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Abstract: A dynamic mathematical model, using number of rotor bars as parameter, is reached for cage induction motors through the use of
coupled-circuits and the concept of winding functions. The exact MMFs waveforms are accounted for by the model which is derived in natural
frames of reference. By knowing the initial motor parameters for a priori adopted number of stator slots and rotor bars model allows change of
rotor bars number what results in new model parameters. During this process, the rated machine power, number of stator slots and stator
winding scheme remain the same. Although presented model has a potentially broad application area it is primarily suitable for the analysis
of the different stator/rotor slot combination on motor behaviour during the transients or in steady-state regime. The model is significant in its
potential to provide analysis of dozen of different number of rotor bars in a few tens of minutes. Numerical example on cage rotor induction
motor exemplifies this application, including three variants of number of rotor bars.
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cross-sectional rotor bar area, m2
Aers
 cross-sectional end-ring segment area, m2
a
 axial end-ring segment dimension, m

Bg
 air gap flux density, T

Btr
 magnetic flux density in the rotor tooth, T

b
 radial end-ring segment dimension, m

bor
 rotor slot mouth wide, m

btr
 rotor teeth width, m

Dr
 rotor diameter, m

d1
 rotor slot diameter 1, m

d2
 rotor slot diameter 2, m

f1
 mains supply frequency, Hz

g
 air gap length, m

hcr
 rotor core height, m

hor
 rotor slot mouth height, m

hr
 rotor slot height, m

Ib
 rotor bar current, rms, A

Iers
 end-ring segment current, rms, A

ir
 vector of rotor loop currents, Qr × 1, A

is
 vector of stator phase currents, m1 × 1, A

J
 rotor inertia, kgm2
KFe
 iron-core stacking factor, KFe = 0.96

kskew
 skew factor

kw1
 stator phase winding factor

Lb
 rotor bar leakage inductance, H

Lers
 rotor end-ring segment leakage inductance, H

Lrr
 rotor inductance matrix, Qr ×Qr, H

Lr_phase
 equivalent ‘rotor phase’ inductance, H

L′r
 equivalent ‘rotor phase’ inductance referred to

stator, H

Lrs
 rotor-stator mutual inductance matrix, Qr ×m1, H

Lsr = LTrs
 stator-rotor mutual inductance matrix, m1 ×Qr, H

Lss
 stator inductance matrix, m1 ×m1, H

l
 axial length of the machine, m

lb
 rotor bar length, m

lers
 end-ring segment length, m

m1
 number of stator phases

N(θ)
 winding function, turns

n(θ)
 turns function, turns

p
 pole pair number

Qr
 number of rotor bars
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number of stator slots

Rb
 rotor bar resistance, Ω

Rers
 rotor end-ring segment resistance, Ω

Rr_phase
 equivalent ‘rotor phase’ resistance, Ω

R′
r
 equivalent ‘rotor phase’ resistance referred to

stator, Ω

r
 mean air gap radius, m

rr
 matrix of rotor resistances, Qr ×Qr, Ω

rs
 matrix of stator phase resistances, m1 ×m1, Ω

Tem
 electromagnetic torque, Nm

TL
 load torque, Nm

t
 time, s

us
 stator voltages vector, m1 × 1, V

w1
 stator phase series turns number

z
 number of stator slots per pole per phase

γ
 rotor bar skew angle, rad

θ
 rotor relative angular position with respect to

stator, rad

λb
 specific rotor bar permeance

λers
 specific end-ring segment permeance

μ0
 free space permeability, μ0 = 4π·10−7, H/m

tr
 rotor slot pitch, m

ψs
 stator flux linkage vector, m1 × 1, Wb

ψr
 rotor flux linkage vector, Qr × 1, Wb

ω1
 mains supply angular frequency, rad/s

ωr
 rotor speed, rad/s
1 Introduction

Perhaps the earliest established model for induction motors
in a natural frame of reference and using a multiple coupled
circuit approach was published in the famous work by Fudeh
and Ong [1]. This model analysed space harmonics and their
influence on motor transients. In this model, symmetrical
machine was assumed. All magnetomotive forces (MMFs) in
the machine are represented on the harmonic by harmonic
basis – as a sum of fundamental and higher space harmonic
components.

The paper by Luo et al. [2] moved the development of this field
further, and represented a major step forward. In it, the authors pre-
sented an induction motor using winding functions, and modelled
this on the basis of a multiple coupled circuit. What is now clear
is that their model represents the standard for induction motors
modelling, and has done so for the last two decades, notably in
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relation to, a range of fault conditions and their investigation.
The key feature of the model is that it can account for different
winding distributions, without the nature of that winding (wound
or cage winding) affecting the model. Similarly, the model makes
no assumptions about symmetry or the lack of it. The space harmo-
nics of the MMFs in the machine are considered at the same
time, rather than on a harmonic by harmonic basis. It means that
the exact shape of each MMF is considered, while the model also
lends itself to numerical modelling. It should be noted that the
model is linear in sense that it only considers the electromagnetic
processes in the air-gap rather than other processes. However,
the majority of models of induction machines suffer in this
regard, as it is the case with conventional d−qmodel. The magnetic
circuit and particularly its saturation can be dealt with through
this model thanks to air-gap permeance modulation [3, 4], and as
such the model has been employed extensively to model a
range of fault conditions in both induction and synchronous
machines in recent decades [5–11]. The model also provides
insight into the functioning of various important higher har-
monics in stator current spectrum which originate from machine
design, saturation of the magnetic current and/or existence of the
fault and its level [12–15]. It remains true, nonetheless, that,
despite the intense use of this model for a range of investigations,
there remain areas which have not yet been considered to their
full extent.

It is of interest to examine the possibility of expansion and adjust-
ment of this model for the derivation of more general cage induction
motor model that will be capable to use a number of rotor bars as
a parameter, and such an investigation is presented here. Some pre-
liminary results have already been given in a recently presented
paper by the same author [16].

Since the beginning of the induction motor invention and exten-
sively utilisation, it has been clear that the number of stator slots
and rotor bars, and the relationship between the two, produces a
considerable effect on a variety of the cage induction motor
characteristics.

The first stage in designing an induction motor is to identify
its principal geometric dimensions: these include the diameter
of the stator bore and the rotor, the length of the air-gap and the
machine’s total axial length. There follows a decision on the
number of stator slots, Qs and rotor bars, Qr. The selection of
these numbers, and their relationship, is one of the key elements
of the induction motors design process. When the slot combination
is inappropriate, considerable vibrations and acoustic noise
can result, while in some cases, the motor may not operate at all
[17]. The relationship between slots influence elements such as
shape of torque-speed characteristics, leading to possible problems
in operation, while at the same time altering the cost of manu-
facture, temperature rise and so on [18]. Having said that, it is sur-
prising that over a century after the induction motor was first
invented there is still no clarity as to the optimal rotor bars
number in terms of rated operating conditions or starting torque
in cases where the machine has a predetermined set-up of stator
slots and pole pair number. Of course, a variety of empirical
norms have been identified which provide some guidance on the
issue of slot combination, although there is little consensus [19],
and indeed has not been since Kron proposed the first rules in
1931 [20]. Standard textbooks and a range of published works
have identified some further rules [21–24], but this authors believes
that, to judge from initial analysis, the rules used are not universally
applicable.

This paper aims to shed light on this issue by examining how
using the number of rotor bars as the principal parameter affects
the numerical model of a cage induction motor. Following the
first phase of machine design, given a specified number of stator
slots and rotor bars, any number of rotor bars that have sense
could be used, always assuming invariant rated machine power,
number of stator slots and stator winding design.
This is an open access article published by the IET under the Creative
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2 Induction motor model and parameters

2.1 Induction motor model

The standard mathematical model of an induction motor is
widely familiar. It follows here using voltage equations, in matrix
notation,

us = rsis +
dcs

dt
(1)

0 = rrir +
dcr

dt
(2)

where the flux linkages are:

cs = Lssis + Lsrir (3)

cr = Lrsis + Lrrir (4)

The equations for the developed electromagnetic torque and rotor
speed are as follows:

Tem = iTs
dLsr

du
ir (5)

Tem − TL = J
dvr

dt
= J

d2u

dt2
(6)

Numerical methods can quickly provide the solutions to these dif-
ferential equations, where there are identifiable initial values, as is
demonstrated in [4].

2.2 Model parameters

The calculation of stator winding resistances, like those of self,
mutual and leakage inductances is not presented here, since they
can all be reached in the usual way. The rotor parameters are the
key element of the calculation.

† Rotor winding resistances
The winding of cage rotors, where there are Qr rotor bars and 2Qr

end-ring segments might be viewed as Qr-phase winding, assuming
that one phase is formed of one rotor bar and two associated
end-ring segments. There is a well-known equation to find the rela-
tionship between rms currents in the rotor bar and the end-ring
segment in a machine with p pair of poles:

Ib = 2Iers sin
pp

Qr

( )
(7)

The equivalent resistance of one rotor ‘phase’ is obtained from the
condition of Joule power invariance:

Rr phase = Rb +
Rers

2sin2(pp/Qr)
(8)

This resistance referred to the stator side of an m1-phase machine is,

R′
r =

4m1

Qr

kw1w1

kskew

( )2

Rr phase (9)

where kw1w1 represents the effective series turns number of the
stator phase winding and kskew is the fundamental harmonic skew
factor. In the most frequent cases, being where the rotor bars are
skewed for one stator slot pitch, the value of this factor is as follows:

kskew = Qs

pp
sin

pp

Qs

( )
(10)
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The resistance calculated in (9) is one which happens in a one phase
steady-state equivalent circuit of an induction machine.
Having said that, this paper observes the motor in the natural

frame of reference, meaning that the matrix of cage rotor resistances
is a square matrix of dimension Qr ×Qr. The entries are R1 = 2(Rb +
Rers) and R2 = −Rb, where Rb and Rers represent the rotor bar and
end-ring segment resistances, respectively:

rr =

R1 R2 0 0 . . . R2

R2 R1 R2 0 . . . 0
0 R2 R1 R2 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

R2 0 0 0 . . . R1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Qr×Qr

(11)

The known geometrical data and specific electrical conductivity of
alumina mean that these resistances are easily obtained.
Given the shape of the matrix (11) and the definition of R1 and

R2, rotor currents can clearly be identified as mesh currents,
in which the mesh is formed from two neighbouring bars and
associated end-ring segments. Thus the current of the rotor bar is
the difference between the two neighbouring mesh currents.

† Rotor winding inductances
The matrix of the rotor inductances Lrr is also of Qr ×Qr

dimension,

Lrr =

L1 L2 L3 L3 . . . L2
L2 L1 L2 L3 . . . L3
L3 L2 L1 L2 . . . L3
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
L2 L3 L3 L3 . . . L1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Qr×Qr

(12)

where the elements are L1 = Lself + 2(Lb + Lers), L2 = Lmutual− Lb and
L3 = Lmutual.
The self-inductance of the rotor loop Lself, as well as the mutual

inductance between two rotor loops Lmutual is easily found by con-
sidering the definition of the winding function [2]:

Lself =
m0rl

g

2p

Q2
r

Qr − 1
( )

(13)

Lmutual = −m0rl

g

2p

Q2
r

(14)

Thus it is a simple task to calculate, the main power of winding
function approach through these inductances, without reference to
the number of rotor bars.
The leakage inductance values Lb and Lers are dependent on the

rotor bars and the end-ring segments, and specifically their dimen-
sions and shape. The initial machine design provides the cross-
sectional area of the rotor bars, Ab. If we adopt a bar shape as
shown by Fig. 1, we can ensure that there is a constant rotor teeth
width btr for the entire length of the tooth.
Fig. 1 Shape and dimensions of the rotor bar and the end-ring
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It is thus easy to calculate the following dimensions of the rotor slot, for
Qr rotor bars,

d1 =
p Der − 2hor
( )− Qrbtr

p+ Qr
(15)

d2 =
����������������������
8CAb − Cp+ 8( )d21

Cp− 8

√
(16)

hr =
d1 − d2

2 tanp/Qr
(17)

where:

btr �
Bg

KFeBtr
tr =

BgpDr

KFeBtrQr
(18)

C = 4 tan
p

Qr
(19)

The rotor end-ring dimensions are calculated on the basis of the initial
machine design process, where the end-ring height b, is,

b = 1 4 1.2( ) · hor + hr + 0.5 d1 + d2
( )( )

(20)

while the other dimension is:

a = Aers

b
(21)

Once we have the rotor slot and end-ring dimensions, we can then find the
appropriate leakage inductances [23]:

Lb = m0lblb � m0lb 0.66+ 2hr
3 d1 + d2
( )+ hor

bor

( )
(22)

Lers = m0lerslers = m0 ·
p Dr − b
( )
Qr

· 0.46 · log 2.35 · Dr − b
( )

2a+ b

( )[ ]
(23)

One useful element is to find the connection between the above parameters
and that found in single phase equivalent circuit as for resistances. Through
magnetic energy invariance, we can identify the equivalent inductance of
one cage rotor ‘phase’ as,

Lr phase = Lb +
Lers

2sin2(pp/Qr)
(24)

while the value referred to the stator side of m1-phase machine is:

L′r =
4m1

Qr

kw1w1

kskew

( )2

Lr phase (25)

This is the inductance that takes place in a one phase steady-state
equivalent circuit of the induction machine. In this case, it occurs as
leakage reactance:

X ′
r = v1L

′
r = 2pf1L

′
r (26)

† Stator-rotor mutual inductance
Mutual inductance between the stator phase and rotor loop is one

of the essential parameters in this model. This inductance is time
dependent i.e. it varies with the rotor position. Given a known
winding function of stator phase, say phase A, the mutual induct-
ance is found through iterative processes of the numerical integra-
tion of the following integral,

LsAr1 =
m0rl

g

∫2p
0

NA u( ) · nr1 u( ) du (27)
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Table 1 Steady state equivalent circuit parameters for initial design,
Qs = 48, Qr = 30

Pn = 11 kW, Un = 400 V, f = 50 Hz, nn = 735 rpm, wye, coswn = 0.7,
ηn = 0.9, Qs = 48, Qr = 30
stator phase winding resistance, Rs 0.222 Ω
stator phase winding leakage reactance, Xsl 0.679 Ω
magnetising reactance, Xm 12.77 Ω
rotor phase winding resistance, referred to stator, R′

r 0.293 Ω
rotor phase winding leakage reactance, referred to stator, X ′

r 0.485 Ω

Table 2 Dynamic model parameters for initial design, Qs = 48, Qr = 30

Pn = 11 kW, Un = 400 V, f = 50 Hz, nn = 735 rpm, wye, coswn = 0.7,
ηn = 0.9, Qs = 48, Qr = 30
stator phase winding resistance, Rs 0.222 Ω
stator phase winding leakage inductance, Lsl 2.162 mH
rotor bar resistance @80°C, Rb 77.394 μΩ
rotor end-ring segment resistance @80°C, Rrs 4.569 μΩ
rotor bar leakage reactance, Lb 445.067 nH
rotor end-ring segment leakage reactance, Lrs 11.988 nH

Table 3 Dynamic model parameters for new design, Qs = 48, Qr = 33

Pn = 11 kW, Un = 400 V, f = 50 Hz, nn = 735 rpm, wye, coswn = 0.7,
ηn = 0.9, Qs = 48, Qr = 33
stator phase winding resistance, Rs 0.222 Ω
stator phase winding leakage inductance, Lsl 2.162 mH
rotor bar resistance @80°C, Rb 85.133 μΩ
rotor end-ring segment resistance @80°C, Rrs 4.175 μΩ
rotor bar leakage reactance, Lb 465.43 nH
rotor end-ring segment leakage reactance, Lrs 11.09 nH

Table 4 Dynamic model parameters for new design, Qs = 48, Qr = 40

Pn = 11 kW, Un = 400 V, f = 50 Hz, nn = 735 rpm, wye, coswn = 0.7,
ηn = 0.9, Qs = 48, Qr = 40
stator phase winding resistance, Rs 0.222 Ω
stator phase winding leakage inductance, Lsl 2.162 mH
rotor bar resistance @80°C, Rb 103.19 μΩ
rotor end-ring segment resistance @80°C, Rrs 3.471 μΩ
rotor bar leakage reactance, Lb 511.82 nH
rotor end-ring segment leakage reactance, Lrs 9.185 nH
while the turns function of rotor loop, say loop 1, finds its position
altered slightly for one rotor revolution. Thus a look-up table can be
found so that the appropriate mutual inductance value can be iden-
tified for any given angle of a rotor position.

Since the motor is symmetrical, all that is required is to identify
the mutual inductance between one stator phase and one rotor loop.
Once this is done, the mutual inductance for one rotor position is
available from the look up table once appropriate shifting has
been taken into account, regardless of the loop or stator phase in
question.

3 Changes to the number of rotor bars

The initial design process of the machine, described in [23],
involves deciding the principal machine dimensions, the number
of stator slots and rotor bars, and the stator and the rotor
cage winding parameters. Of course, the quantity of stator slots
Qs is essentially fixed and derives from the motor dimensions:
invariably, it is the product of number of slots per pole per
phase z, the number of phases m1 and the number of poles 2p,
Qs = 2·z·m1·p.

To alter the number of rotor bars, while leaving the stator
unchanged, the rotor bar cross-section area is changed. This
naturally assumes that the machine has a fixed rated power and
that current density in rotor bars remains the same. In order
that the machine develops the same power at the same slip, the
following equality must hold true,

QrRbI
2
b = Qr newRb newI

2
b new (28)

or

QrRb j
2kw1w1m1

Qr
I1rated

( )2

= Qr newRb new j
2kw1w1m1

Qr new
I1rated

( )2

(29)

where:

j � 0.8 · coswrated + 0.2 (30)

Thus it follows,

Rb new = Qr new

Qr
Rb (31)

Ab new = Qr

Qr new
Ab (32)

Rers new = Rers

a
(33)

where,

a = Qr newAers new

QrAers
(34)

Once we know what the cross section area values are as a result of
this, we can identify both the rotor slot and the end-ring dimensions,
meaning that new leakage inductance values can be calculated
through (22) and (23).

4 Results and discussion

Tables 1 and 2 provide results for machine parameters for a
three-phase induction machine with the following rated values:
Pn = 11 kW, Un = 400 V, f = 50 Hz, nn = 735 rpm, wye connection,
which has a targeted rated power factor and rated efficiency of
This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommons
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coswn = 0.7, ηn = 0.9, when there are Qs = 48 stator slots and
Qr = 30 rotor bars.

As in the procedure explained above, when we use two new
numbers of rotor bars, Qr = 33 and Qr = 40, distinct new dynamic
model parameters are found. They are provided in Tables 3 and 4:

The stator winding remains unchanged in all cases, as does the
fact that the rotor bars are skewed at an angle of one stator tooth
pitch, γ = 2π/Qs [25]. The figure below provides the results for
three separate rotor bar numbers after numerical modelling.

Fig. 2 shows the waveforms of mutual inductance between stator
phase and rotor loop for three separate rotor bar numbers.
The results, as expected, show that greater rotor bar numbers,
meaning a smaller loop width, produce smaller mutual inductance
amplitudes.

Fig. 3 shows the motor’s electromagnetic torque, created during
unloaded start-up. It is clear that a machine with Qr = 40 bars pro-
duces the most significant torque peaks, which means that this
set-up allows the machine to achieve a steady state regime most
quickly. It is also clear that all the machines are loaded with rated
load at t = 0.6 s.
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Fig. 2 Stator phase – rotor loop mutual inductance waveform for three different number of rotor bars: Qs = 48, Qr = 30, 33 and 40. Rotor bars are skewed for
γ= 2π/Qs, [rad]

Fig. 3 Developed electromagnetic torque of the machine during no-load start-up. The machine is loaded with a rated load at t = 0.6 s

Fig. 4 Rotor speed during no-load start-up. The machine is loaded with a rated load at t = 0.6 s
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Fig. 5 Stator phase current during no-load start-up. The machine is loaded with a rated load at t = 0.6 s
Fig. 4 provides machine rotor speed in the same conditions.
It is evident that rotor speed is closely related to developed electro-
magnetic torques, i.e. the machine with Qr = 40 bars run-up fastest,
with the rotor speeds being exactly the same in a steady state
regime. The same holds for the stator phase current values shown
in Fig. 5.

Fig. 6 shows the current waveforms in one rotor bar as part of
the same transient process. This current represents the difference
between the currents in the two neighbouring rotor loops that
make up two rotor bars and their corresponding end-ring segments.

On the basis of these figures, it is clear that the optimal rotor
choice of the three would be a rotor with Qr = 40 bars, which
has the greatest starting torque. The results given in Fig. 7, by
contrast, demonstrate that the same rotor (Qr = 40 rotor bars)
provides the worst performance in a steady state regime, because
of the extreme pulsations of electromagnetic torque it produces.
As such, a machine with Qr = 33 rotor bars offers the best steady
state regime performance, even if there is a low-frequency torque
harmonic component in this case.

The example given above, featuring three different number of
rotor bar choices, demonstrates just how complicated the choice
of rotor bar number, and indeed their combination with stator
slots, actually is. Where one option provides better starting
Fig. 6 Rotor bar current during no-load start-up. The machine is loaded with a

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommons
licenses/by-nc-nd/3.0/)
torque, it might perform badly in steady state regime. The choice
is clear; it is possible to have good starting torque or good steady
state performance, but in the most practical cases not both. This
model helps in the decision process between these two options,
quickly and reliably.
5 Conclusion

This paper offers a tool of significant interest and utility for cage
induction motor designers and the wider scientific community in
relation to the design and application of induction machines. The
model produces a time series of rotor speed, electromagnetic
torque, stator and rotor currents, all of which can be considered
for any sensible number of rotor bars. The numerical example high-
lights the power of the model. By analysing three randomly selected
numbers of rotor bars, we have demonstrated that various solutions
are not acceptable, because of the extent of the electromagnetic pul-
sations in the steady state regime.

The model allows for the consideration of any number of pole
pairs, stator slots and rotor bars in any combination, as well as
for any type of stator winding design. The model’s key benefit is
in allowing the analysis of numerous combinations extremely
quickly: ten or more different number of rotor bars requires only
rated load at t = 0.6 s
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Fig. 7 Developed electromagnetic torque in a steady state. The machine is loaded with a rated load
few tens of minutes for full analysis, which is a significant advan-
tage in comparison to finite element method models. Assuming the
right criteria are employed, something which remains under inves-
tigation, we should soon be able to identify the precise, optimal
number of rotor bars required for a given number of stator slots
and pole pairs.
This analysis has considered a line-fed, symmetrical wye con-

nected three phase cage induction motor. The same process might
be applied either to single phase or multiphase machines.
Additionally, there are no any restrictions in the sense that model
can be used for delta connected or inverter-fed machines.
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Stator phase winding scheme:
A-1-6′-2-7′-13-8′-12-7′-13-18′-14-19′-25-20′-24-19′-25-30′-26-

31′-37-32′-36-31′-37-42′-38-43′-1-44′-48-43′-X
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