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SUMMARY

In this paper, a powerful tool for analyzing motor vehicle data based on the vector quantization (VQ)
technique is demonstrated. The technique uses an approximation of a probability density function for a
stochastic vector without assuming an ‘‘a priori’’ distribution. A self-organizing map (SOM) is used to
transform accident data from an N-dimensional space into a two-dimensional plane. The SOM retains all the
original data yet provides an effective visual tool for describing patterns such as the frequency at which a
particular category of events occurs. This enables new relationships to be identified. Accident data from
three cities in Italy (Turin, Milan, and Legnano) are used to illustrate the usefulness of the technique. Crashes
are aggregated and clustered crashes by type, severity, and along other dimensions. The paper includes
discussion as to how this method can be utilized to further improve safety analysis. Copyright # 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The multidimensional nature of motor vehicle crashes creates two problems for safety analysts. First, it

is often difficult to design and implement effective sampling strategies because the underlying

distributions of crash involved motorists, vehicles, roadways, environments, and factors are not known.

Second, it is computationally intensive to analyze large administrative databases such as police crash

report files which may contain thousands of cases. An important step in data analysis is to understand

the underlying structure of the information being analyzed. This can help to determine whether the data

are sufficient in a statistical sense and which statistical methods and models can be appropriately

applied. There are many examples of research in which these issues have been addressed [1,2].

Pattern recognition as an initial activity in data analysis is intuitively appealing. Pattern recognition

involves classifying a sample of cases or observations into a smaller number of mutually exclusive

groups or clusters based on similarities among their attributes. With this type of analysis there are no

dependent and independent variables. Instead, the approach is largely descriptive. There are two

general ways of recognizing patterns in data: statistical techniques and machine learning (artificial

intelligence) approaches. Statistical clustering techniques are widely known and have been discussed

extensively elsewhere [3–5].

This paper is focused on the use of artificial neural networks (ANN) for pattern recognition. We use

motor vehicle crash data from three Italian cities to demonstrate this technique. It builds on earlier

work by Mussone et al. [6] and proposes an application of the vector quantization (VQ) technique. It

also builds on the work of Kim et al. [7] and others who utilize loglinear modeling techniques and other
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VECTOR QUANTIZATION OF CRASH CLUSTERS 163
methods such as Rough Set Analysis [8] for the analysis of cross-classified categorical data in traffic

safety research. The technique employed in this paper, however, avoids the typical problems and

limitations that arise with correspondence analysis, factorial analysis, and principal component

analysis [9]. Quantization is the mapping of an input value on to a finite number of output values.

Vector quantization is a version of ‘‘scalar quantization,’’ used in data compression and pattern

recognition. It is popular with computer applications involving the compression of image or voice data,

but it is also a useful tool for cluster analysis. With VQ, an input pattern or word is matched to a set of

stored patterns or words and the best match is chosen.

The underlying purpose of these techniques is to discover the similarity or ‘‘distance’’ between cases

when each case is represented by a collection of many different variables.

This paper strives to find the following:
� p
Co
revailing causes of crashes for a road or set of roads; this can be useful when inspecting and

reviewing roadway geometry.
� lo
cation of a critical segment or location where attention is needed in terms of engineering,

enforcement, or education.
� r
elationships between fatal crashes and roadway attributes; this can help to determine the degree of

randomness of fatal crashes for certain roads.

Cluster analysis may not be an efficient tool when N-dimensional space is involved, that is, unless

data are projected, preserving their statistical features, in a two- or three-dimensional space before

conducting the analysis. The VQ technique is used to create clusters of similar types of motor vehicle

crashes which are, in turn, compared to crashes occurring on similar roads. By grouping data into

classes, VQ helps to illustrate patterns and relationships. When there are many cases, the frequency of

each class can be used as an accident probability, and VQ can be used to predict or study new scenarios

(see Refs. [10–14] for additional details regarding the technique).

2. METHOD

VQ is a classical approximation of a probability density function (pdf), p(X), for a stochastic process,

X2Rn. A set of codebook vectors (CVs), mi2Rn, i¼ 1,2 . . ., k (k is the number of CVs) is constructed.

A CV is made up of two components: a vector which has the same dimension of the process X and a

pointer to a map of a space, usually of two (or sometimes three) dimensions on which the CVs are

projected. The set of CVs and their pointers summarize the information contained in X.

The number of CVs corresponds to the number of elements (cells) of the space and it is indirectly

proportional to the degree of aggregation of data and then to the expected number of data clusters.

There are no rules to define the number of CVs (or cells) since it depends on the specific data set and the

process being analyzed. A ‘‘trial and error’’ approach is used. At the end of the learning phase, if the

information contained in a single CV is too general, the number of CVs is increased. If on the other

hand, the results are too specific, the number of CVs is reduced. Working with the CVs, therefore, is the

central activity of the technique.

Cells are mathematical entities whose boundaries are not necessarily regular. The distance from the

center of one cell to the centers of neighboring cells can be calculated with different formulas. VQ can be

formulated in Euclidean space and calculated with the Euclidean norm (as in 1) for every cell meaning

perfectly regular boundaries. Further VQ uses ‘‘nearest neighbor’’ routine, characterized by CVs in

which the relative final distance between cells is as low as possible. The final values of mi that best fit the

stochastic process X are those pointing to cells in which relative distances have been minimized.

The approximation of X entails finding the best or closest CV mc for each vector x so as to minimize

their total distance, as Gersho and Gray [11] have described. More than one vector x can be linked to

the same mc.

Figure 1 contains an example of a two-dimensional quantifier (belonging to R2) is presented. The

first box contains initial data in their original space (Rn). The second box contains a set of CVs chosen

on a map on a plane, the third one contains transformed data in the auxiliary space (R2) after application

of the VQ technique (that is after learning of mi) in which each vector x is linked to its best CV. Vector x
belonging to the same CVor located close to it, can be considered belonging to the same cluster (in this
pyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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Figure 1. Summary diagram illustrating vector quantization technique.

164 L. MUSSONE AND K. KIM
R2 space). The image appears more regular because of the use of a hexagonal lattice. The same could be

obtained by using a rectangular or square lattice (changing the number of neighbor cells).

The mathematical basis for VQ involves determination of the distances between x and CVs and

finding the best c (of mc) for each x that minimizes the overall distance. The index c can be defined by

the decision process:

x� mck k ¼ min
i

xk � mikf g (1)

or equivalently

c ¼ arg min
i

x�mik kf g (2)

where the norm is assumed to be Euclidean. The first member of (1) is the quantization error for the CV

c. An approach for selecting CVs is to minimize the quantization error, E, that is:

E ¼
Zþ1

�1

Zþ1

�1

Zþ1

�1

xðx1; x2; . . . ; xnÞ �mck k2
pðx1; x2; . . . ; xnÞdx1dx2; . . . ; dxn (3)

where p(x) is the joint pdf of x [the integral is generally over (�1, + 1), that is, the interval for the pdf

of x]; n is the dimension of data space Rn. E depends not only on mc but also on x conditioning the best

coupling with the initial mi. The c index is a function of x and all mi, as the gradient of E with respect to

each CV mi is unknown. If the value of the CVs mi changes, the c index can also change, moving

discontinuously to single out a new CV nearer to x.

A local approximation rather than the entire form of the pdf of a CV is of interest. The best choice,

therefore, of the values of the CVs, mi, is such that their local density approximates the function

½pðxÞ�n=ðnþ2Þ
as long as the number of CVs is large enough where n reflects the dimension of x (see

Ref. [15]). In practical terms, it is often that n> 2. For this reason, VQ approximates the pdf with a

limited set of discrete parameter vectors.

Closed-form solutions to determination of CVs have not, until recently, been proposed. Iterative

methods of approximation have been utilized. Kohonen [12] proposed a solution by assuming that the

p(x) function is continuous and the functions including the c parameter (integer and therefore

discontinuous in R) could be differentiated. The norm is a scalar, therefore, the product of the scalar is

an admissible operation which assumes the square of (1):

x�mck k2¼ ½min
i
f xk �mikg�2 ¼ lim

r!�1

X
i

x�k mikr
 !2=r

(4)

where the limit is a positive real value. The function inside the limit is continuous single valued and

differentiable except for those singular values where x is equal to mi, which is unlikely to occur. The
Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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VECTOR QUANTIZATION OF CRASH CLUSTERS 165
gradient of (3) (the gradient of a scalar function f(x) with respect to a vector variable x¼ (x1,x2, . . ., xn),
is a vector field whose components are the partial derivatives of f with respect to x) becomes, by

using (4):

rmj
E ¼

Z
lim

r!�1
rmj

X
i

x�k mikr
 !2=r

pðxÞdx (5)

Taking into account that:

lim
r!�1

x�k mj

��
x�k mck

� �r

¼ dcj (6)

where dcj is the Dirac function (it is 1 for c¼ j, 0 elsewhere), (5) can be written as:

rmj
E ¼ �2

Z
dcjðx�mjÞpðxÞdx (7)

An approach to the solution of (7) implies an iterative approach to obtain the desired solution with a

certain approximation. Let t be the index of such iteration which can represent time, such that the

sample function of gradient in (7), at time t, is:

rmj
E tj ¼ �2dcj½xðtÞ �mjðtÞ� (8)

In the E space the steepest descent occurs in the opposite direction of the gradient. By denoting with

a(t) the updating factor, the time evolution of CV, i, becomes:

miðt þ 1Þ ¼ miðtÞ þ aðtÞdci½xðtÞ �miðtÞ� (9)

This is also the learning law for the connection weights in self-organizing maps (SOMs), as shown in

the next section. The learning law of (9) can be rewritten as, assuming r ¼ aðtÞdci:

miðt þ 1Þ ¼ ½1 � aðtÞdci�miðtÞ þ aðtÞdcixðtÞ ¼ ð1 � rÞmiðtÞ þ rxðtÞ (10)

which represents a well-known learning algorithm [16] where, under some hypotheses on r, the

learning of mi leads to the best approximate of x(t).

2.1. Self-organizing maps

An SOM is a particular type of ANN. A neural network (NN) consists of both processors and

connections. Processors are linked to each other by connections which make up a network of one or

more layers. Processors are usually called neurons which are characterized by a transfer function

converting signals coming from NN inputs or other neurons (see Ref. [17]).

The special two-dimensional case of an SOM is drawn in Figure 2 (see Section 4.1) which represents

a map of input data (belonging to Rn) on to a two-dimensional array of nodes, built up by output

neurons. In this figure, the NN is represented by the X–Y plane, while the Z-axis represents the accident

count for each CV.

Connections between neurons can be formed using either a rectangular lattice where each

neuron has four possible connections or a hexagonal one (as shown in Figure 1) with six sides. The

hexagonal lattice limits vertical and horizontal learning directions more than the rectangular

lattice. Square lattices are generally to be avoided in order to obtain a more stable orientation in the

data space.

SOMs are characterized by a learning rule of connection weights mi:

miðt þ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ �miðtÞ� (11)

The hci(t) function is called the neighborhood function and measures the interaction between the

two neurons i and c. It must satisfy conditions for the convergence of the learning algorithm such that
Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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Figure 2. Map of codebook cells classified by index (represented by gray colored faces) and with the number of
crashes (Z-axis), Turin.

166 L. MUSSONE AND K. KIM
hci (tÞ !0 when t! 1. A frequent choice is based on the use of a Gaussian function:

hciðtÞ ¼ aðtÞexp �
rc � rik2
��

2s2ðtÞ

 !
(12)

where a(t) (2]0,1]) has the role of the learning factor (or step) and s(t) controls the width of interaction

between cells, while a(t) and s(t) are decreasing monotonic functions. Vectors rc and ri (2R2) represent

the coordinates of nodes i and c, respectively.

Equations (9) and (11) differ only in the use of a Gaussian function instead of a Dirac d function. For

this reason, the solution of the VQ problem obtained by a two-dimensional SOM cannot be considered

exact. The error is minor compared to the advantages associated with simplification.

SOMs preserve the topological structure of the original information. Clusters, samples, and their

relationships, while expressed in N-dimensional space, are preserved in the two-dimensional space of

the SOM. This representation does not depend on the number of independent and dominant variables.

The dimension of the map or the number of CVs is greater than the number of cluster the operator

decides to identify. It is possible to have either a high degree of aggregation or a high level of detail.

After reformulating the data into an SOM, finding clusters becomes easier because of the two-dimensional

space. Data reduction also improves computation efficiencies. The SOM filters out distortions and random

variations present in the data because CVs are based on averages and less sensitive to fluctuations.

The use of SOMs, like other ANN models, begins with an iterative learning phase. The learning

phase provides the setup of an NN which can then be later used for analysis. This phase changes

according to the type of NN. With SOMs, learning is described by (11) which provides the rule for

updating connection weights between neurons. The SOM learning phase determines the dimensions of

the computational problem and the structure of the map. This phase involves evaluation and

comparison of total quantization error (see Ref. [15]). The problem is to determine which function

should be used for a(t). The learning process can be compromised if it decreases toward zero too

quickly. There is no validation since the final result is just the product of an assignment in order to

produce the best cluster configuration (in the sense of minimum quantization error).

The use of average quantization error may be useful with small maps in order to identify that random

initialization that has produced the best result. This approach is not practical with larger maps as the

number of cases and dimensions increase. It is more useful to use a weighted distance measure, such as:X
i

hci x� mck k2
(13)

where hci is the neighborhood function in (12). This index can also be used to determine the best

dimension of the map.

A label (which is information present in the database) can be linked to each CV without using it in

the learning phase. These labels help to visualize the results. Once the best coupling with the CVs is

found and, correspondingly, with each neuron or cell of the network, the list of addressed data vectors

for each cell is inspected and labels are evaluated (generally each CV addresses more than one data
Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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VECTOR QUANTIZATION OF CRASH CLUSTERS 167
vector). The strategy involves linking labels to neurons which are then used to represent the whole cell.

The simplest method for analyzing results is to visually inspect the maps of the codebooks and the other

information linked to them (see Ref. [18] for more detailed discussion). One type of map depicts the

distance between neighboring cells marked by different labels on a single plane (e.g., see Figures 3–5

in Section 4). Another one plots on a three-dimensional surface, the number of vectors mapped onto
Figure 3. Main clusters for crash distribution according to index and road name, Turin.

Figure 4. Main clusters for accident distribution according to index, Milan.

Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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Figure 5. Main clusters for accident distribution according to index and road name, Legnano.

168 L. MUSSONE AND K. KIM
each CV, or the quantization error (e.g., in Figure 2). X- and Y-axes simply identify the coordinates of

CVs. Z-axis identifies the number of observations associated with a CV, or the data cluster associated

with that CV.

The software used to develop this application is cited in Refs. [12,13]. It consists of three modules

for map initialization, training, and quantization error evaluation. Information is extracted using the

different programs in order to match input data to the best codebook, to calculate and visualize

distances between CVs, to generate what is known as a ‘‘Sammon’’ map of input data, to select and

visualize selected planes present in multidimensional space. The computational time is typically

around 5 minutes per network. Obviously, the formulation and investigation of the best network

structure can take much longer.

3. THE ANALYSIS OF CRASH DATA

The data used in this section came from three cities in Northern Italy (Milan, Turin, and Legnano). Data

were collected by the police and include all injury-producing crashes. Property damage only crashes

were excluded from the analysis. Each database is unique and contains different variables and coding

schemes. Average daily traffic, roadside conditions, and other variables of interest that influence

crashes are contained in the databases.

The first step is to construct a database for the learning phase. Some fields are coded into tables

containing items which cannot be classified as cardinal values because each item has its own

information content. After grouping similar items, their content was transformed with a binary code

representing each item. The number of bits necessary for each field is a function of the number of

groups. Other variables containing descriptive information involved the creation of an ordinal
Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175

DOI: 10.1002/atr
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classification based on linear or nonlinear weights assigned to each item. The second step involves the

construction of an SOM according to rules given in the previous section. The third and final step entails

the analysis of the map.

The meaning of some variables (time, number of injured people, number of deaths, etc.) is apparent

while others require further explanation. ‘‘Road code’’ is the name of the road and in the case of an

intersection is the name of the most important road; it is not used for learning. ‘‘Crash type’’ refers to

the type of collision and whether it is involved one or two vehicles or a pedestrian. It can be head-on,

frontal–lateral, lateral, bump, collision with pedestrian, crash with fixed object, etc. ‘‘Road

characteristics’’ describe whether or not the crash occurred at an intersection and the type of traffic

control device such as a traffic signal or roundabout. It also describes the roadway alignment or

(straight or curved, sloped or level) or if the crash occurred within a tunnel. The variable ‘‘road

type’’ describes the number of lanes and the administrative type of road; while ‘‘type of traffic’’ reports

on the volume of traffic in terms of ‘‘no traffic,’’ ‘‘low traffic level,’’ ‘‘medium traffic level,’’ and ‘‘high

traffic level.’’

3.1. Data from three Italian cities: Turin, Milano, and Legnano

The data from the three cities used in this study are described in Table I. For Turin, the data cover a

period of approximately 4 years, from January 1997 to May 2000 (31 864 records). In Table I, the fields

used in the analysis are listed. Fields such as crash type, road characteristics, and road type are

transformed after grouping similar items using a specific binary code. Fields such as crash severity,

meteorological condition, roadbed condition, light condition, and type of traffic are included using an

ordinal classification.

Twenty-four variables are used to represent the vector of an accident occurring in Turin. In Table I

each byte represents one variable. An index is then created by grouping the crash severity (no. 4), crash

type (no. 5), road characteristics (no. 16) variables enumerating them and labeling the index variable
Table I. Fields used to describe crashes in Turin, Milan, and Legnano road networks.

Field Number
of bytes

Turin Milan Legnano

1 Time of crash 1 X X X
2 Lighting condition 1 X – –
3 Meteorological conditions 1 X X X
4a Crash severity 1 1 X –
4b Crash severity 2 2 – X –
5a Crash type 1 2 X X –
5b Crash type 2 3 – – X
6 Number of drivers 1 X – –
7 Number of passengers 1 X – –
8 Number of two wheel vehicles 1 X – X
9 Number of other vehicles 1 X – –
10 Number of people involved 1 – X –
11 Number of vehicles involved 1 – X X
12 Number of heavy vehicles 1 X – –
13 Number of uninjured people 1 X – –
14 Number of injured people 1 X X X
15 Number of deaths 1 X X X
16a Road characteristics 1 4 X X –
16b Road characteristics 2 3 – – X
17a Road type 1 3 X X X
17b Road type 2 2 – – X
18a Road bed 1 1 X X –
18b Road bed 2 2 – – X
19 Type of traffic 1 X X –
20 Road code (road name) 1 X X X

Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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170 L. MUSSONE AND K. KIM
with a progressive number: 54 possible combinations are obtained. For example the following case for

Turin data:

Severity¼ fatal accident¼ code 30

Road type¼ signalized intersection¼ code 0100

Crash type¼ frontal lateral¼ code 10

has Index¼ 52. For simplicity we built the indices (for Turin and Milan) so that an increasing value

means a higher severity. This information is not used for learning in order to avoid using them for both

learning and for deriving results. The numbers present in Figures 3–5 refer to these numbers. After

these operations a total of 17 variables are used in the learning data set.

At the end of the validation process, a rectangular 36� 7 lattice was constructed. The average

quantization error is 0.1759. The quantization error represents the average distance between the data

vectors and the CVs. Because all 17 variables are normalized to 1, the average percentage error is

approximately 1% for each variable.

For Milan, the data were also furnished by the local police and include crashes which occurred in the

city in 1995 (21 822 records). The data structure is shown in Table I.

Twenty different variables are used to represent the vector of an accident. An index is used to label data

and is made up by three variables: crash severity (no. 4), crash type (no. 5), and road characteristics (no. 16),

allowing for 103 combinations. After these operations, there are 12 variables used in the learning data set.

At the end of the validation process, a rectangular lattice with 40� 60 neurons with a hexagonal

connection type was selected. Its average quantization error is 0.0953 and the weighted QE is 0.64346.

Because all 12 variables are normalized to 1, the average percentage error is less than 1% for each variable.

Legnano is a medium size Italian city not far from Milan with approximately 60 000 inhabitants. The

accident data were collected by the police and include all crashes except for property damage only

crashes. Data were collected over a 2-year period, from 1999 to 2000, and amount to 1339 records.

Twenty different variables were used to represent the vector of an accident (see Table I). The labels

used to investigate maps are based on the road name, the type of accident, time weather and roadbed

type. In this application all variables except road name are used for the learning phase.

At the end of the validation process, a lattice with 30� 40 neurons with a hexagonal connection type

was selected. Its average quantization error is 0.2168 and the weighted QE is1.027. With 19 variables

normalized to 1, the average percentage error is approximately 1.1%. Some variables such as accident

type and number of vehicles were not always filled out for all crashes. This may partially explain the

poor results in terms of QE. Nevertheless the number of CVs used is quite high.

4. RESULTS

4.1. Turin

In Figure 2, the crash data mapped onto each CV is drawn. The gray color of each cell is related to a

classification of the ‘‘index’’ (the combination of crash severity, road characteristics, crash type) used

to label the map.

In Figure 3, a map showing the distance between vectors is drawn. Labels are coded by numbers and

refer to the above-mentioned field ‘‘index.’’ In the map, six main clusters can be observed. By

identifying the labels present in each cluster, the main relationships between cluster and crash type can

be extracted. The following crash clusters can be readily recognized:

Cluster 1: non-signalized intersections,

Cluster 2: signalized intersections,

Cluster 3: crashes at a non-signalized intersection,

Cluster 4: bumps and other crash between two vehicles,

Cluster 5: frontal–lateral at non-signalized intersection, and

Cluster 6: frontal–lateral crashes involving pedestrians.

Cluster 6 contains the highest number of crashes and exhibits two peaks (more than 100 crashes

mapped into a single cell) for frontal–lateral crashes occurring at intersections.
Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175
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Crashes occurring on straight roads do not form recognizable clusters and are scattered throughout

the map. Fatal crashes are grouped into area 7 which cannot be considered a cluster because the

distances between CVs are great. Serious injury crashes are present in area 7 or in another part of the

map, and are always distant (in the sense of vector distance) from nearby cells. In the left high corner of

Figure 3, detailed view of cluster 1 is shown. The number in each cell corresponds to a combination of

the index (severity, crash type, and road type).

In other maps, different features of the data can be investigated. By using the name of the roads,

those with similar crash types and patterns (in terms of distance between vectors) could be isolated and

identified.

In addition to distances and labels, the map in Figure 3 provides other information about the data

transformation. The number of crashes mapped onto each CV gives a measure of occurrence of those

crashes and can be interpreted as the probability of an accident occurring. The more data in the

database the more realistic is the interpretation.

By using the map labeled by road name, the homogeneity (or non-homogeneity) of crashes for each

road can be studied. In Table II, a list of the top 20 roads (on the basis of the number of crashes) is

presented. The table reports for each road the number of crashes, the number of CVs used to map their

crashes, and the crashes actually mapped by those vectors.

If the crashes are homogenous, that is, the same road is affected by a few causes or types of crashes,

many crashes can be mapped by a few CVs (as in Vittorio Emanuele II). On the other hand, when there

are many causes or types of crashes, data are scattered on the map without a specific relationship (as in

Lecce).

A difference between the columns ‘‘crashes’’ and ‘‘mapped crashes’’ may exist because some

crashes can be mapped by other CVs with different labels. If there are no vectors for a certain road, it

means that its crashes may be scattered throughout the map and thus mapped separately by other

CVs. The ratio between the mapped crashes and the total number of crashes gives another criterion

with which to evaluate the degree of homogeneity of crashes on a single road. The higher the value

of the ratio, the greater the homogeneity. In Table II the ratios of the number of mapped crashes

to the number of CVs (C/B) and the ratio of the number of mapped crashes to total crashes (C/A)

are derived. This helps to identify the following ‘‘best’’ roads: avenue Peschiera (35, 0.55),

avenue Vittorio Emanuele II (25, 0.50), avenue Regina Margherita (14, 0.18), and avenue Unione

Sovietica (14, 0.14).
Table II. List of the top 20 roads ranked by the number of crashes (Turin data).

Road name Crashes (A) Codebook
vectors (B)

Mapped
crashes (C)

C/A C/B

Regina Margherita 954 13 176 0.18 14
Vittorio Emanuele II 859 17 433 0.50 25
Unione Sovietica 676 7 95 0.14 14
Giulio Cesare 662 4 35 0.05 9
Nizza 504 8 77 0.15 10
Orbassano 480 7 39 0.08 6
Francia 467 5 54 0.12 11
Vercelli 435 2 14 0.03 7
Moncalieri 383 3 14 0.04 5
Trapani 323 5 10 0.03 2
Casale 315 4 36 0.11 9
Grosseto 306 2 2 0.01 1
Novara 275 5 29 0.11 6
Ferraris Galileo 267 3 33 0.12 11
D’azeglio Massimo 263 1 2 0.01 2
Siracusa 256 2 12 0.05 6
Giordano Bruno 253 2 7 0.03 4
Peschiera 251 4 138 0.55 35
Lecce 249 0 0 0.00 –
Cossa Pietro 243 1 3 0.01 3

Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2010; 44:162–175

DOI: 10.1002/atr



172 L. MUSSONE AND K. KIM
4.2. Milan

In Figure 4 the map shows the distances between vectors and data clusters. Labels are coded by

numbers and refer to the field ‘‘index.’’ Ten main clusters can be extracted. Type of crash can also be

extracted. Clusters 1, 2, and 5 contain the highest number of crashes for frontal–lateral in straight roads

and evening hours.

Another method to show distance between CVs is based on the use of a Sammon map. This method

is useful when extracting clusters. The Sammon map of the data mapped in Figure 4 helps to identify

four large clusters. They can be linked, respectively, to the clusters in Figure 4:
1. C
Cop
lusters 3, 4, and 6
2. C
lusters 1, 2, and 5
3. C
lusters 7, 8, and 9
4. C
luster 10.

The first group represents crashes with low severity both on straight roads and at intersections in the

afternoon and evening. These crash clusters are characterized mainly by frontal–lateral crashes.

Cluster 4 represents pedestrian crashes and cluster 6 captures rear-end crashes. The second grouping

represents crashes with low severity on straight roads and evening hours (in this area there are also

clusters with crashes occurred in the morning but with less significance); cluster 1 is characterized by

many rollover crashes and clusters 2 and 5 by frontal–lateral crashes. The third grouping includes

crashes at intersections in the afternoon and evening and mainly frontal–lateral. The fourth includes

crashes on straight roads and at intersections frontal–lateral and involving pedestrians. Fatal

crashes are grouped into areas marked by little circles (called ‘‘x’’) at the top and bottom edges of

the map.

4.3. Legnano

In Figure 5, a map showing distance between vectors is drawn. Labels are coded by numbers and refer

to the field ‘‘road name.’’ In the map, 12 clusters can be observed.

By inspecting the labels for each cluster, according to time, vehicles involved, roadbed and

meteorological conditions, accident type, type of intersection, and number of injured people

relationships between clusters and accident characteristics can be identified:

Cluster 1: very low severity, daytime, heavy traffic, and motorbikes with dry roadbed, calm weather,

on straight roads;

Cluster 2: high severity, nighttime, vehicles and motorbikes, frontal–lateral crashes, with dry

roadbed, calm weather, at intersections;

Cluster 3: low severity, daytime, heavy and passenger vehicles, frontal–lateral or isolated vehicle

against obstacle with dry roadbed, calm weather, at intersections;

Cluster 4: low severity, daytime, motorbikes, with dry roadbed, calm weather, at intersections;

Cluster 5: low severity, daytime and nighttime, motorbikes, with dry roadbed, calm weather, at

intersections;

Cluster 6: low severity, daytime and nighttime, heavy vehicles and motorbikes, with dry roadbed,

calm weather, at intersections;

Cluster 7: low severity, daytime and nighttime, vehicle and motorbikes, with dry and wet roadbed,

calm weather, at intersections;

Cluster 8: very low severity, daytime, vehicle and motorbikes, with dry and wet roadbed, on straight

roads;

Cluster 9: high severity, daytime and nighttime, vehicles and motorbikes, lateral and pedestrian

rolling over crashes, with dry roadbed, calm weather, on straight roads;

Cluster 10: high severity, daytime, vehicles, front-lateral crashes, with dry roadbed, calm weather,

on straight roads;

Cluster 11: high severity, daytime and nighttime, vehicles, bumps, with wet roadbed and rain on

straight roads;
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Cluster 12: very low severity, daytime and evening hours, vehicles, with wet roadbed and rain, on

straight roads;

Cluster 13: no cluster but in this area there is an aggregation of crashes; low severity, daytime and

nighttime, motorbikes with wet roadbed and rain and turning over in curve.

The list of the first 20 roads (in the same manner as Table II) is analyzed. The difference between the

‘‘crashes’’ and ‘‘mapped crashes’’ is more evident than what was shown in Table II. We found that

roads are quite scattered among codebooks and only 36% of crashes has been mapped by codebooks

labeled by them. Some roads have a good ratio C/A or C/B but generally the ratio C/B is not very high.

This may lead to difficulty in analyzing the CV data but only for what concerns extracting information

by using labels instead from CVs. In Legnano, we can deduce that the highest number of crashes is

located in a few roads but there are many different causes. Generally this situation cannot be overcome

by changing the size of the map. Increasing the map size may worsen the ratio, while reducing the map

size, the data can be grouped together simply into other CVs. Therefore the size of the map should be

based only on weighed quantization error. What may be useful to improve performance is to consider

more variables, for example, vehicular flow, in order to explain more variance.

5. CONCLUSIONS

In recent years, ANN algorithms have been used to address a wide range of transportation problems.

Notably, they have been used for incident detection [19], pavement management systems [20], traffic

control systems [21], and traffic assignment algorithms [22]. The use of artificial intelligence for safety

applications, however, has been more limited and recent [23–25].

In this paper, a new method of accident analysis based on VQ used with a particular type of ANN

known as an SOM is presented. The approach facilitates the analysis of large, complicated databases

with many different types of variables having complicated interrelationships. The procedure is most

robust when there are many records and many different variables. While the process is computationally

intensive, the availability of analytical, mapping, and display software greatly improves our ability to

not only investigate the background human, vehicle, roadway, and environmental factors associated

with motor vehicle crashes, but also provides a useful tool for evaluating potential interventions for

reducing crashes and their severity.

As presented in this paper, there are three different uses for this set of algorithms and analytical

tools. First, the method can be quite useful in cleaning data sets, in terms of data reduction, and in terms

of helping to ‘‘group’’ or ‘‘cluster’’ cases or variables in preparation for more advanced modeling tasks.

Second, the VQ and the class of NN models used in this paper are helpful in terms of the identification

and recognition of patterns. These patterns may be expressed in terms of time, space, or perhaps in

terms of clusters of related attributes. Pattern recognition is, no doubt, one of the more popular of the

applications developed in fields other than accident analysis. Finally, the techniques used in this paper

provide us with a powerful new way of simulating or modeling complex realities. While in this paper,

the focus was on three Italian cities and the problem of motor vehicle safety, there are, no doubt, many

other real world problems which could be modeled using this approach. The challenge, of course, is not

only to accurately describe the world as we observe it, but also to simulate alternative scenarios or

futures associated with changes in policies, laws, or programs that may have an impact on the particular

outcome or phenomenon at hand.

In addition to general contributions to the field of ANN modeling, SOMs, and VQ techniques, this

paper offers a number of specific contributions to the analysis of traffic safety questions. In addition to

improving our knowledge of clustering techniques, the method, through the provision of a vector

process, actually provides a way of introducing much more detail into the analytical process than other

techniques. As pointed out, the two-dimensional maps produced through the SOM procedure preserve

the N-dimensional structure of the original data. We can, therefore, use this technique to approximate

the pdf of crashes. This provides another approach to estimate the interrelationship between various

human, vehicle, roadway, and environmental factors associated with crashes. By including spatial and

temporal variables, the procedure provides an alternative approach for conducting ‘‘black spot’’ or

‘‘black zone’’ analyses, developing works on this subject, i.e., Ref. [26]. Future research should focus
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on increasing the connectivity between these methods and other spatial analytical tools (e.g., GIS,

mapping software, spatial statistics); other traffic safety applications are possible, such as:
� fi
Co
nding relationships involving various vehicle types;
� fi
nding relationships that demonstrate the role of driver characteristics;
� fi
nding relationships pertaining to weather conditions.

The case studies in this paper serve to demonstrate the power and versatility of the technique. At the

same time, we learned that there will need to be additional refinements and adjustments in the

technique itself. In Milan, for example, problems may have arisen because of the particular data

structure that was chosen to represent crashes. Some of the variables had a very large average value. It

might have been better to normalize the data, removing some of the extreme values, and preserving a

more constant variance. While the number of cases does not seem to impose a limit on the method

itself, it may lead to problems due to the particular nature of the problem being investigated. While

3 years of data from Turin might be considered optimal for some types of analyses, for others, there

may not have been enough cases. Fatal or high severity crashes, for instance, were always located at the

edges of the map. While in close proximity to each other, they were distant in terms of the CVs. This

makes sense in that they are, comparatively speaking, more rare events than other types of crashes.

This shows us, moreover, that these types of crashes are really different from others and that,

furthermore, we might need a different data structure or set of cases to more fully investigate this

type of crash.

At the same time, it is important to recognize that for some researchers, this type of approach which

is so ‘‘data-driven’’ and reliant upon ‘‘machine learning,’’ may be a bit intimidating. Some could argue

that pattern recognition software and algorithms such as the VQ technique should be limited to data

cleaning operations or only for data reduction exercises – that without explicit formulations of

relationships between dependent and independent variables and without the classical hypothesis

testing approach, these tools are rather limited. However, another perspective suggests that particularly

as the range of different variables and relationships increases to include not just human factors, but also

vehicular, roadway, environmental, temporal, and spatial factors, additional tools capable of handling

multidimensional categorical as well as continuous data are sorely needed. While some might want to

relegate these advances to only the signal, image, and voice processing applications for which they

were originally developed, the careful application and adaptation of these methods to address other

more complex problems should not be ignored.

In time, the methods and techniques and applications described in this paper will become

increasingly user friendly. Eventually, the ideas associated with ‘‘machine learning’’ and ANN will

become more commonplace, not just within the field of accident analysis, but also in other areas of

mathematical and statistical analysis. While the ideas and some of the images presented here may

appear to be somewhat rudimentary and elementary in nature, we can expect that the models and

approaches will become increasingly sophisticated over time, particularly as the availability and

accessibility of large, complicated databases, and powerful new software programs increase.
6. THE LIST OF SYMBOLS AND ABBREVIATIONS
ANN a
pyright
rtificial neural network
CV c
odebook vector
GIS g
eographic information system
NN n
eural network
pdf p
robability density function
QE q
uantization error
SOM s
elf organizing map
VQ v
ector quantization
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