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Abstract: A three-dimensional (3D) signal sparse representation (SR) model that can be used for joint Doppler frequency, direction of depart-
ure and direction of arrival estimation in bistatic multiple-input–multiple-output radar is built. Then, a fast 3D orthogonal matching pursuit
(OMP) algorithm is put forward to estimate the 3D parameters. First, the problem of targets 3D parameters joint estimation is decomposed
into three estimation problems whose computation burden is decreased. Then, the high-resolution 3D parameters of all targets are got by
solving a very small-scale SR problem. Numerical simulations verify that the proposed algorithm can get similar estimation accuracy and
decrease the computational burden compared with the traditional 1D OMP algorithm.
1 Introduction where am denotes the scattering coefficient of the mth target. W n
Multiple-input–multiple-output (MIMO) radar has received signifi-
cant attention since its first appearance a decade ago and many
literatures devote to researching the performance advantages of
MIMO radar in significantly improved parameter identifiability
[1]. More recently, sparse representation (SR)-based MIMO radar
(SR-MIMO) becomes a hot field because of its advantage in fully
exploiting the inherent sparseness of the scenario [2]. Nonetheless,
most of the SR-based estimation approaches always rearrange the
three-dimensional (3D) MIMO radar echo into a 1D signal. And
it will lead to greatly increasing of the storage and computing com-
plexity as the size of dictionary grows. This problem seriously
restricts its application [3]. Besides, despite the above estimation
problem could be solved by Bayesian method, orthogonal matching
pursuit (OMP) algorithm basis pursuit algorithm etc., OMP is more
suitable for application for its satisfactory estimation accuracy and
low computational burden [4].
In this paper, a 3D signal SR model that is suitable for joint Doppler

frequency, direction of departure (DOD) and direction of arrival (DOA)
estimation in bistaticMIMO radar is built. Later, a novel 3DOMPalgo-
rithmwhich exploits the separable property of this estimation problem is
proposed to solve the 3D parameters estimation problem.

2 Problem formulation

Assuming there is a bistatic MIMO radar with K transmitters and L
receivers, where the transmit and receive arrays are collocated
linear array. The interval between array elements is half of wave-
length. Coherent processing interval contains N pulses. Targets resid-
ing in a certain range cell are characterised by Doppler frequency fd,
DOD w and DOA u. fs, d1 and d2 are the pulse repetition frequency,
the distance between transmitters and distance between receivers.
Moreover, f (D) = fd/fs, f (T ) = d1 cos (w)/l, f (R) = d2 cos (u)/l
are the normalised Doppler frequency, normalised DOD and normal-
ised DOA. In the rest of this paper, we will directly refer to them as
Doppler, DOD and DOA for simplicity.
Assume the transmitting waveforms are normalised orthogonal

signals, i.e. SSH = IK , where S = [s1, s2, . . . , sK ]
T. Moreover,

the received signal of the receive array after matched filtering can
be expressed as

Y n =
∑M
m=1

ame
j2pf (D)m naR(f

(R)
m )aT(f

(T)
m )

T
S+W n

[ ]
SH

=
∑M
m=1

ame
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m )aT(f

(T)
m )T+Zn, n= 1, 2, . . . , N (1)
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This is an open
refers to the noise matrix. Zn =W nS
H. The term n is the launch

time of the nth pulse. aR( f
(R)
m )= [1, . . . , exp(j(L−1)2pf (R)m )] and

aT(f
(T)
m )= [1, . . . , exp(j(K−1)2pf (T)m )] are receive steering vectors

and transmit steering vectors corresponding to the DOA and DOD
of the mth target, respectively. Similarly, another vector aD(f

(D)
m ) is

denoted by aD(f
(D)
m )= [1, . . . , exp(j(N −1)2pf (D)m )].

Applying the vectorisation operation to (1), the 3D received echo
can be represented by the 1D signal model

y =
∑M
m=1

amAm + z [ CNKL×1 (2)

where Am = aD(f
(D)
m )⊗ aT(f

(T)
m )⊗ aR(f

(R)
m ) represents the steering

vector of the mth target. Moreover, y = [vec(Y1)
T, . . . ,

vec(YN )
T]T [ CNKL and z = [vec(Z1)

T, . . . , vec(ZN )
T]T [ CNKL.

Then, discretising the range of Doppler, DOD and DOA to
Kd . K, Ns . N and La . L resolution grids, respectively, we
can get the 3D parameters by solving the following 1D SR problem

y = Fa (3)

where a [ CKdNsLa×1 is the sparse vector and the non-zero
elements’ position represent the estimation result. F =
[A1, A2, . . . , AKdNsLa

] is the Doppler–DOD–DOA dictionary
and Ai represents its ith column.

The question is that solving (3) will bring about huge calculation
burden because both the length of atoms of the dictionary KNL and
atom’s number KdNsLa are often very huge.

Note that each column of F can be decomposed into the
Kronecker product of the steering vector of Doppler, DOD and
DOA, that is, the dictionary F are separable. So, the high-
dimensional dictionaryF can be decomposed into three subdiction-

aries, i.e. the Doppler dictionary FD = [aD(f
(D)
1 ), . . . , aD(f

(D)
Kd

)],

the DOD dictionary FT = [aT(f
(T)
1 ), . . . , aT(f

(T)
La

)] and the DOA

dictionary FR = [aR(f
(R)
1 ), . . . , aR(f

(R)
NS

)]. Moreover,

a [ CKdNsLa×1 is a sparse steering vector which can be rearranged
into a 3D sparse matrix, i.e. ℵ = Ivec(a)Kd×Ns×La

[ CKd×Ns×La ,
where Ivec(†)Kd×Ns×La

represents rearranging the data into a
Kd × Ns × La-dimensional matrix.

So, (3) is possible solved efficiently by solving several equivalent
problems which have less computation burden.
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Fig. 1 3D OMP algorithm

Fig. 2 3D parameters estimation result of our method
3 3D OMP algorithm

According to the property that the projection of ℵ on its each di-
mension is sparse, we propose the 3D OMP algorithm to solve
(3). Utilising the property of Kronecker product, i.e.
vec(F1LFT

2 ) = ((FT
2 )

T ⊗F1)vec(L), another form of (3) can be
Fig. 3 Average RMSE of estimation result for all targets
a Doppler
b DOD
c DOA
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got

Y = FRL1(FD ⊗FT)
T (4)

where Y = Ivec(y)L×KN and L1 = vec(ℵ)La×KdNs
.

Making Ns = N and La = L, FT = [aT(f
(T)
1 ), . . . , aT(f

(T)
La

)] and
FR = [aR(f

(R)
1 ), . . . , aR(f

(R)
NS

)] will become invertible
Vandermonde matrices. So, another form of (4), i.e.
YT[(FR)

−1]T = (FD ⊗FT)L
T
1 , can be got through multiplying

F−1
R and matrix transposing, where (FR)

−1 could be calculated
easily [5] by the property of Vandermonde matrix. Moreover, LT

1
is still a sparse matrix because its non-zero elements exist in few
rows. So, by multiplying the matrix ELa×1 whose elements are all
1, we get YT[(FR)

−1]TELa×1 = (FD ⊗FT)L
T
1ELa×1, where

LT
1ELa×1 is a KdNs × 1-dimensional sparse steering vector.

Utilising the property of Kronecker product again,
Ivec(YT[(FR)

−1]TELa×1)K×N = FTL2(FD)
T is obtained, where

L2 = Ivec(LT
1ELa×1)Ns×Kd

. Moreover, by multiplying F−1
T and

matrix transposing, we can get
(Ivec(YT[(FR)

−1]TELa×1)K×N )
T[(FT)

−1]T = FD(L2)
T. After that,

by multiplying the matrix ENs×1 whose elements are all 1, we obtain

(Ivec(YT[(FR)
−1]TELa×1)K×N )

T[(FT)
−1]TENs×1 = FDl (5)

where l = (L2)
TENs×1 and it is a Kd × 1 sparse steering vector. It

should be pointed out that the non-zero rows of l represent the
Doppler parameter of targets, thus we will get the high-resolution
estimation result of Doppler by solving (5) based on the traditional
1D OMP algorithm and the computation burden is decreased for the
problem’s size is becoming small.

Similarly, letting Kd = K, La = L or Kd = K, Ns = N , we can
get the two equations as follows:

Ivec[Ivec(y)NL×K (F
−1
D )TEKd×1]N×L(F

−1
R )TEL×1 = FTg (6)

Ivec[Ivec(y)NL×K (F
−1
D )TEKd×1]L×N (F

−1
T )TEN×1 = FRj (7)
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Fig. 4 Runtime of 1D OMP and 3D OMP algorithms
Moreover, the high-resolution DOD g and DOA j also can be
obtained through solving (6) and (7) by traditional 1D OMP
algorithm.
Then, in order to estimate the 3D parameters of each target, a

very small union dictionary denoted by Fnew = FM
D ⊗FM

T ⊗FM
R

is constructed, where the columns of FM
D [ CK×M , FM

T [ CN×M

and FM
R [ CL×M are chosen from FD, FT and FR according to

the estimated result of Doppler, DOD and DOA, respectively.
Then, solving the equation y = Fnewanew by 1D OMP, we can
get the 3D parameters of all targets. In summary, the proposed
3D OMP algorithm consists of four main steps attained which is
shown in Fig. 1.

4 Computational cost comparison

The most time-consuming procedure in 1D OMP is to find the most
relevant atoms from the dictionary, for M targets, all of the compu-
tational amount is O(MKNLKdNsLa) [4]. The 3D OMP algorithm
could reduce the computational complexity to
O(MKKd)+ O(MNNs)+ O(MLLa)+ O(M4KNL) but get the
same accuracy of original 3D parameters estimation method,
which indicates that the proposed 3D OMP algorithm is more
efficient.

5 Simulation results

Assuming that M = 5, i.e. the number of uncorrelated targets are
five. The mth target’s Doppler, DOD and DOA are
f (D)m = 0.2m− 0.55, f (T )m = 0.2m− 0.6 and f (R)m = 0.2m− 0.6,
respectively. We provide three kinds of simulations. The
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discretising number of grids is 30, i.e. Kd = Ns = La = 30. The
noise in all the simulation is additive white Gaussian noise.

For the first simulation, SNR = 20 dB and K = N = L = 10.
The 3D parameters estimation performance of the proposed algo-
rithm is shown in Fig. 2, which indicates that our method can get
satisfactory estimation performance. For the second simulation,
K = N = L = 10, we contrast the variation of average
root-mean-square error (RMSE) of estimated result with different
SNR for traditional 1D OMP and the proposed algorithms, and
the result is presented in Fig. 3. About 500 trails Monte Carlo simu-
lations are performed for each given SNR. Fig. 3 indicates that,
when SNR < 5 dB, the traditional algorithm is better than the pro-
posed algorithm. Nevertheless, when SNR > 10 dB, the accuracy
of the proposed algorithm is comparable with traditional algorithm
and the difference is small. In the third simulation, we contrast the
computational performance of the two algorithms through the
runtime of each algorithm. Fig. 4 shows the runtime of the two
algorithms versus different K = N = L. We can observe that the 3D
OMP is faster than the 1D OMP and the proposed method is
more computationally efficient.

6 Conclusion

A 3D signal SR model that can be used for joint Doppler frequency,
DOD and DOA estimation in bistatic MIMO radar is built. Then, a
fast 3D OMP algorithm is put forward to estimate the 3D para-
meters. Numerical simulations verify that the proposed algorithm
can get similar estimation accuracy and decrease the computational
burden compared with the traditional 1D OMP algorithm.
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