of the robot’s vehicle subcomponents
(e.g. lights, cameras, ...) .

Communication with robots is one of the key research
fields in robotics. To facilitate natural interaction, robots
should be able to perceive and understand several
modalities face-to-face
interaction. Besides speech, probably the most prominent
modality used by humans, these modalities also include
pointing gestures, facial expressions, head poses, gaze,
eye-contact, body language, etc. [3]. Multimodal
interfaces in robotic systems also use a combination of
different inputs, including head nodding, pointing, field
of vision cooperating with dialogue management,
semantics, context [4], and, with human-robot teamwork,
also sharing knowledge using non-verbal communication

(5] [6]-

used by humans during

Using
communication interface is becoming more and more
popular. Especially in teleoperation, where an operator
needs to control large numbers of devices (using
keyboard, joysticks), speech may
significantly help in successfully controlling secondary

speech as an important modality of the

buttons and
functionalities of the service robot.

Integration of speech recognition capability into a service
robotic system has its own specifics. One of the most
important facts is that such systems operate mainly in
outdoor, noisy environments [7], which has a negative
impact on the robustness of the speech recognition
process.

The robustness can be generally defined as the capability
to deal with adverse conditions, or to adapt to such
conditions. In our work here we focus on one aspect of
speech recognition robustness — “environment robustness”,
which means the capability to achieve acceptable
recognition accuracy in a noisy, outdoor environment.

There are several ways to increase the robustness of the
speech recognition process [8]:

- using a more sophisticated voice-activity detection
algorithm (cepstral-based, GMM-based),

- using speech enhancement techniques,

- using robust features for speech parameterization,

- training robust acoustic models.

The application of speech enhancement is the most
frequently used solution for increasing the robustness
of the speech interface. A lot of work has been done in
this area with very promising results (e.g., [9]-12]).
Speech enhancement techniques play an important role
in the final functionality and usability of the system

[9].
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Not all enhancement techniques can be wused for
improving speech
produces distortion in the speech. This kind of distortion
is often acceptable for a human listener, but can
negatively impact the accuracy of speech recognition. The
spectral subtraction enhancement method is one of the
most appropriate
recognition. It also develops some distortion (also in the
form of musical noise), but there are several techniques to
suppress this effect (see [11-14]).

recognition. Enhancement also

methods for use with speech

Building on previous work described in [15], we continue
to research and develop the speech interface for the
mobile service robot SCORPIO. This is a small service
robot working in teleoperator mode that can serve several
purposes, especially in the support of monitoring,
manipulation and movement in dangerous areas. Its
working area is an outdoor environment, such as a street,
or industrial buildings. The robot vehicle is operated by
the human operator from a wirelessly connected control
briefcase using joystick, keyboard, buttons and speech
interface. The environment robustness of the integrated
speech interface is an important requirement in such
systems.

First, the acoustic conditions of the robot’s working area
and acceptable recognition accuracy were examined. The
acoustic conditions and the accuracy of speech
recognition can be numerically expressed by the signal-
to-noise ratio (SNR) and word error rate (WER),
respectively. Sound recordings captured on the street [25]
showed the average SNR at around 15dB with dispersion
in the interval +5dB. Based on this, we can conclude that
the proposed speech interface should operate in an
environment with at least a 10dB SNR level and a WER of
lower than 10%, which is the value that is also acceptable
in an acoustically clean environment. The spectral
subtraction methods were studied and applied for this
purpose. The unique combination of a modified LIMA
framework and an iterative spectral subtraction method
is presented.

The paper is organized as follows. First, the service
robotic system SCORPIO (the robot and the portable
briefcase remote control device) is described. Then, the
design and development of the speech interface
implemented in the remote control device is introduced,
including hardware design, recognition engine,
communication with the control panel, acoustic and
language models, utilization and start-up tests, and final
implementation in the remote control device of
SCORPIO. The second part of the paper introduces the
spectral subtraction enhancement techniques and their
implementation into the service robot speech interface.
Testing to improve robustness in laboratory conditions,
conditions, and real outdoor
environments is described in Section 6. The last part of

simulated outdoor
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the paper discusses the results and introduces some
proposals for future work.

2. Description of the service robot SCORPIO

The SCORPIO is a small-size mini-teleoperator (or mobile
service booby-trap disposal, especially
underneath vehicles (height 130 mm) [16], which was
developed by the ZTS VVU Kosice. It is able to serve
several purposes, especially the support of monitoring,
manipulation and movement in dangerous
pyrotechnical and chemical reconnaissance, etc. It is, for
example, capable of carrying a water cannon able to
destroy improvised explosive devices. The basic system
consists of two parts — the mobile robot vehicle (Figure 1)
and the control unit (panel) in the form of a portable
briefcase remote control device (containing a low-
resource embedded PC) (Figure 2), which enables the
remote control of the mobile vehicle.

robot) for

areas,

The SCORPIO robot vehicle operates five monochromatic
BW cameras (two front, two rear, one top wide-angle),
one colour camera for direction finding (all cameras are
analogue), two laser pointers for direction targeting, three
rangefinders (front, rear, cannon) and seven lights (two
front, two rear, two top, one direction finding). The robot
vehicle also contains an internal embedded PC, described
below, and a digital RF module for connection to the
controlling briefcase. For the transmission of the chosen
analogue camera composite signal, a second RF module
with common analogue modulation is used.

Figure 1. The mobile service robot (vehicle) SCORPIO

The main controlling hardware of the robot SCORPIO
consists of two independent ultra-low-power Pentium-III
class computers, one in the robot and one in the
wirelessly connected briefcase, both running on batteries.
The robot has no local controlling mechanisms, and it is
not able to work without the portable briefcase remote
control device connection.

The portable briefcase remote control device unit consists

of the embedded computer with analogue video
capturing card (AVC2000), a TFT 12” display and control
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panel with control buttons, a keyboard and a joystick
with operator-presence control, or “dead man’s switch”
(which was not used during the operation).

Figure 2. The wirelessly connected portable briefcase remote
control device with control panel of the service robot SCORPIO

The main functionalities of the control panel GUI are
displaying the video from the chosen robot’s camera,
displaying values measured by the vehicle (distance to
nearest detected  objects, battery,
communication information, etc.), controlling the
movement of the robot vehicle using the joystick,
selecting the chosen display, and
enabling/disabling the lasers and lights of the robot with
a set of buttons. When communication with the mobile
robot vehicle is not functional, the GUI informs the
operator using a sound alarm and by displaying
informational messages; the robot then stops all activity
immediately.

temperatures,

camera for

3. SCORPIO speech interface

The service robot’s connected portable
briefcase control device enables the operator to manually
operate the robot just by using the joystick, keyboard and
pre-installed buttons (see Figure 2). The limitation of such
an interface is that there are a lot of devices
(functionalities), difficult to control
simultaneously. The operator needs his hands to control
the movement of the robot and other
functionalities, such as strap position. The second
problem is that he or she needs to continuously watch the
screen with the output of robot’s cameras, and is not able
to concentrate his sight on the buttons of the control
panel. Therefore, using speech as an input-output
modality seems to have advantages. The next important
limitation is that adding a new functionality requires a
reconstruction of the portable briefcase remote control
device (adding new buttons): without modifying the
portable briefcase remote control device, controlling the
new functions becomes very complicated.

wirelessly

which are

some

The SCORPIO speech interface (Figure 3) has a simple
structure. It consists of two modules — a control panel
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interface (CPI) and an automatic speech recognition
engine (ASR engine), which is described further in this
section.

Acoustic
models

Language

ASR model
engine

(grammar)

Dictionary

Figure 3. SCORPIO speech interface including ASR module and
module for communication with the SCORPIO portable briefcase
remote control device software

Developing the reliable, fast and easy-to-use ASR engine
for noisy environments and low-resource hardware
devices is not an easy task. Hardware limitations do not
allow us to use large acoustic and language resources or
However,
frameworks available able to fulfil our requirements and
run on specified hardware configuration. We have
adopted one of them [17] for building a specialized ASR

complicated algorithms. there are some

module.

The development process of the SCORPIO speech
interface consists of selecting the parameterization as well
as the types of acoustic model, training the acoustic
models, preparing language models, adapting and
integrating the ASR engine and developing the CPI
module. The last step was the implementation of the
speech interface in the control briefcase.

3.1 Parameterization and acoustic model

Three-state left-to-right phoneme-based Hidden Markov
models (32 probability density functions — PDF mixtures
on state) with MFCC parameterization were selected as the
most appropriate models, based on previous work done in
our laboratory [20]. The parameter vector consists of 12
static MFCC coefficients, zero coefficient (0), delta (D),
acceleration or acceleration coefficients (A) and with
subtraction of cepstral mean (Z) — (HTK configuration
sample: MFCC_D_A_Z 0). The vector consists of 39 values.

3.2 Acoustic model training

The acoustic models were trained on landline telephone
speech database SpeechDatE-SK [21] using the reference
recognizer training procedure from the COST-249 project
[22]. The phoneme-based acoustic model training had
two phases. The first phase focused on the best alignment
of models using the HTK-based flat-start method [23]
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consisting of initialization of HMM’s parameters with
global means and variances, the Baum-Welch embedded
re-estimation of parameters, re-estimation of added inter-
word silence (sp — short pause) model, and alignment of
training data using these models.

The second phase focused on training final models with
estimation of phoneme models based on previous Viterbi
forced alignment and re-estimation with the Forward-
Backward algorithm. Finally, the number of PDF
mixtures were doubled and then re-estimated in an
iterative process.

3.3 Language models

In the case of speech interfaces, which enable users to
control functionalities of the system through a limited set
of commands, the deterministic language model is
effective enough. Such a model is usually in the form of
context-independent grammar. First, the set of intended
commands was defined according the analysis of
interaction with the robotic system SCORPIO. The
analysis has shown that it could be helpful for the
operator to use speech for controlling cameras, lights,
rangefinders and track positions, because their hands
must control the movements of the robot by joystick and
their sight has to follow the screen where the output of
the camera is visible.

turnonthefrontlight

turnoffthefrontlight

J

systemstate sil

degrees

Figure 4. The recognition grammar network

Speech commands were distributed according to the
relevant devices. 62 voice commands were defined, such
as to turn on and off devices or set the position of tracks.
Commands were structured into the parallel network
(Figure 4). Commands consisting of more than one word
were merged into one big word, e.g., command “zapnut
predné svetlo” (“turn on the front light”) was merged
into the command “zapnutprednésvetlo”
(“turnonthefrontlight”). This way the recognition
network was simplified.

In addition to recognition grammar, the pronunciation
dictionary was also prepared in two steps. In the first step
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pronunciation was added automatically with a simple
transcription tool. After that, the pronunciation on word
borders was manually corrected.

3.4 CPI communication module

After creating the ASR engine, a wrapper interface, or the
Control Panel Interface (CPI) communication module,
was designed. The module was designed to communicate
with the robot’s main control software (embedded in the
portable briefcase remote control device) by sending UDP
specific which
information about recognized commands and the state of
the speech interface. The module uses a TCP/IP
connection to the ASR engine. It is responsible also for
filtering the recognized commands by comparing the
recognition confidence level with a specified threshold.

frames with structures, contain

This communication structure helped us during the
development phase because the GUI of the portable
briefcase remote control device software was not
functional on the development board. This was due to the
fact that the video capturing card presents the panel exits
with an error code. Therefore, we used a VPN connection
to complete the robot’s portable briefcase remote control
device connection to the ZTS VVU intranet to test the
command execution and transmission.

This architecture will enable the future development of
recognition engines running on portable embedded
devices outside the portable briefcase remote control
device. Current mobile technology provides more
computing power than the embedded PC integrated in
this robotic system.

3.5 Hardware implementation

The setup was built on an existing embedded computer
environment with an embedded Intel x586 compatible
Tiny886ULP8-800/128-L-X computer [18] with CPU -
1GHz (TM5800), OS: Linux Debian 6, 500MB of memory,
1GB of storage for OS and applications (SD card) and
USB interface.

After adapting the decoding core to a low-resource device
[19], the first challenge was to prepare a universal audio
interface for a microphone and loudspeaker connection,
because the embedded computer used in the SCORPIO
vehicle and controlling briefcase has no audio input or
output capabilities. After testing seven different external
USB audio cards, only two of them were able to be
connected to a recognition engine using an Alsa interface
[24]. It was finally discovered that the USB bandwidth
control experimental kernel option switch had to be
turned off and the USB modules recompiled. Ultimately,
all connected USB audio devices were working properly.

Sound tests were then carried out for subjective hearing
tests of the sound recorded from the microphone using
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different USB soundcards, USB headphones and finally
from eyewear iWear™ VR920 with microphone and gyro
sensor included. In the future it is planned to use the gyro
sensor of the VR920 for controlling the cameras of the
robot.

During the subjective hearing tests only two USB sound
cards, one USB headphone and VR920 were found to be
reliable in speech recognition applications. The others
had poor sound quality with artefacts, or some kind of
gate functions causing the first part of any speech to be
lost (the first phonemes were destroyed).

Furthermore, a serious problem was encountered when
the system booted up with connected USB devices. One
USB soundcard and the VR920 caused a POST (power-on
self-test) to hang, and the boot-up process was stopped.
The only solution found was not to plug these devices
before booting the embedded PC, which should need an
HW modification for permanent speech interface setup.

After the software development, the computational
resources tests were done — the portable briefcase remote
control device runs on batteries, and also the overloaded
CPU could cause communication failures with the
SCORPIO robot or overheating. After using monophone
models (16 PDF mixtures on state), only 16% of
processing time and 4.5MB of RAM was used by the ASR
and CPI communication module.

Finally, during the HW implementation process (the
kernel recognition
development) the main storage capacity was upgraded
by implementing a fourfold greater capacity (4GB Flash

recompilation  and engine

card), thus preparing for the development of a more
robust system.

3.6 Scenario of interaction

After booting up the remote control briefcase and
controlling robot software, the speech recognition engine
(ASR and CPI communication module) starts to operate.
If there is any soundcard connected, the CPI waits for the
specific command “aktivuj hlasové povely” (activate the
voice commands). When this occurs, the CPI module
starts to listen to the next commands — it turns itself to the
active state.

When the speech interface is in active state, an operator
can use it simultaneously with joystick, keyboard and
buttons. When a voice command is recognized with a
sufficient confidence level, the CPI uses simple word TTS
(Text to Speech) synthesis to replay the recognized
command to the operator (they can also see the
recognized command on the display). During the
synthesized speech replay the operator could push the
operator presence button on the joystick (which was not
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used before for any other function of the robot) and the
command is executed by the robot. After that, the speech
interface listens continuously to new commands.

When the operator does not want to use the speech
interface, it can be set to passive state with the voice
command “vypni hlasové povely” (turn off the voice
commands).

The interaction with the SCORPIO robot through the
speech interface can be seen here:
http://speetis.fei.tuke.sk/video/scor2012.wmv.

4. Initial evaluation of SCORPIO speech interface
4.1. The reference offline tests

The offline tests for evaluation of acoustic models were
done to obtain the reference performance of such models.
The obtained values show us the best accuracy that can
be achieved with the acoustic models used. The tests were
performed with application words, isolated digits, proper
names and phonetically rich words. Data on 200 speakers
from the SpeechDatE-Sk database have been used [21].
Word Error Rates (WERs) were calculated by the
common formula defined in [23].

WER :M, 1)
N

S is the number of substitutions, D is the number of the
deletions, I is the number of the insertions and N is the
number of words in the reference file.

WER (%) / Own App. Isol. Phon. rich
mixtures names | words | digits | Words

16 21.09 6.00 1.08 20.66

32 17.53 4.63 1.08 18.75

64 12.41 2.06 0.54 15.31

128 9.21 1.63 0.54 14.41

256 8.68 1.46 0.00 15.56

Table 1. The results of offline tests with recordings from
SpeechDatE-Sk database

The results (Table 1) show that our phonemes acoustic
models can be powerful enough for the application words
and isolated digits in good acoustic conditions.

4.2 Robot’s workspace and definition of robustness

The SCORPIO service robot is mainly designed to work
in outdoor, noisy environments. The acoustic conditions
can be expressed by the signal-to-noise ratio (SNR).The
average SNR in recordings made on the street [25] is
around 15dB, with dispersion in the interval from 10 to 20
dB. The robustness of the robot’s speech interface, which
we have set as our goal, means that the system will be
able to reach a word error rate (WER) of lower than 10%
when the SNR level is in the mentioned interval.

Int J Adv Robotic Sy, 2013, Vol. 10, 3:2013

4.3 Simulated outdoor environment tests (without
enhancement)

Since no relevant results were available for real outdoor
environment conditions, it was decided to prepare for the
experiment with a outdoor (street)
environment. For the simulation of the real conditions we
took a recording of a noisy street (with noises of cars,
buses and trams) from the JDAE-TUKE database (Joint
database of acoustic events and backgrounds), which was
created by our laboratory [25]. In the next step, we
prepared a group of testing recordings with eight
participants. Recordings were recorded in a relatively
quiet room with a standard headset microphone. Each
recording contains all commands for controlling the
SCORPIO robot. The overall length of all recordings is
about 16 minutes.

simulated

The software tool FaNT (Filtering and Noise Adding
Tool, described in [26]) has been used for creating a mix
of the clear test recordings and the street noise. Six types
of recordings have been prepared with specific signal-to-
noise ratio (SNR) values of 35dB, 30dB, 20dB, 10dB, 5dB
and 0dB. Recordings were manually annotated for the
WER computation.

All recordings were tested using the speech recognition
system of the SCORPIO speech interface, and the WER
values were logged. In the case of the most disturbed
recordings (10dB, 5dB and 0dB), the threshold of the voice
activity detector must be experimentally set. The base
threshold for all recordings was 2000. The threshold level
was increased with increasing noise. The impact of these
changes can be seen in Table 2. Tests were done with
acoustic models with 16, 32, 64, 128 and 256 PDF mixtures.

WER (%) Number of mixtures

SNR (dB) 16 32 64 128 256
30 4.40 411 4.02 3.81 3.52
20 5.87 5.87 5.87 5.87 4.99

10(thresh.=4000) 34.90 3226 | 31.73 | 27.27 | 26.39
0 (thresh.=8000) 65.59 61.88 | 60.97 | 57.48 | 56.30

Table 2. The results of offline tests with noisy recordings

The results in Table 2 show that the WER significantly
increase in the 20 to 10dB interval. When the SNR is 10dB,
the performance of the speech interface is not sufficient
(26.39%) to fill the robustness criterion (WER lower than
10%). So, some enhancement is required. The noise
reduction methods based on spectral subtraction were
studied, developed and tested.

5. Spectral subtraction methods for increasing speech
interface robustness

There are several ways to increase the robustness of
speech recognition in noisy environments. The first is
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to use more a sophisticated voice activity detection
algorithm. The described speech interface uses energy-
based VAD, which is not sufficient. Cepstral-based or
GMM-based detectors could be more reliable in noisy
environments. The second way to increase robustness
is to use special noise-adapted acoustic models, as well
as robust features for the parameterization of noisy
speech.

Using some noise-reduction algorithms is one possible
and the most popular approach to increasing the
robustness of speech interface. A lot of work has been
done in this area [8]. There are several noise-reduction
algorithms (spectral subtraction, Wiener (filtering,
MMSE). All of them reduce noise, but not all give better
accuracy in the speech recognition process. Our earlier
experiments with Wiener filtering and MMSE caused
lowering of recognition accuracy. When the SNR was
10dB, and no enhancement was used, the WER was about
16%. The application of Wiener filter increases the WER
to 35.29%, and the application of MMSE results in WER
36.4%.

First, we implemented a spectral subtraction speech
enhancement algorithm in the SCORPIO speech interface
to increase its robustness. Then, several experiments were
done with the spectral subtraction (SS) algorithm and its
modifications.

5.1 Theory of spectral subtraction

The basic assumption is that the noisy speech signal y(n)
consists of a speech signal s(n) and an additive noise
signal d(n) [8] as follows:

y(n) =s(n)+d(n) )

In the frequency domain, equation (2) is expressed as

Y(w) =S(w)+D(w), 3)
where Y(w), S(w) and D(w) are spectra of signals y(n), s(n)
and d(n).
Y(@) can be expressed in exponential form as

Y(o) =|Y(@)]™. )

If the noise spectrum D(w) can be estimated, then an

approximation of speech spectrum é(a)) can be
computed from final signal spectrum Y(w):

& P 1o AP A, AP

S| =[(@)| - |De)|, 5)

where p is the power exponent.
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The equation (5) represents the general algorithm of
spectral subtraction. If p is I then it is the basic version of
spectral subtraction of magnitude spectra. If p is 2 then it
is the algorithm of power spectral subtraction [9].
Sometimes the power exponent is marked as y (see [11]).
After applying spectral subtraction the enhanced
spectrum could contain some negative values, which is
not allowed. Such situations can occur when the
estimated noise spectrum is greater than the enhanced
signal spectrum. Several solutions have been proposed.
The simplest one was proposed by Boll [13]. He
suggested simply substituting negative values of the
spectrum with zero values, which is expressed by the
following formula:

_ ‘Y(w)‘z—‘ﬁ(w)‘z if‘Y(a))‘2>‘f)(w)‘2

\ém)f ©)

0 otherwise.

A different approach was proposed by Berouti et al. [10],
based on using the oversubtraction factor « and the
flooring factor f. Their method consists of subtracting an
overestimate of the noise power spectrum while
preventing the resultant spectral components from going
below a preset minimum value (spectral floor) [14]. The
realization follows the next equation:

o \Y(a))\z—a\ﬁ(a))\z if\Y(w)\2>(a+ﬂ)\ﬁ(w)\2
S(@) = @)

p ‘ lA)(a))‘2 else,

where « is the oversubtraction factor (usually « > 1), and
F(0< f<<1)is the spectral floor parameter.

As mentioned in [8], these parameters enable a great
amount of flexibility in the spectral subtraction algorithm
and can be adjusted to obtain the best enhancement of
speech. The parameter « determines the amount of
subtracted noise and affects the amount of speech
spectral distortion caused by the subtraction. The
parameter £ controls the amount of remaining residual
noise and the amount of perceived musical noise.
Optimization of speech recognition accuracy can be
reached by varying these parameters.

5.2 Modified LIMA framework for spectral subtraction

Kleinschmidt [11] presents a modified LIMA (likelihood-
maximizing) spectral
subtraction, where the values of power exponent y and S
floor parameter are optimized to best fit the
instantaneous relationship between clean speech and
noise signals. The proposed modification removes the
need to access the state models and the state sequence

enhancement technique for

information, as is necessary in classic LIMA framework
methodology. Only access to full utterance likelihoods
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(accuracy) and word sequences is required. This
approach is highly suitable for use with stand-alone or
third-party speech recognition engines [11].

As a criterion for maximization, the word recognition
accuracy (ACC) was taken. The results of the experiments
proposed in [11] show the possibility to blindly optimize
spectral subtraction parameters using only utterance level
scores (ACC, WER).

The second important fact proposed in [11] is that there is
the potential to achieve better performance when the
values of y and £ are not constrained to their traditional
values. For example, some improvement was achieved
when y was 1.5, which responds neither to magnitude
spectral subtraction nor to power spectral subtraction.
The same situation was presented for the floor parameter
p. The theory of SS defines S as a value very close to zero,
e.g., 0.002, but in [11] Kleinschmidt describes some
improvements also when f was 0.5. This value seems to
be more appropriate for use in speech recognition.

5.3 Iterative spectral subtraction

The main disadvantages of the spectral subtraction
speech enhancement algorithms are that they develop
musical noise in an enhanced signal and also cause
distortion in speech. Speech distortion becomes severe
when the degree of noise reduction is larger. It can be
reduced by several modifications of the basic subtraction
algorithm. Improvement can be achieved using the
approach proposed in [10] and by
oversubtraction factor ¢, floor factor S or power exponent
y (LIMA or modified LIMA approaches).

adjusting

The next promising approach is using an iterative
spectral subtraction technique, as proposed in several
articles (e.g., [12] [14] [27] [28]). As Li wrote in [14], the
principle of iterative spectral subtraction consists in the
fact that the enhanced speech becomes the input signal,
so music noise is seen as input noise to be reduced again.
The results published in the mentioned papers show
improvement potential, especially in second iteration.
According to [29], a lower amount of musical noise is
using spectral
subtraction, when rather less noise is subtracted in
particular iterations.

observed after iterative  “weak”

6. Experiments with spectral subtraction
6.1 Setup of the experiment with simulated outdoor conditions

A new, set of test recordings with 60
participants was prepared. Recordings were made
with video eyewear iWear™ VR920, intended for use
by the operator of the service robot. This device
contains an integrated USB audio system with a built-
in microphone (in the eyewear frame). Recordings

larger
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were made in a room with office background quality
(SNR was around 25dB). Each recording contains all
commands for controlling the SCORPIO robot. The
overall length of the recordings is about 80 minutes.
All recordings were annotated in a two-stage process.
In the first stage, recordings were recognized with the
automatic speech recognition engine using the same
acoustic and language models used by the SCORPIO
speech interface. After that, the obtained annotations
were manually corrected.

As in our earlier experiment for the simulation of the
outdoor conditions, a recording of a noisy street from
the JDAE-TUKE database was mixed with clear test
recordings (mixing was done with tool FaNT [26]).
Two groups of recordings were prepared with specific
signal-to-noise ratio (SNR) values of 10dB and 0dB.
Prepared recordings were firstly tested without using
speech enhancement to obtain the reference values
(Table 3).

All recordings were tested using the SCORPIO speech
interface, and the overall WERs (Word Error Rate) were
calculated. Tests were done with the phoneme-based
acoustic models described above, trained on the
SpeechDatE-Sk database [21] with 256 PDF mixtures. The
context-free speech grammar presented in section 3.3 was
used as a language model.

6.2 Reference test

First, the reference values of WER for clear (SNR = 25dB)
and noisy recordings (10 and 0dB) without enhancement
were obtained in an offline test (see Table 3).

SNR (dB) 25 10 0
WER (%) 2.76 1678 | 61.81

Table 3. Reference results (without enhancement)

Recordings with SNR=10dB result in WER about 14%
higher in comparison with clear recordings. When SNR is
0dB, the speech recognition system is rather unusable
(WER is 61.81%). This reference test confirmed early
results obtained with the smaller group of recordings
(about 16 minutes, eight participants) presented in Table
2. When SNR is around 10dB and lower, the robustness
criterion is not fulfilled (WER = 16.78%).

6.3 Experiments with spectral subtraction based on modified
LIMA framework

The modified LIMA framework presented in [11] makes
it possible to optimize parameters y and S of spectral
subtraction according to the overall word or sentence
error rate. We assume that, together with power exponent
and floor parameter, also oversubtraction factor « can be
adjusted to bring more robustness in speech recognition
in the noisy environment.
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First, it was decided to use a built-in spectral subtraction
algorithm in our recognition engine, which follows
equation 7. The setup of the engine allows us to adjust only
a and S parameters. The power exponent y was set to 2.

Based on these assumptions, more than 20 tests were
done, where « was in interval <0.5, 2> and g was in
interval <0.1, 1>. The results — whereby WER decreased
significantly — can be seen in Table 4.

WER [%]

a | B SNR=10dB | SNR=0dB
without enh. | 16.78 61.81

2 05 [ 13.05 60.5

15 |05 |1272 51.17

1 05 [ 1227 50.47

05 |05 |1216 50.62

05 [03 [1212 48.79

Table 4. Results of experiments with spectral subtraction
enhancement with varying o and p parameters

As we can see in Table 4, the best recognition
performance was reached when oversubtraction factor o
was about 0.5 and flooring factor fwas also about 0.3 (so-
called “weak” spectral subtraction [29]).

SNR=10dB

WER [%] 1

15,0 N\

14,5 \\ /
a=15

14,0 -

135 - / =1

a=0.5
13,0
12,5 N—— 7~
12,0
11,5
11,0 =1
0,25 0,30 0,50 0,70 B

Figure 6. Dependency of WER from o and § for SNR = 10dB

The graph in Figure 6 shows results also for other values
of the S parameter. We can see that the best values of
WER were obtained when £ was in the interval from 0.3
to 0.5. Outside of this interval, WER increases rapidly.

As we supposed, speech recognition accuracy is higher
when spectral distortion of speech is rather low (a has
lower value), there is a rather larger amount of remaining
residual noise and a lower amount of musical noise,
which is affected by factor B The best result in our case
was achieved when f was about 0.3. The relatively high
value of the flooring factor means that the larger amount
of residual noise was left in the enhanced signal.

6.4 Experiments based on iterative spectral subtraction and
modified LIMA framework

Although using a spectral subtraction algorithm brings
some improvement, it is not sufficient for the robust

www.intechopen.com

speech interface (see Table 4) we intended to develop.
Further improvement is also required when the speech
has the same power as the noise (SNR is 0 dB) — the
lowest WER is still too big (48.79%).

As presented in [12], [14], [27] and [30], iterative use of
spectral subtraction can enhance the speech and decrease
the amount of musical noise in the enhanced speech.

One promising solution was to join the iterative approach
with the modified LIMA framework.

A new, stand-alone Speech Enhancement Toolkit (SET)
was prepared for performing iterative spectral subtraction.
We modified the algorithm proposed by Berouti et al. in
[10], where the appropriate oversubtraction factor was
computed automatically according to formulas based on
SNR level. To use a modified LIMA framework, « and f
parameters must be set manually.

A series of experiments were performed with two and three
iterations and with different settings of & and S parameters
in particular iterations. The number of possible combinations
was reduced by using only the two best settings of first
iteration (where o =2, f= 0.5 and = 0.5, = 0.3). Table 5
contains the results of experiments with iterative SS, where
some improvement was achieved.

1. iteration | 2.iteration | WER [%]
a |8 a | B SNR=10dB | SNR =
0dB

without enhancement 16.78 61.81
2 0.5 2 1 12.5 48.23
2 0.5 1 0.5 9.81 48.56
2 0.5 0.5 0.5 13.2 49.01
0.5 0.5 1 0.5 10.11 42.52
0.5 0.5 0.5 0.5 11.6 42.37
0.5 0.3 1 0.5 9.85 50.43
0.5 0.3 0.5 0.3 10 48.97

Table 5. The results of experiments with spectral subtraction
enhancement with varying power and floor

Significant improvement was achieved in the second
iteration for both levels of SNR. The defined criterion for
robustness was fulfilled for the SNR level 10dB.

The obtained results signify that, in the case of worse
SNR, more care was taken and the weak spectral
subtraction was more successful. Conversely, better SNR
enables the subtraction of more noise, producing a
smaller amount of musical noise and distortion that is
still acceptable for speech recognition purposes.

6.5 Verifying SS methods in real outdoor environment

The described experiments, which were done with
recordings using artificially added street noise, helped us
to tune up parameters of the spectral subtraction
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algorithm for improving the robustness of the SCORPIO
speech interface.

For the verification of the proposed solution, we did an
evaluation in a real outdoor environment. The evaluation
took place in the car-park out the front of the laboratory,
near the road and tram line. Commands for service robot
were read and recorded by 44 test subjects (students)
using the video eyewear. The overall length of recordings
was 42 minutes.

Recordings were annotated as in previous experiments.
During the manual correction of annotations, we detected
some outdoor

differences from the simulated

environment recordings:

- The power of the background noise has higher
fluctuations, as in the case of noise recordings used
in previous experiments. The noise was less
stationary.

- Test subjects increase volume when the noise
increases. This is the main difference to recordings
with artificially mixed noise.

- A higher level of environment noise was assumed.
The SNR was around 15dB-20dB, because the
location chosen for the experiment was less noisy
than we expected.

At first, the base reference tests were done without using
enhancement algorithms. Because of a relatively high
SNR level, WER was only 6.43%. The obtained results
were so good that it was difficult to obtain significant
improvement. However, improvement was
achieved by using basic a spectral subtraction algorithm,
although the iterative approach was not able to further
improve robustness. The results of the evaluation can be
seen in Table 6.

some

As we concluded earlier, the obtained results confirmed
that in the case of better SNR, it is possible to subtract a
large amount of noise. This means that for higher values
of a better results are achieved (last row in Table 6).

a | B WER [%]
without enh. | 6.43
0.5 0.3 7.14
0.5 0.5 6.23
1 0.5 6.08
2 0.5 6.03

Table 6. The results of verifying experiments with spectral
subtraction enhancement with varying « and £ parameters

7. Conclusions

In this, paper the SCORPIO service robot and the
research, development and testing of a robust speech
interface was introduced.

10 IntJ Adv Robotic Sy, 2013, Vol. 10, 3:2013

The speech interface was integrated into the robot’s
portable briefcase remote control device with limited
hardware power, making it possible to use voice to
control the secondary functionalities of the robot. The
main difficulty of using the speech interface is the
working area of such service robots — noisy, outdoor
environments with SNR in an interval from 20 to 10dB.
To fulfil the environmental robustness of the speech
interface, acceptable for the SCORPIO manufacturer, the
WER has to be lower than 10%.

The unique combination of a modified LIMA framework
and an iterative spectral subtraction algorithm was
proposed, which decreases WER from 16.78% to 9.81%
for SNR level 10dB. Significant improvement was also
achieved for SNR level 0dB, when WER decreases from
61.81% to 42.37%, but the obtained level of WER is not
sufficient for the speech interface to be usable. For such
bad (and even worse) conditions, another approach has to
be proposed. During real-time factor utilization tests,
there was only a 0.15% increase in utilization observed
during the preprocessing phase caused by the iterative SS
algorithm.

We can conclude that the spectral subtraction algorithm,
especially the combination of the modified LIMA
framework and the iterative approach, is well suited for
increasing robustness of speech recognition in noisy
environments. Whilst a larger amount of noise can be
subtracted all at once in the case of higher SNR (more
than 15dB), when the SNR is lower, significant
improvement can be achieved by iterative subtraction of
smaller amounts of noise (“weak” subtraction). The
proposed approach gives the best results in the case that
the background noise is predominantly stationary, but it
is not unusable when there is a limited amount of non-
stationary noise.

Our future work will be focused on algorithms for
automatic setting of spectral subtraction parameters
according to confidence of the speech recognition process,
which will be able to adapt to changing noise conditions.
Other speech techniques and their
modification will be also taken into consideration in

enhancement

future research. A multimodal interface using a gyro
sensor and positioning algorithms are also planned to
improving the robustness of the communication interface
as described in [4] and [5].
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