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Abstract.

The communication reviews the augmented space based approaches to thermodynamics and

ordering of binary alloys. We give several examples of metallic alloysto illustrate our methodology.
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1. Introduction

During the last decade, immense drides in the develop-
ment of first principles eectronic sStructure and  totdl
energy techniques have brought computetiona physicists
in close contact with metdlurgists. The fessbility of
near-quantitative, predictive posshbiliies have made this
contact fruitful. The practicing medlurgis makes fre-
quent use of empiricd principles or rule of the thumb.
Thee have been dleaned from extensve physicd ingght
ganed from expeiments over a large dass of sysems
over a long period of time A few examples rdevant to
our area of interet ae the Hume-Rothery rules, which
rdlate dloy dability to band filling, condituent sze dif-
ferences and charge trander; the Phillips rule, which
dates that prevaently ionic tetravdlent semiconductors
tend to go into the wurzite structure, while prevalently
covaent ones dabilize in the diamond or ZnS dructure
and the Pettifor rule which bunches dements in the Men-
deedv table and relaes smilar dloying properties to the
groups. While these rules are of great vaue to an experi-
mentad metdlurgist, there ae severd drawbacks The
rules are purdy empiricd and we do not know why they
work in some circumdances and dso why they some
times fal in others. Independent parameters are often not
recognized. Even if they are, the metric in parameter
goace is not dways defined. Systems with nearby para-
meters often have quite different behaviour. It is, therefore
important to understand from microscopic theories why
such rules work in the firs place. Consequently we
should be able to understand why they fail in other cir-
cumgtances, 0 that we may modify and extend these
rues to robust theories which work over a vey lage
class of sysems. The importance of firs-principles theo-
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ries with well-understood approximations and error esti-
mates is dso paramount. While we may like to play with
parametrized  theories, particulaly to gan physcd
ingght, we should not forget the adage, ‘Given enough
parameters you can fit your grandmother to an elephant’!

The sudy of dloy thermodynamics requires basicaly
the cdculation of the Gibbs free energy, i.e. the internd
enegy and the entropy. Let us examine thee in some
detail. An accurate esimate of the internd energy a low
temperaiures may be obtaned from one of the many
sophigticated,  first-principles, dectronic  dructure  meth-
ods currently avalable with us among others, the
KorriggKohn-Rogtocker  (KKR)  and  its  related  line-
aized muffintin  orbitlls method (LMTO), in particular
in its tight-binding incarnation (TB-LMTO) (Andersen
1975; Andersen and Jepsen 1984; Andersen et al 1991);
the augmented plane wave (APW) and its linearized ver-
son (LAPW) and the pseudopotential based methods.
Such methods have been devdoped for cryddline mae
rids as wel as disordered systems, in conjunction with
mear-field approaches like the coherent potential appro-
ximation (CPA) and the augmented space method based
techniques. augmented space recurson (ASR)  (Mooker-
jee 1973, Kumar et al 1982, Sdha et al 1994; Dasgupta et
al 1995; Saha and Mookerjee 1997) and the traveling
clusger gpproximation (TCA) (Kaplan and Gray 1976;
Kaplan et al 1980), both of which teke into account con-
figuration fluctuations. The recurson method aso dlows
us to ded with extended impurities, didocations and
rough interfaces Entropy edtimation is a more difficult
task. The cluger variaion method is avalable to us
Phonon contribution to the entropy is important in many
circumstances.

The concentration wave agpproach of Khatchaturyan
(1978, 1983) darts from a completdy disordered phase
and sets it up in a concentration wave gppropriste to the
ordering to be sSudied. It then studies where in the tem-
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perature-concentration phase plane the disordered phase
becomes ungtable to the perturbation. In the completely
disordered phase each Ste, R, has an occupation variable,
Nng, asociaed with it. For homogeneous perfect disorder
we have &nrifi=x, where x is the concentration of one of
the components of the aloy. In this homogeneoudy dis
ordered system, we introduce fluctuations in ng a eech
st dkr=nr—x. We expard the energy of this new
configuration with concentration fluctuations a each dte
as

rrdXe Kot ... (€]

N N
E()=E@+Q EPk, +§ ER
R RR¢

The coeffidents E?, EQ ... ae the effective renormd-
ized cluger interactions (EPls) in which the contributions
from sef-retraced paths have been induded. E© is the
enagy of the averaged disordered medium. If we embed
aoms of the type A or B in the homogeneoudy disor-
dered medium a the Ste, R, it follows from (1) that

1) — A B
EQ =g - E®).

ES) is a dngle body interaction resulting from the inter-
change of a B atom with an A atom at ste R in the aloy.
Smilaly, E), is the effective renormdized pair inter-
action which is the difference in the dngle body interac-
tion a R, when stes R{* R) is occupied ether by A or B
aom

2) _ =(AA BB AB BA
E(H:gtt_ EI(?RtB) + EI(?RG) - El(?Rcr) b E(RRtB)'

The renormdized par interactions are the corrdations
between two Stes and are the dominant quantities for the
andyss of phase dability. We shdl use the symbal, V,
for EQ, whee R-R¢=c, the nth nearest neighbour
vector on the underlying latices We usudly retan terms
up to par interactions in the configuraion energy expan-
son. Higher order interactions may be included for a
more accurate and complete description. They ae essen-
tidd for many dructurd trangtions between complex
phasesinvolving large unit cells.

The effective par interactions can be related to the

change in the oconfiguration averaged loca densty of
states
Er
Vo = OE(E- EF)Dn(E),
-¥

where Dn(E) isgiven by

Dn(E)= & JméTr(El - H ) ;.
131 all pairs

X3 is £1 according to whether 1=J or It J. There ae
four possible pairs a 1J: AA, AB, BA and BB. H" is the
Hamiltonian of a sysdem where dl dtes except R and R¢

are randomly occupied. The stes R and R¢ are occupied
by atoms of the types | and J. This change in the aver-
aged loca densty of dates can be rdated to the genera-
ized phase shift, dE), through the equation

_ dd(E)
Dn(E) = E
wheredE) is

det &G A fiidet &G BB
det &G "B iidet &G A

d(E) =log

GY is the resolvent of the Hamiltonian H". The genera
lized phase <hift, dE), can be cdculaed folowing the
orbita peding method of Burke (1976). We shdl quote
only thefina result

9 Er
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&G M denotes the configuration averaged Green func-
tion corresponding to the Hamiltonian in  which two
atoms of the type | and J are embedded a Stes R and R¢
and in which the orbitdls from L=1 to (a—1) ae ddeed
a the ste R z2*Y and P*Y ae its zeros and poles and
N3Yand N2Y ae the number of such zeros and poles
bdow Egr. This method of zeros and poles enables one to
cary out the integration essly avoiding the multivalued-
ness of the integrand involved in the evauaion of the
integral by parts. The postions and number of zeros and
poles ae edimaed from the recurson coefficients for
&G m
We propose to use the function

E
Va(E,X) = (JIE(E - E-)Dn(E),
-¥

with  Vp(Er, X) =Vh. This dsign of this function a the
Fermi energy decides whether in the ground date, an
dloy will form or phase segregate. This replaces the firgt
of the Hume-Rothery rule and gives an accurate predic-

tion of dloying or phase segregation.

11 The concentration wave analysis

In the concentration wave modd (Khatchaturyan 1978,
1983), the occupation probability, n(R), a any lattice
position, R(p), and its Fourier transform, the concentra
tion wave amplitude are given by
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N
n(R)=a Q(k)exp{ -ik(h) *R(p)};

h=1

N
Q) =8 (R () R(P).

p=1

The fird summation is over the N lattice points of the
periodic crystd and the second is over the N points of the
firg Brillouin zone. The wavevector, k(h), and the lattice
vector, R(p), are defined by

R(p) = Paga (@=1,2,3,pa
areintegers, summation implied),
K(h) =2,bs (ha =ma/Na, my =0, 1, £ 2, Y4),

where a; and b, ae latice trandaion vectors and primi-
tive trandation vectors of the reciproca lattice such that
a0, = dp.

The concentration wave amplitude, Q(k), corresponding
to the wave vector, k, that generates the ordering insta-
bility are expressed in terms of normdized (with respect
to the concentration, x) long range order paameter,
RA(k), viathefollowing relation

Q(K) =xA(K).

The normalized order parameter, R(k), is related to the
standard order parameter (h(k)), as RA(k) =h(k) /h,, (k)
where hha(k) is the maximum order parameter ataineble
a a given compostion. The internd energy, in the pair
goproximation up to an abitrary coordination shel, is
givenas

V (k(h)) >Q(k(h)Q* (k(h)),

Qo=

E:E
2

=
1l

1

where Q(k) is the amplitude of the concentration wave
and V(k) the Fourier transforms of the pair interactions,
aregiven by

N
V(K) =1/ NQ V(R exp{ik(h) R(p)}.
p=l

The expression for the configurationa entropy isgiven as

N
S=kg @ [N(R(p))IN(n(R(p))

p=l
+(1- n(R(p))) In(1- n(R(P)))I,
which, in terms of sub-latice probabilities, can be
expressed as
S=kg g N[N Inng + (- ny)Ini- ny), ®)

S=1

where 7 is the tota number of sublattices, n, and N; ae
the occupation probability and the number of aoms on
the sth sub-lattice, respectively.

The effective par interactions, V(k) for the wave vec-
tor, k(h) with components (h;, h, h3), are related to those
inthered space V,(s) as

VR =4 oV, @
(s)

where, for the fcc and the bec lattices, the shell functions,
flES), for an abitrary coordination shell ‘S are given by
the formulae (de Fontaine 1975)

(s 9 g ®)
fk :?a C()S(Z[j"llpj )...

=1

-..[cos( 2ph, p$3;) cos( 2, P2, )
+ cos( 2ph, Py cos( 2ph, p {2, )], )

where 2% is the number of latice points in the coordina
tion shell ‘s, p{® ae integers and half-integers denoting
the Cartesan coordinates of a point in the firs octant of
the shdl ‘S and ‘h;’ denotes the Cartesan coordinates in
thefirst Brillouin zone.

12 Study of phase segregation in PdRh

We shal fird dudy the adloy system, PdRh, where the
condituents phase segregate as we lower the temperature.
It is one of the few dloy sysems which do not show
polymorphism and there is rdatively little charge transfer
or sze digparity between the condituentss The Hume-
Rothery rules predict phase segregation at low tempera
tures as the d-band filling isamost complete.

We cary out a cdculaion of the nearest neghbour
par energies for PdRh dloys usng the TB-LMTO-ASR
coupled with orbitd peding and the results are shown in
figure 1.

The effective pair energy a the Fermi level is negative
for dl concentrations. The par interactions in  PdRh
decay very repidly with disgance and the dominant inter-
action, Vi, is negaive for al concentrations. This indi-
caes that atoms in PdRh like to be surrounded by similar
aoms. This means that a low temperatures PdRh phase
segregates into domains, some enriched by Pd and others
by Rh. Thedloy exists asamixture of these phases.

We have dready interpreted the process of ordering or
segregation in binary dloys as the loss of dability of a
perfectly disordered solution with respect to dtatic con-
centraion wave perturbations. The minimization of free
energy Wwill be achieved when the configurationd energy
reeches a minimum dlowable vadue This configurationd
enegy under the par interaction approximation can be
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represented in Fourier space as a product of the Fourier
trandform of the effective par energies and the concen-
tration fluctuation pair correlation function

E=(N/2)g V(KQKQ* (K.
k

The minimization of E will naturaly occur for daes of
order charaterized by madima in QKPP = dkeCkrdT
located in the regions of the absolute minima of V(k).
Consequently we can learn a lot about the types of possi-
ble orderings from the study of the shape of V(K) and
sarch of its dsolute minima These ae cdled the Lif-
shitz points. Different types of orderings are related to
these speciad Lifshitz points. In paticular, a minimum a
the Gpoint indicates phase segregation, while one at the
X-point in a face-centred cubic lattice indicates a L1y or
L1, type or ordeing a low temperaiures. Pesks away
from the specid points indicate long period superstruc-
tures, aswe shdl seefor NiMo alloys.

We have cdculaed V(K) by summing up V, with appro-
priste weights up to the sixth nearet neighbour shels.
Figure 2 (right) shows the fast convergence of V,, with n.

The oability limit of the concentration wave, i.e. the
temperature a which the disordered phase becomes
unstable is determined by the vanishing of the derivative
of the free energy. The ordering spinodd is defined as
the region in the temperature-concentration diagram
bedow which the disordered dloy is ungtable and sepa
rates into Pd-rich and Rhrich domains. In the region just
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Figure 1. The variation of the nearest neighbour pair energies
as a function of energy for Pd,Rh, aloys. The Fermi energies
are shown as vertical lines.

outsde the spinodd the dloy is metastable and  will
phase separate, given sufficient diffuson. The region of
metastability continues to the phase boundary beyond
which the solid solution exhibits clustering type short-
ranged order, but will not segregeate.

In the spirit of the Landau expanson, if we expand the
configurationd Gibbs free energy in tems of the con-
centration wave amplitude order parameter, the quedratic
termis

F@ =(N/2)g FRIRK) P,
k

where F(K) = kgT+V(K)x(1—Xx). At the dability point

thisvanishes, giving us
(Y
kB

In case the par energy V(K) is independent of concentra
tion, the spinoda curve will dways be symmetric about
x=0%6. It is the concentration dependence of V(k) which
givesriseto the asymmetry of the spinodal.

Figure 3 shows the spinodd for PdRh. There is asym-
metry about x=0%. We can understand this physicaly as
fdlows Pure Rh has a amdler equilibrium volume then
Pd. Thus the Pd-Rh digance will be on the whole larger
in the Pd-rich sde of the phase diagram. This indicates
that the nearet neighbour energy is more dtractive on
the Rh-rich sde The maximum point on the spinoda
curve corresponds to the maximum temperature of the
miscibility gap, comes out to be 1350°. This is 160°
higher than that experimentdly observed (Shidd and
Williams 1987). The over-esimaion is a characterigic of
the Bragg-Williams gpproximation. If we cary out the
tetrahedron-octahedron  gpproximation in the cluster vari-
aion technigue and include the phononic contribution to
the Gibbs free energy, we obtan the maximum spinoda

Figure2. ThesurfaceV(K) at ky = 0 for 50-50 PdRh.
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temperature to within 10-20° of the expeimentd vdue
(Wolverston et al 1993). Smila agreement has been
obtained by Wang et al (1993) usng Monte Carlo tech-
niques.

13 Study of phase ordering in NiMo'

The Ni-rich dgde of the Ni-Mo sysem (see figure 4)
(Shunk  1969) has three equilibrium ordered inter-metd-
lic pheses viz. bNiy;Mo (D1,), gNizMo (DO, and d
NiMo (P212121)

The coherent LRO dructures which are encountered in
the Ni-Mo dloy system beong to the &LO0A family.
These dructures viz. Ni;Mo (D1y), NisMo (DO,;), Ni;Mo
(PtzMo type) and NipMo, (I14/amd) can be described (de
Fontaine 1975, Khachauryan 1978, Kulkamni and
Banerjee 1988) in terms of sacking of (420) planes (see
figure 5) that contain ether al Ni or dl Mo aoms These
members of the (420) sries are generdly desgnated as
N4zM, N3M, NoM and NoM,, reﬂ)eCtIde

The concentration wave description  (Khatchaturyan
1978) of these superstructures is described by the con-
centration ddta function, C(p), written as a function of
the magnitude of the vector p in terms of the plane indi-
ces p=pdmnit C(p) is equa to unity a the plane, p=0
and zero dsawhere (p=1,%,N-1), o that the concentra-
tion Fourier spectrum along a specific vector Kk isgiven by

N 1
a c(p)exp( - 2aKk xp). (6)

pO

For each dructure, there are exactly N(=2, 3, 4, 5 Fou-
rier waves of same amplitude.

cl=3
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Figure3. Thespinoda curve for PdRh.

TContents of this section has been discussed in an earlier paper
also (Aryaet al 2001)

13a Concentration wave description of the super-
structures. We shadl fird describe the concentration
waves that lead to the dructures relevant to the NiMo
system.

NizMo (D1,) structure

The unit cdl of NizMo sructure can be described as a
layered dructure of (420) layers with every fifth layer
being occupied entirdy by Mo aoms while the interven-
ing four layers beng filled by Ni atoms. The wave repre-
sentation of such a structure or the occupation probability
of Mo aoms on the pth (420) layer can be expressed as
(seefigure 5)

2 4pp o

c(p)=x+—= hgcos PP, ﬂa @
5 5 g

For soichiometric composition, (Xmo°) x:%, and for

order parameter, h=1 (i.e. fully ordered), the (420) lay-
eed dructure of NisMo will, therefore, be, ‘Mo Ni Ni Ni
Ni MoYs'. This dructure can be viewed as a super-impo-
sition of £&420f (i = 1to4) waves.

NisMo (DO,,) structure

The concentration wave description of the DO,, structure
(which dso may be dexribed as a (420) layered struc-
ture) isgiven by (figure 5)

c(p)=x+= h&éoos—wosp p2 €)
9

The DO,, dructure is the equilibrium sructure of NisV
and ds0 of some tenary dloys based on NisMo where
Mo is patidly subgtituted by Al, Ti, Ta and Nb. In a
goichiometric (x=1/4) and fully ordered dloy (h=1)
the (420) layering sequence is, ‘Mo Ni Ni Ni MoYs'. It
can be seen that agpat from the four layer dacking of
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Figure4. The NiMo phasediagram.
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Figure 5. The description of four fcc-based superstructures in terms of stacking of
(420) planes in the [001] projections and static concentration waves. The sequences of
Ni (N) and Mo (M) of (420) planes and subunit cell clusters are also shown.

(420) planes, there exits a concentration modulation
in the [010] direction in the DO,, structure. In fact,
this sructure can be viewed as a superposdtion of
484200 (i = 1, 3) and 28420f° 400 concentration waves.

Ni,Mo (Pt,Mo type) structure

The NoM dructure can be represented by a layered
structure of (420) planes and the occupation probability
of M aoms on the pth plane can be described by the con-
centration wave (figure 5)

2Pp o

C(p) = x+—hgcos . 9
3 g

The stoichiometric fully ordered dloy exhibits a layer-
ing sequence of (420) planes of ‘Mo Ni Ni Mo%'.
This dructure can be viewed as a super-impostion of
L4201 (i =1, 2) waves

Ni>Mo, structure

This dructure can be condructed from the concentration
wave with the éﬂ.%Oﬁ wave vector. The dgnificance of
this vector is that it terminates on a specid point in the
fcc reciproca latice where symmetry dements intersect.

The concentration wave associated with this Sructure is
given by

c(p) = x+-Lsin

2

For x=06 and h=1, the layaing sequence of (420)
planes is ‘Ni Ni Mo Mo Ni Ni¥%’. This dructure can be
viewed as a super-imposition of 1&20f (i=1, 3) con
centration waves.

p
&P (10)

e
e 2;25'

13b The free energy expressions for the superstruc-
tures. The concentraion wave free energy expressons
for these fcc-based ordered super-lattice structures of the
(420) family have been derived asfollows:

NsM (D1,) structure

The sub-latice occupation probabilities for
structure are given as

Ay =x+4Q(K) and A, =x-Q(K),
giving riseto

NG = x(1+4A(K)

the Dl,

and NZ = X(l' ﬁ(@)
Theinternd energy isgiven by
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RES éd o, 5,0, %
gDl :E_f_gvmoowga Ve a0 o Ty,
ié 8i-1 € g g %

and the entropy is given by

SOk = %{47(N2)+7(N1)},

with 7(y) © yIny + (1-y)In(1-y).
N3M(DO,y) structure

Here, we have three sub-lattices with occupation pro-
babilities given as
A = XA O + 7 @) g, =x@Q+RY - H@)

and A =x(1-AY),

where AY and A® ae the order parameters belonging
to éL%Oﬁ and &100fi wave vectors, respectively. The inter-
na energy isgiven by
. ] . .
£002 =2 1§ (000) + &/ ai208R0” +vE s20idR @
2 § é e4 2 e4 g

UO
+v?;ag a20i R Ix?
g 0o

'O‘“<~t

and the entropy is given by

002 = "f{ﬂ%) +F(A)+ 27 ().

N2M (Pt;Mo) structure

The sub-lattice occupation probabilities for the NoM  struc-
turearegiven as

N; =x@+2n) and A, =x(1-R).
Theinternd energy isgiven by
e w0
V(100)+ea Vg—a420n—h . x? Y
21 8-, €3 2 fy b

ENaM =

and the entropy isgiven by
8" = - X2425() + £ (3,).

N2M;(14,/amd) structure

The sub-lattice occupation probabilities for the NoM, struc-
turearegiven as

N =x@+h) and A, =x(1- RA).

Theinternad energy isgiven by

0
EN2M2-— §V(000)+g/g—a420n—+Vg—a420n—H”|2:x y
o0 g b
and the entropy is given by
NoM kB
SR :-7{7(9\[2)"'7"(9\[1)}-
13c Ground state analysiss At zero temperature,

there is no contribution from entropy to the free energy
of a solid solution and therefore its stability is governed
by the internd energy done, which is a function of effec-
tive pair interactions. In figure 6, we have given the
vdues of thee EPIs (V,(X), n=1, 4) up to the fourth
nearet neighbour pars for fcc-besed Ni-Mo  dloys,
cdculated using the ASR-OP method.

The occurrence of ordering and dudering indabilities
in solid solutions has been andysed by Clapp and Moss
(1966) and de Fontaine (1975, 1981), wheress the inter-
play beween the cdudeing and ordering ingtabilities
have been examined by Kulkani and Banerjee (1988) in
terms of concentration waves with wave vector k which
terminate at the so-cdled specid points in the reciproca
lattice.

Thee specid points are of interest as these ae the
locations of the extrema of the k-space potentid energy
function, V(k), i.e coresponding to TV(K)Tk=0. The
naure of the extrema (minimalmaxima/ssdde point) is

3.5

T
-
i

25F %\ ]

15} WO\ ]

V{n) {mRyd/atom)

e
on
T

n th nearest neighbour

Figure 6. The variation of pair energies as a function of dis-
tance up to the sixth nearest neighbours for NiMo at different
concentrations of Mo.
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determined by the second derivative of the free energy
function. Therefore, concentration waves with a wave
vector, k, which corresponds to a minimum of V(k) ae
characterized by maximum vaue of ingability tempera
ture (T;)) and the amplification rate (a(k)). A fcc solid
solution may exhibit the following specid point insta
bilities: (8 &000f or the clustering instability leading to
spinodal phase separation and (b) 41007 &Zifi and
4100 ordering ingtabiliies The ordered structures gene-
rated by the amplification of a single variant of the
2221 or the 410f waves obey the Landau-Lifshitz
rues I, Il and Il (de Fontane 1975, 1981) and are
therefore, candidates for the order—disorder transforma
tion of the second kind. In the case of &2+ and &3O
ordering the coefficients of the third order term in the
Landau-Lifshitz free energy expanson is equad to zero
from symmetry considerations.

Kulkami et al (1988) have andysed the 41007 & +:fi
and él.lZOﬁ specid point ordering ingtabilities by consd-
eing  (concentration-independent)  effective  pair  interac-
tions up to the third nearet neighbour pars using the
meanfidd based SCW modd. Ther rellts for the
éﬂ.%Oﬁ specid point ordering ingability in the Vo/Vi—
V3V, space ae shown in figure 7, where the horizon-
tally-hatched portion represents the region of absolute
minimum of VALORA in the EP space. The region below
the dashed line represents region of phase separation of
ordered solid solution into a pure A and an ordered A; By
phase and the verticdly-hatched portion represents reg-
ion of combined &-1Of ordering and subsequent phase
separdion. We have cdculated these EPIs (concentration
dependent) up to the fourth coordination shell for the fcc

M ordering
Na M,
[1% 0] ordering reglon
N M, N_MHN,M
2 3 4
ordering I
\\:,_ ] Va'Vy
N " -
\'\
\'\.
)
™
\r‘zﬂ.fl —=

Figure 7. The éL%Oﬁ special point instability diagram, cal-
culated using the CW mode, marking different regions in the
EPI-space where clustering and/or ordering instabilities exist.
Superimposed on it are our ASR—OP calculated ratios of EPIs.

Ni-Mo dloys usng the ASR-OP method. Our vaues of
VoVp and VsV a the four compostions viz. 20, 25, 33
and 50 a% of Mo have been superimposed on to figure
7. These raios of our caculaed EPIs have been observed
to be in the region corresponding to the minimum of
V(130) ie @&%0f ordering ingtability exists in the Ni—
Mo dloys. '

The ordering energies (EZ=E, - E™) of 4l the
four ordered dructures (F) which ae members of (420)
family, cdculated usng the SCW modd (Khatchaturyan
1978, 1983), a different compositions are given in table
1 We will now examine the rdaive ground dae phase
stability of these ordered superstructures (F) from ther
ordering energy vaues, as cdculated above, and compare
our results with those observed experimentaly. For
NizMo based dloys, weimmediady seethat

Efqn, <E™ a  xy, =025, (11)
indicating that NoM, ordering ingtability exists in the dis
ordered solid solution.

Snce the introduction of a &100f concentration wave
(secondary ordering) in a &30 ordered aloy of NgM
composition gives rise to DO,, structure, the DO,, struc-
ture should be more dable than the off-stoichiometric
N>M, structure. From table 1, we see that

Efw <ENQu, @ Xyo=025. (12)
The secondary éLiZOﬁ ordering in a direction perpen-
dicular to the origind éLiZOﬁ Vector gives rise to a sruc-
ture which contains an ordered arangement of N4M and
NoM-subunit cell clusters. The condition for the stability
of such a dructure relative to the NoM, sructure can be
seen to be stisfied from our ASR-OP cdculaions as

1
E[ E&TM + EKJTM 1< Eﬁffmz a Xy, =0%X5. (13

Table 1. The CW ordering energy
(Elgl’d - EF _ Edlsordered) values of all
the ordered phases (F) of (420) family
of Ni-Mo alloy system as a function of

composition.
Composition ord
Phase(F)  (at% Mo) )
NsM 020 —143x5
025 —22445
NsM 020 —9548
025 —148%'1
NoM 020 —22%9
025 —-3561
083 —6205
NoM 5 020 —24%62
025 —3847
060 —153*89
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Hence, the super-imposition of (a) &100f and &-$0f con-
centration waves or (b) two mutudly perpendicular
éﬂ.%Oﬁ concentration waves dways results in a structure
of lower internd energy than the off-stoichiometric NoM,
Sructure. Further, we also seethat

BT <S[ESL +ESL] @ X =02 (4)
This prediction of sability of DO,, structure compared to
the mixture of D1, and P;;Mo is contrary to experimenta
findings We, however, notice that the difference
between the formetion energies of N3M on one hand and
a mixtiure of NsM and NoM on the other, is extremdy
gndl. Since thee two dtandives ae energeticaly
compardble, the preference for one of them to form
changes with minor varigion in dloy composdtion. While
in binary dloys cose to NizsMoys the NgM +NoM  deve
lops during the early stage of ordering, the N3M (DOyp)
should become more favourable in severd ternary dloys.

The ground date dability analyss a Xy, =020 shows
the hierarchy as

E&rfM < Eﬁrszz < Edis’
which is conggtent with the experimenta findings.

13d Finite temperature analysiss We have cdculaed
free energies of these supersructures, as functions of
temperature, compostion and order parameter usng the
detic concentrations wave modd (Khatchaturyan 1983)
where we have teken the dngledte approximation for
the edtimation of entropy. Under this approximetion, the
longrange correlations ae properly treated but short-
range correlations beyond asingle Ste areignored.

The ingability temperature (T, ), defined as the tem-
peraure corresponding to the onset of ordering ingtability
in the solid solution, is given in the SCW mode by

7= YW,

I(B

(15

for the ordering wave vector, k.

The ordering free energy (F“=F"—F%%) as a function
of normdized order parameter (R) for the NoM, phase at
the stoichiometric compostions, Xyo=0%0 and Xy =020,
ae plotted in figure 8. The temperature range has been
chosen to be aound the ingtability temperature (T;° To)
a a gven compodtion. These Landau plots, which we
have generated from our firg-principles caculations,
show that the curvature of the F vs A changes the sign
from podtive to negaive a T, as expected from a
second order phase trangtion. The N,M, ingability tem-
peratures for different aloy compostions, in the binary
Ni-Mo system, essantidly give the ordering spinodd line
which was reported (schematicdly) ealier by de
Fontaine (1975).

Figure 9 shows the variation of ordering free energy of
D1, structured N4M phase with the order parameter a the
goichiometric  compositions Xyo =02 and Xuo=0%25. It
may be noted that the plot (II) in figure 9(a@ corresponds
to the order—disorder trangition temperature, T., a which
the disordered state (A =0) and the ordeed sae
(h'=h,) have the same free energy. The hump between
these two daes represents free energy barier a T,

v
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Figure 8. The ordering free energy of the N,M, phase plotted
as a function of h at the stoichiometric composition, (a)
Xmo =080 and (b) xumo= 020, respectively, at severa tem-
peratures around the instability temperature (T;° T.). (a) Plots
I-V correspond to Tl =1>02, 098, 0095 and 0592, respectively.
(b) Plots IV corréspond to - =1>01, 095, 088 and 083,
respectively. ¢
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Figure 9. The variation of ordering free energy of N;M phase
with the order parameter at the stoichiometric composition: (a)
Cmo=0%2 and (b) cy, = 025, respectively, at several tempera
tures around the transition temperature (T,). (a) Plots |-V cor-
respond to Tl=1>03, 100, 0097 and 094, respectively and (b)
plots 1-IV “correspond to [ =1>04, 097, 080 and 0%83,
respectively. ¢
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which is chaacterigic of first order trangtions. Fgure
9(b) illustrates that a a certain degree of under-codling,

ingtability with respect to ordering develops, as reflected
Ford

by the negaive curvature of the vs A plots a

Figure 10. The variation of free energy of ordering of DO
phase with the order parameters (h#and h**") corre-
sponding to aL—On and a100fi wave vectors at l = 0502.

(c)

Flgure 11.

h=0 The tempeaure a which such an ingability
deveops is defined as the ingability temperature (T)
which can be determined from these plots for different
super-lattice  structures  (both  equilibrium  and  metastable)
belonging to the (420) family.

The DOg,-structured N3M phase, which closdly com-
petes with the HCP-based DO, dructure, has two order
paameters (h{” and h{?) belonging to &1 0f and 4100f
wave vectors, repectively. The free energies of ordering
of the DO,, phase as a function of these two order para-
meters a the compostion, Xy, =025 ae shown in figure
10. The dability domain of the DO,, phase corresponds
to the region of negative free energy vaues.

Let us now condder a dtuation when a firs order
ordering process competes with a second order ordering.
The completdly disordered NigMo  (cuwo=020) dloy
experiences both kinds of ordering tendencies viz. the
second order  50f ordering and the first order £8420f
ordering. For |IIustrat|ve purpose, we hqve cdculeted the
free energy of this aloy, FVeM0 (R®2%0 pE420) 4 4
given temperature as

E Ni4Mo?]a—0n hsa42mg

%]
16 N,M g 144207 5 N,M aon
=S N4 5 Oy fMNMo QJ
28 gln 2 A’
at Xy = 020.
(b)
‘_,f".\ '."L {d}

50 T—
DRE 04 0.6 IHI

b5
8 1420)

The ordering free energy of the Ni4M o-based dlloy, exhibiting the aL—On and the

(420) ordering tendencies, plotted as a function of order parameters for the correspondl ng
ordenng wave vector at four different temperatures. Figures (a) to (d) in the decreasing

temperature sequence (see text for details).
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The criterion of sability with respect to fluctuation in
order paameer for a given wave vector can be deer-
mined by examining the curvature of the F vs A plots at
h=0. Our reslts have been given in figure 11, for illu-
strating the following 4 ditinct Stuations:

(@ Postive curvatures for both &30A and +2420R
ordering, implying dability of the disordered sate
(figure 11(a)).

(b) Negative curvature for éiL%Oﬁ and positive curvature
for %é420ﬁ, implying instability of the system for
1200 ordering, and no ordering tendency aong
T&4200 (figure 11(b)).

(© Negaive curvature for éiL%Oﬁ, and podtive for
$T&20f a h=0, but a dip in the free energy plot
with respect to 18420fi neer h=08. This implies
that the system expeiences Smultaneous ordering
tendencies towards &30f ordering (second  order)
and 4420 (first order) (figure 11(c)).

(d) Negative curvature dong both &30A and +2420R
ie sysem experiences ingabiliies for &0 and
$&420f ordering simultaneoudly (figure 11(d)).

Although D1, is the dable equilibrium dructure at
Xmo =020, a dronger tendency for the development of
éL%Oﬁ ordering can be noticed in the initid Sages of order-
ing, as reflected by a lager negative curvature of the free
energy surface & hfizorl; 20— dong the h**" ads
compared to that of hs**™ ads (figure 11(a). The curva
ture of the free energy surface is negéaive in both the direc-
tions in figure 11(d) which suggests that homogeneous
ordering is possble for both the ordering processes. A
mixed dae congsting of concentration waves with wave
vector ranging from &10f to 1&420f is encountered on
the path of the ordering process at sufficiently low tem-
peratures (Banerjec et al 1984).
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