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Université Paris-Est, Laboratoire Ville Mobilité Transport, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal,

Champs sur Marne 77455 Marne la Vallée Cédex 2, France

SUMMARY

Seating or standing make distinct on-board states to a transit rider, yielding distinct discomfort costs, with
potential influence on the passenger route choice onto the transit network. The paper provides a transit
assignment model that captures the seating capacity and its occupancy along any transit route. The main
assumptions pertain to: the seat capacity by service route, selfish user behaviour, a seat allocation process
with priority rules among the riders, according to their prior state either on-board or at boarding. To each
transit leg from access to egress station is associated a set of ‘service modes’, among which the riders are
assigned in a probabilistic way, conditionally on their priority status and the ratio between the available
capacity and the flow of them. Thus the leg cost is a random variable, with mean value to be included in the
trip disutility. Computationally efficient algorithms are provided for, respectively, loading the leg flows and
evaluating the leg costs along a transit line. At the network level, a hyperpath formulation is provided for
supply-demand equilibrium, together with a property of existence and an method of successive averages
equilibration algorithm. It is shown that multiple equilibria may arise. Copyright # 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

1.1. Setting and literature review

The planning of urban public passenger transport often requires considering the capacity constraints

and congestion effects. In the past recent years, transit congestion has been given an increased attention

from the research community in the science of transportation and traffic. Based on the Traffic Capacity

and Quality of Service Manual (TCQSM [1]), we have identified seven types of congestion effects:

(i) the vehicle traffic capacity of the infrastructure; (ii) the operating capacity on a transit route;

(iii) vehicle capacity; (iv) the rider capacity of a transit service or route; (v) the passenger capacity of a

station; (vi) the transit vehicle capacity of a station; (vii) the access and parking capacity for private

vehicles at a station. One type of effect may take several forms: in particular, vehicle capacity can be

broken down into seated capacity, rider capacity or boarding and alighting capacity at the doors.

Figure 1 depicts the interplay of system components and capacity effects.

Type (i): the vehicle traffic capacity of the infrastructure has been addressed by Spiess and Florian

[2] who related the travel time (or cost) Ta of link a to the flow volume xa by means of a travel time

function, Ta ¼ taðxaÞ. This formulation is appropriate for mild congestion, i.e. under capacity, either

for the circulation of vehicles on the infrastructure by linking the journey time (cost) to the vehicle flow,

or for the travel of riders by linking a discomfort cost to the number of riders on each vehicle.
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Type (ii) concerns the operating capacity on a transit routewhich is limited by the vehicle fleet. Lam et

al. [3]. linked the dwelling time of a transit vehicle at a loading platform to boarding and alighting

passenger flows: adding the dwell times and the segment run times yields the vehicle journey time along

the transit route. The ratio between the fleet size and the journey time determines the line frequency.

Type (iii); the rider capacity of a transit vehicle, is equivalent to Type (iv) in a static model with fixed

line frequency and homogeneous vehicle fleet. Vehicle capacity per se stands as the main capacity

effect considered in dynamic assignment models. Tong and Wong [4] have proposed a dynamic model

with gradual filling of the vehicle but no congestion effect: each rider selects a best route based on the

scheduled service times. Nuzzolo et al. (2001) [5] modeled rider discomfort in a crowded vehicle using

a discomfort cost which increases with vehicle load. This cost influences the passengers’ route choice,

and hence passenger flows on the network. But there is no capacity limit and congestion does not affect

the time a rider waits for a vehicle. Nguyen et al. [6] have modeled a waiting cost that is interpreted as

waiting discomfort based on the difference between boarding passenger volumes and residual vehicle

capacity, but which has no influence on physical time. Poon et al. [7] have modeled the boarding

capacity limit in a vehicle using a bottleneck model which determines queue time on the basis of the

temporal profiles of rider arrivals and departures—with departures being linked to the available

vehicle capacity at passage times. The bottleneck is thus freed incrementally by the residual capacities

of the vehicles after their passengers have alighted at a transit stop. Meschini et al. [8] have proposed a

similar model for a multimodal network.

Type (iv), the rider capacity of a transit service, splits into passenger overall capacity and seat

capacity. Passenger overall capacity has been the main capacity effect addressed in static assignment

along four alternatives approaches as follows: effective frequency, constraint penalization, failure-to-

board and user preference set.

Firstly, De Cea and Fernandez [9] linked the waiting time at boarding to the two flows of on-board and

incoming riders, respectively, through a function of ‘effective frequency’ that yields the reciprocal of the

waiting time. Cominetti and Corea [10] grounded this approach on a Markov chain model. Cepeda et al.

[11] provided a network assignment model in terms of optimal routing strategy and hyperpaths.

Secondly Lam et al. [12], explicitly constrained the person capacity by line segment: a dual,

nonnegative variable is associated to the constraint and takes on a positive value when the flow

saturates the capacity, so as to penalize that path and divert the excess flow of incoming riders to the

alternative paths. However, the on-board riders are penalized in the same amount as the incoming ones;

another drawback is that full capacity is allocated to incoming riders at each station along a line,

neglecting the number of on-board passengers at that station.

Thirdly, Kurauchi et al. [13] and Bell and coworkers [14] modelled the probability that an incoming

passenger would succeed to board as the ratio between the available capacity and the incoming flow,

capped at 1. The complement to one is the failure-to-board probability, which is applied to divert the

excess flow to a fictitious ‘spill arc’. This diversion, which lacks realism in the static model, is better

addressed as a local delay in the dynamic version of the model by Schmöcker et al. [15].

Fourthly Hamdouch et al. [16], evaluated the probability of success-to-board on an attractive line at

a station node in the order of user preferences: the available capacity of a route is divided by the

residual incoming flow that could not be accommodated by the more attractive lines. Chaining the

Figure 1. The capacity effects to be modeled in transit assignment.
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conditional probabilities of failure until success yields a routing probability by attractive line, which is

used in a hyperpath framework at the network level. This approach suffers from two drawbacks: the

line combination stems from capacity constraints only not from the respective line frequencies;

furthermore a passenger has no option to wait for a line to become available to him: this flaw has been

corrected in the dynamic version of the model by Hamdouch and Lawphongpanich [17].

In a dynamic setting Tian et al. [18], modelled passengers’ interactions along a transit line with

egress only at the line terminal (ideally the city centre): the mean travel cost by line segment depends

on the number of passengers in the vehicle; every passenger may choose his/her departure time and

thereby the vehicle in the service sequence. Tian et al. also considered the seating capacity in a

restricted way in which all seats would be occupied from the line origin.

Leurent [19] developed a model of seating capacity along a transit line, with access and egress of

passengers at every station and priority rules among the passengers for obtaining a seat: standing

passengers on-board have priority over boarding passengers and with an equal probability of obtaining

a seat within each group. Assuming that the cost of standing is higher than that of seating by unit of in-

vehicle time, the segment cost from the boarding to descending station is a random variable with

structural dependency on the seating capacity and the origin–destination (OD) (by segment) matrix of

passenger flows. This model of seating capacity was extended to a general network in a static

equilibrium framework by Leurent [20], and demonstrated on the Paris area by Leurent and Liu [21].

In a dynamic equilibrium framework Sumalee et al. [22], modelled jointly: the congestion at a stop

which results in waiting time prior to boarding, the in-vehicle capacity that causes discomfort to

standing riders and the seat capacity, by assuming priority rules of riders with former access on those

with later boarding, and greater impetus to get a seat depending on the remaining journey length and

the time already spent on-board.

Type (v), the passenger capacity of a stationmay involve the circulation of pedestrians or the storage

of pedestrians at waiting. We have not identified any macroscopic assignment models that deal with

these aspects, even though the pedestrian flows in question are just as great, if not greater, than in

services. Chapter 4 of Part 7 of the TCQSM outlines a manual method inspired by an assignment

model. Also, microscopic simulation models have been developed recently to simulate pedestrians in a

complex station but the station is not linked to the rest of the network (e.g. Ref. [23]).

Type (vi), the movement and storage of vehicles in a station: this involves the capacity of the

platforms for the passenger interface, the capacity of the corridors leading to the platforms and the

vehicle storage capacity in addition to these services. Hamdouch and Lawphongpanich [17] suggested

to model a walk arc as a pedestrian bottleneck.

Type (vii), interface capacities with personal modes, in other words, the transit station’s capacity for

personal vehicles, for riders who combine transit use with use of a two- or four-wheeled personal

transport mode. This type includes (a) the road traffic capacity of the station access roads and

(b) private vehicle parking capacity. These aspects are briefly described in the TCQSM (Part 7) but

have not been addressed in macroscopic transit models.

1.2. Objectives and contribution

The paper has a core objective and a companion objective. The core objective is to provide a basic model at

the line level for seat capacity, in which seat capacity and occupancy, comfort states and costs, sitting

behaviour and priority rules are captured in an explicit way. The core model addresses a transit line in two

steps: first, the problem of line flow loading consists in assigning the access–egress trip matrix to the

vehicles and the seats; second, the problem of line leg costing yields the average cost by transit leg, i.e. by

line section from access to egress station. The line flow loading problem is basically an assignment sub-

model, whereas the line leg costing problem amounts to a cost–flow relationship at the line level.

The companion objective is to embed the line model in the framework of traffic assignment to a

transit network: then passenger comfort can be taken into consideration in route choice. Static

assignment is addressed in order to demonstrate that the line treatment does not interfere with the

problem of common lines.

The paper makes available in English the line model introduced in a French paper [19] which

captures the priority rules in a static setting and provides efficient algorithms to deal with the
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probabilistic features of leg costs. It also provides a static network assignment model of Leurent [20],

in a more elaborate way. The static framework is simpler than the dynamic model of Sumalee et al.[22],

which captures more traffic phenomena. It can be applied efficiently to large size problems, as

demonstrated by Leurent and Liu [21].

1.3. Approach

In the line model for seat capacity, the approach is to identify the residual seat capacity at any stage

along the line, and to share it amongst standing riders under priority rules. Two priority rules are

assumed in the basic case: first, that standing riders with same level of priority have equal chance of

getting a vacant seat; and second, that standing passengers going through a transit stop obtain access to

vacant seats prior to riders boarding at that stop. The two priority rules induce the probability to sit

either from the previous segment or at boarding, so by successive segments along the transit leg a

probability results for each ‘service mode’ made up of a sequence of m segments at standing followed

by n–m segments at seating in a leg of n segments. At the leg level, the service mode is obtained in a

somewhat random way (due to first rule), and yields a random leg cost, with distribution characterized

by both the segment-state costs and the service mode probabilities. To the leg user, the leg-generalized

cost is a random variable that stems from the cost of the service mode which is obtained at random.

Efficient ‘line algorithms’ are provided to solve the line flow loading problem and the line leg

costing problem: the treatment is macroscopic and may be embedded in a transit assignment model,

static by line service or dynamic by vehicle service. For simplicity, we have integrated line seat

capacity in the macroscopic, static model of hyperpath-based transit assignment of Spiess and Florian

[2]. Each transit leg is represented by a network arc: this preserves the basic algorithms to search for a

minimal-cost hyperpath and to assign OD flows onto a hyperpath.

1.4. Paper structure

The body of the paper is organized into six sections. Section 2 sets up the core model of a line, with

assumptions on comfort states, travel behaviour and priority rules; then the service modes are defined

and the leg cost issue is addressed. Section 3 addresses the line-based problems to derive, respectively,

the sitting probabilities at line stations by priority status, the service mode probabilities and costs, as

well as the mean and variance of the leg cost; efficient algorithms are provided together with a

numerical illustration.

In Section 4, the line model is embedded in a network assignment model: each line leg is represented

by one network arc. The cost–flow relationship is defined at the arc level for nontransit arcs, and at the

line level for leg arcs on the basis of an underlying cost–flow relationship by line segment and comfort

state.

Section 5 provides a mathematical analysis of traffic equilibrium in the transit model with seat

capacity. The traffic equilibrium is stated as the solution of a nonlinear complementarity problem

(NCP) and characterized as the solution to a variational inequality problem (VIP). Based on a

regularized cost–flow relationship it is shown that an equilibrium state must exist. A standard method

of successive averages (MSA) is provided as solution algorithm. A method is provided to evaluate the

duality gap in a simple manner, thus yielding a rigorous criterion for convergence.

In Section 6, a classroom example is designed and dealt with in a parametric analysis to demonstrate

that multiple equilibria may arise. Lastly, Section 7 concludes by synthesizing the main outcomes,

stating the model outreach and limitations and pointing to potential developments.

2. THE LINE MODEL: ASSUMPTIONS AND BASIC NOTIONS

Here the focus is on a given transit line. Our modelling assumptions pertain to comfort states and their

cost (Section 2.1), and also travel behaviour and priority rules across users (Section 2.2). These enable

us to define the notion of a service mode (Section 2.3), which is a way of using a line ‘leg’ from access

station to egress station. As the users compete for the residual seat capacity, there is randomness in

getting a seat, which makes the leg cost a random variable (Section 2.4). To sum up, the outputs of the

line model consist in sitting probabilities and leg costs.
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2.1. Comfort states and their cost

In a public transport service, it frequently occurs that several categories of places with distinct

attributes are provided to the users. In urban transit by bus, tram, metro or train, the distinction between

seating and standing is particularly significant: a seated rider is less inconvenienced by the vehicle’s

acceleration and deceleration and by the slopes and curves in the vehicle’s trajectory; he may invest his

travel time into a complementary activity such as reading, listening to music, relaxing or working;

moreover, he is much less submitted to crowding.

From observation of traffic in public transit, it appears that riders favour the seating state over the

standing state to a large extent: when a crowded vehicle arrives at a station, those riders that stand and

stay on-board try to get a seat given away by an outgoing passenger. At the initial station of a crowded

metro line, some users prefer to wait for the next train to arrive, rather than to board when there is no

vacant seat. Furthermore, on some OD pairs serviced by alternative metro lines, many passengers

prefer to use the line with less congestion, even if the travel time is higher.

Let us assume that on a transit line segment from a station to the next, there are two riding states

namely seating and standing, with associated costs that reflect the users’ preference to have a seat.

Let a denote a line segment, ca its discomfort cost to a rider at seating, and ca its discomfort cost to a

rider at standing: the basic assumption is that ca � ca whatever the traffic load, i.e. a rider prefers to be

seated.

2.2. Travel behaviour and priority rules

It is assumed that every rider is a cost-minimizing individual decision-maker, striving to reduce his

travel cost. Then a rider who is standing tries to get a seat as soon as one becomes available. As there is

a limited number of available seats, say k for capacity, and also a number x of riders that would like to

sit, it may be the case where k < x, meaning that capacity is less than demand.

In this case, only a proportion k=x of riders may sit. The issue of which riders would get a seat is

addressed here in a simple way, assuming that all of them have an equal probability to sit, i.e.

neglecting the individual attributes of age and physical need, eagerness-to-sit, planned egress station,

etc. In reality, long haul riders may be willing to get a seat more than short haul riders, who may prefer

to stand as close to the doors as possible. Our model might be improved in that respect, specifically by

weighting the user requests to get a seat by a coefficient based on the time of their leg, either physical

time or generalized time including the discomfort of standing.

The time at which seats become available and competition occurs is important: standing riders that

stay on board have an advantage over the incoming riders, which is modelled by assuming two

successive competitions: the first one among ‘through’ riders, the other one among incoming riders.

Table I. Notation for line problems.

S‘ Number of stations along transit line ‘
q‘ij Leg flow from station i to station j along ‘

k‘ Seat capacity of the line during the assignment period
d2fo;þg Stage prior/posterior to the boarding of incoming riders

kdi Residual capacity at station i and stage d

ydi Flow of riders candidate to get a seat at station i and stage d

p0i (resp. pþi ) Probability to get a seat at i for on-board (resp. boarding) standing riders

pm
ij Probability of service mode m from i to j

x (resp. x) A seated (resp. standing) flow

x
ðiÞd
j

Flow destined to egress station j on segment ði; iþ 1Þ at stage d

xd�i
Flow on segment ði; iþ 1Þ at stage d to all egress stations j > i

ca (resp. ca) Travel cost at seating (resp. standing) on segment a
cmij Cost from i to j of service mode m (i.e. standing from i to iþ m then seating)

cij (resp. ĉij) Random cost from i to j (resp. average cost)
g ij Average cost from i to j conditional on standing on ði; iþ 1Þ
vij (resp.$ij) Variance of cost from i to j (resp. conditional on standing on ði; iþ 1Þ)
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Thus, in our basic model of seat congestion, two priority rules are assumed: first, that standing riders

with same level of priority have equal chance of getting a vacant seat; and second, that standing

passengers going through a transit stop obtain access to vacant seats prior to riders boarding at that stop.

2.3. Services modes on a transit leg

On a ‘leg’ from an access station to an egress station along a transit line, the user is provided service in a

particular way, depending on which comfort states he gets on each line segment in the leg.

Let us define a ‘service mode’ as the sequence of segment comfort states along the leg. In a leg made

up of N segments, if there are two comfort states associated to each segment, there could be as much

as 2N service modes associated to the leg, but in fact the users’ behaviour reduces the number of

alternative service modes to N+ 1: after getting a seat a user is assumed not to release it until arrival at

his egress station.

Thus a service mode is fully described by the station i+ m at which the user gets a seat, with index

m2f0;1; 2; . . .Ng: by convention, getting a seat on exiting at i+ N means standing all over the leg.

The cost of service mode m from access station i to egress station j ¼ iþ N is:

cmij ¼
Xiþm�1

k¼i
ca�ðk;kþ1Þ

h i
þ
Xj�1

k¼iþm
ca�ðk;kþ1Þ

h i
(1)

Under given rider flows by leg along the transit line, the assumption that riders prefer to be seated

determines the segment flow of standing riders, say xa on segment a. In the network model of Section 4,

it is assumed that value ca ¼ caðxÞ is determined as a function ca of the flow vector x, which is a

generalization.

The issue of whether a person succeeds in accessing the vehicle, i.e. the in-vehicle person capacity,

is a complementary modelling issue that pertains to the platform stage prior to boarding. Thus the

related models described in the literature review could be combined to the model of seating capacity

with no redundancy nor conflict.

2.4. Leg cost as a random variable

The attribution of a given service mode does not depend solely on the user, because his preference to be

seated rather than standing may get into competition with others’ preferences, resulting in a collective

allocation process of seats rather than in an individual choice of a service mode.

From the modelling assumptions on travel behaviour and priority rules, the seat allocation process at

each station along a transit route can be summarized by two sitting probabilities: the first one say p0i for

through riders, and the other one say pþi for incoming riders. Here the sitting probabilities are taken as

exogenous, so as to derive the distribution of service modes and costs.

Figure 2 depicts the comfort states along a transit route: state transition may occur for a rider from

standing aboard at i�1 to either seating from iwith probability p0i or standing on segment ði; iþ 1Þwith
probability 1�p0i , or from incoming at i to either seating from i with probability pþi or standing on

ði; iþ 1Þ with probability 1�pþi .

Figure 2. Rider states along a transit line.
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The probability of keeping standing from i to iþ N is

pN
i;iþN ¼ 1�pþi

� � YN�1

k¼1
1�p0iþk

� �h i
(2a)

The probability of getting a seat at station i + m, meaning obtaining service mode m from station i,

is:

p0
i;iþN ¼ pþi for m ¼ 0 (2b)

pm
i;iþN ¼ 1�pþi

� � Ym�1

k¼1
1�p0iþk

� �h i
p0iþm for m 2f1; 2 � � �N�1g (2c)

The probabilities ðpm
i;iþNÞm¼0���N are associated with the service modes and describe the random

process of getting a service mode. Service mode m has probability pm
i;iþN stated in (2) and cost cmi;iþN

stated in (1).

Thus, to the user the leg cost is a random variable ci;iþN , depending on which service mode is

obtained. The mean leg cost ĉi;iþN � E½ci;iþN � is such that:

ĉi;iþN ¼
XN

m¼0
pm
i;iþNc

m
i;iþN (3a)

The variance of the leg cost, vi;iþN � var½ci;iþN �, is such that:

vi;iþN ¼
XN

m¼0
pm
i;iþN cmi;iþN�ĉi;iþN

� �2
(3b)

The cost variance may be taken into account in the generalized cost of travel along the leg. However,

in the network part of the paper the focus is on mean cost only, since cost variability in hyperpath

assignment still makes an open issue, which deserves specific research efforts.

3. STATEMENT OF LINE PROBLEMS AND ALGORITHMS

Having provided the assumptions and derived the formulae for the major output variables in the line

model, let us now provide efficient algorithms to solve the formulae—and to be included in procedures for

network assignment. The algorithms have minimal complexity with respect to the number of distinct

variables that are outputted; this efficiency is achieved through a technique of auxiliary variable.

The section roadmap is as follows: first, simple formulae are established for the sitting probabilities

along the transit line (Section 3.1). Then, a line flow loading algorithm is provided to load an access–

egress trip matrix onto the route segments according to the priority rules and to yield all sitting

priorities; letting S denote the number of stops along the transit line, the algorithm has a complexity of

OðS2Þ hence it is efficient (Section 3.2). Next, recursive formulae are established for the service mode

probabilities and costs: the application algorithm has a complexity of OðS3Þ and is efficient (Section

3.3). Lastly, a line costing algorithm is provided to compute the mean and variance of the leg costs

along the transit route, yielding a reduced computational complexity of OðS2Þ which makes it efficient

for its reduced purpose (Section 3.4).

3.1. On sitting probabilities

On the route segment a � ði; iþ 1Þ downstream of station i, let us describe the segment traffic by four

flow vectors indexed by egress station j and stage d2f0;þg to deal with the sitting of the aboard riders
prior to that of the boarding ones: x

ðiÞd
j (resp. x

ðiÞd
j ) is the segment flow of seating (resp. standing) riders

destined to j and at stage d. Let also xd�i ¼
P

j�i x
ðiÞd
j and xd�i ¼

P
j�i x

ðiÞd
j be the segment and stage flows

of seated and standing riders, respectively. Notation fj � ig means that station j lies downstream of

station i along the line, while fj > ig means strictly downstream.

The riders boarding at i are described by a flow vector q‘i ¼ ½q‘ij�j>i.
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A seat capacity of k is assumed for the transit route during the assignment period: as the model is

static this is the product of the in-vehicle capacity by the route frequency during the period. Let k�i be

the residual seat capacity from the previous station i�1: if xþ�i�1 > 0 then k�i ¼ 0. Every seating rider

who exits at i releases their seat, which increases the residual seat capacity to

k0i ¼ k�i þ x
ði�1Þþ
i (4a)

This capacity may be used by the riders standing aboard that continue downstream of i, in number of

y0i ¼
P

j>i x
ði�1Þþ
j . Their probability to get a seat amounts to:

p0i ¼ min 1;
k0i
y0i

� �
; which is set to 1 if y0i ¼ 0 (4b)

After their eventual sitting, the residual capacity is decreased to:

kþi ¼ k0i�min y0i ; k
0
i

� �
(4c)

It is available to the incoming riders in number of yþi ¼Pj>i q
‘
ij, who get a seat with the following

probability:

pþi ¼ min 1;
kþi
yþi

� �
; which is set to 1 if yþi ¼ 0 (4d)

After their eventual sitting, the residual capacity is decreased to:

k�iþ1 ¼ kþi �minfyþi ; kþi g (4e)

Thus formulae (4a)–(4e) enable us to derive the residual capacities and the sitting probabilities at a

given station, for riders either aboard or boarding, as functions of the vectors of seating and standing

flows by egress station and the access–egress trip matrix.

3.2. Line flow loading problem and algorithm

The line flow-loading problem is to assign a line access–egress trip matrix to the seating and standing

states along the route segments. The outputs consist basically in the sitting probabilities by station node

i and priority status (aboard or boarding); the segment flows by stage, comfort state and exit station can

also be outputted.

A solution method for the line loading problem has been provided above for a given station: the line

loading algorithm consists in applying this method to every station along the line, in turn from the

initial station to the final one. Aside from applying (4), an important issue is to obtain the vectors

xðiÞd ¼ x
ðiÞd
j

h i
j>i

and xðiÞd ¼ x
ðiÞd
j

h i
j>i

of seating and standing flows at each stage along the line.

The line loading algorithm addresses a route ‘ with S‘ stations and seat capacity k. Input variables

also include the access–egress trip matrix q‘ij

h i
i<j2‘

and also, if required, the segment and stage flow by

comfort state and egress station.

The algorithm is comprised of the following steps:

Initialization. Let i :¼ 0; let x
ð0Þþ
j :¼ 0 and x

ð0Þþ
j :¼ 0 8j2‘; let xþ�0 :¼ 0 and xþ�0 :¼ 0.

Termination Test. If i ¼ S‘ then terminate else let i :¼ iþ 1 and continue.

Progression. At station i:

-
let first k0i :¼ k�xþ�i�1 þ x

ði�1Þþ
i

� �þ
then y0i :¼ xþ�i�1�x

ði�1Þþ
i and p0i :¼ min 1; k0i =y

0
i

� �
.

- let x
ðiÞ0
j :¼ x

ði�1Þþ
j þ p0i x

ði�1Þþ
j and x

ðiÞ0
j :¼ 1�p0i

� �
x
ði�1Þþ
j 8j > i.

- let x0�i :¼ xþ�i�1�x
ði�1Þþ
i þ p0i y

0
i and x0�i :¼ ð1�p0i Þy0i .

- let kþi :¼ k0i�p0i y
0
i

� �þ
, then yþi :¼Pj>i q

‘
ij and pþi :¼ minf1; kþi =yþi g.
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- let x
ðiÞþ
j :¼ x

ðiÞ0
j þ pþi q

‘
ij and x

ðiÞþ
j :¼ x

ðiÞ0
j þ 1�pþið Þq‘ij 8j > i.

- let xþ�i :¼ x0�i þ pþi y
þ
i and xþ�i :¼ x0�i þ ð1�pþi Þyþi .

- Go to Termination Test.

This algorithmmay be streamlined further on, notably so by dropping the (i) and d superscripts in the

segment and stage flow variables: then the algorithm amounts to update, at each segment and stage, the

working variables of segment flow by egress station. In its current form, the treatment of a current

station requires a number of operations proportional to S‘�i, which induces a computational

complexity ofOðS2‘Þ—a still modest number for typical transit routes. The complexity is minimal with

respect to the number of distinct variables that can be outputted, since there are OðS2‘Þ segment and

stage flows by current segment, comfort state and egress station.

A circular line would require a more involved treatment, which is outlined in Appendix A.

Instance 1. A transit line with 4 stations, seat capacity of 100 passengers per hour, given segment

costs by comfort state and given leg trip matrix is depicted in Figure 3. The trip flows by route leg are as

follows:

� At i ¼ 1 there are yþ1 ¼ 120 boarding riders, among whom q12 ¼ 50 are destined to station 2,

q13 ¼ 30 to station 3 and q14 ¼ 40 to station 4.

� At i ¼ 2 there are yþ2 ¼ 90 boarding riders, among whom q23 ¼ 60 and q24 ¼ 30.

� At s ¼ 3 there are yþ3 ¼ 50 ¼ q34 boarding riders.

The line-loading algorithm yields the following selected results:

� At i ¼ 1, k01 ¼ 100 ¼ kþ1 , p
0
1 ¼ 1, yþ1 ¼ 120 hence pþ1 ¼ 5

6
, xþ�1 ¼ 100 and xþ�1 ¼ 20, x

ð1Þþ
2 ¼ 41:7,

x
ð1Þþ
3 ¼ 25, x

ð1Þþ
4 ¼ 33:3 whereas x

ð1Þþ
2 ¼ 8:3, x

ð1Þþ
3 ¼ 5 and x

ð1Þþ
4 ¼ 6:7.

� At i ¼ 2, k02 ¼ 41:7, p02 ¼ 1 hence all standing riders that go through get a seat, kþ2 ¼ 30, yþ2 ¼ 90

hence pþ2 ¼ 1=3, xþ�2 ¼ 100 and xþ�2 ¼ 60, x
ð2Þþ
3 ¼ 50, x

ð2Þþ
4 ¼ 50 whereas, x

ð2Þþ
3 ¼ 40 and

x
ð2Þþ
4 ¼ 20.

� At i ¼ 3, k03 ¼ 50, p03 ¼ 1 hence all standing riders that go through get a seat, kþ3 ¼ 30, yþ3 ¼ 50

hence pþ3 ¼ 3=5, x
ð3Þþ
4 ¼ 100 and x

ð3Þþ
4 ¼ 20.

� At i ¼ 4, all riders come out.

Instance 2. Let us adapt the trip matrix of Instance 1 by replacing its first line with

q1� ¼ ½ 150 30 140 �. The line loading algorithm yields sitting probabilities as follows:

pþi ¼ ½ 0:3125 0 0 0 � and poi ¼ ½ 1 0:401 0:2013 0 �

3.3. Cost and flow share of service modes

The service mode problem consists in deriving the probability and cost by service mode, as stated

in (1) and (2), from the sitting probabilities (taken here as inputs).

Let us first provide an algorithm to evaluate the flow share of all service modes along legs with

egress at a given station j, by dealing with the access stations i in backward order from downstream to

upstream. We shall use a sequence of auxiliary variables rmk : k � j;m ¼ 0; 1; . . .; j�k
	 


in order to

save computational effort.

Figure 3. Segment costs by comfort state and line trip matrix.
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The service mode algorithm is made up of the following steps:

Initialization. Let r0j :¼ 1 and i :¼ j.

Progression. Let i :¼ i�1. If i ¼ 0 then terminate, else do:

- let r0i :¼ poi .

- let rmi :¼ ð1�poi Þrm�1
iþ1 for m2f1; 2; . . .; j�ig.

- Go to Progression.

Then pm
ij ¼ pþi if m ¼ 0, or 1�pþið Þrm�1

iþ1 if m � 1.

The computation of service mode costs is still easier, on the basis of:

cmi;j ¼ ci;iþ1 þ cm�1
iþ1;j for m � 1; i < j

c0i;j ¼ ci;iþ1 þ c0iþ1;j if i < j

The computational complexity of both algorithms is in O S3‘
� �

since it amounts to the number of

egress stations, times the number of access stations, times the number of service modes from access to

egress. This complexity is minimal since there are O S3‘
� �

output variables pm
ij : thus the service mode

algorithm is efficient.

Instance 2 (continued). Let us evaluate the cost and flow share of the service modes for the trips

destined to station 4. By entry station i and service mode m, the costs and flow shares are, respectively:

½Cm
i4� ¼

12 15 18 21

9 12 15

5 8

2
4

3
5 and ½pm

i4� ¼
0:3125 0:2757 0:0829 0:3289
0 0:2013 0:7987
0 1

2
4

3
5

3.4. Line leg costing algorithm

To save even more on computational effort, let us now provide an algorithm to evaluate the mean and

variance of leg cost. Auxiliary variables are still useful to average the cost of the downstream sub-path

conditional on the upstream state of comfort.

To obtain the mean leg cost ĉij from access station i to egress station j, let us associate two costs to

that leg, namely:

- the seating cost c0ij ¼
Pj�1

k¼i ca�ðk;kþ1Þ,
- an auxiliary mean cost g ij which is a mean cost from i to j conditional on standing on segment

ði; iþ 1Þ.
These costs satisfy the following recursive equations, due to the law of total probability:

c0i;j ¼ ca�ði;iþ1Þ þ c0iþ1;j (5a)

g i;j ¼ ca�ði;iþ1Þ þ p0iþ1c
0
iþ1;j þ 1�p0iþ1

� �
g iþ1;j (5b)

ĉi;j ¼ pþi c
0
i;j þ 1�pþi

� �
g i;j (5c)

The line costing algorithm addresses a given egress station j by dealing with the access stations i � j

in backward order from downstream to upstream. The initial conditions are c0i;j ¼ 0 and g i;j ¼ 0 at

i ¼ j. As the treatment of i as an access station amounts to computing six additions and four products,

the mean costing of all legs with egress at j has a computational complexity of OðjÞ, making the mean

costing of all legs along the line a O S2‘
� �

burden. Thus the mean leg-costing algorithm is of minimal

complexity, since there are O S2‘
� �

output variables ĉij.

The variance of the leg cost can be obtained in a similar way, on the basis of an auxiliary variance

$i;j defined as the variance of the leg cost from i to j conditional on standing on segment ði; iþ 1Þ. The
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conditional variance $i;j and the variance vij satisfy the following recursive formulae:

$i;j ¼ 1�p0iþ1

� �
$iþ1;j þ p0iþ1 g iþ1;j�c0iþ1;j

� �2� �
(6a)

vij ¼ 1�pþi
� �½$i;j þ pþi g i;j�c0i;j

� �2
� (6b)

Equation (6b) stems from the theorem of total variance: a leg from i to j is either a leg beginning at

standing or an all-seating leg, with respective probabilities 1�p and p. The interclass variance of the leg

cost amounts to

pð1�pÞðDCÞ2
with DC ¼ g�c0 the difference in class costs. Within the class of all-seating trips the cost variance is

zero. Within the class of legs that begin at standing, the cost variance is $i;j by definition. To sum up,

the intraclass variance amounts to ð1�pÞ$i;j.

A similar proof applies to (6a) by considering that a leg from i to j that begins at standing has its

second segment either at standing or at seating.

Instance 1 (continued). Let us apply the line costing algorithm to station 4 as egress, on assuming the

following segment costs: c12 ¼ 3, c12 ¼ 6, c23 ¼ 4, c23 ¼ 7, c34 ¼ 5 and c34 ¼ 8:

At s ¼ 4, c044 ¼ g44 ¼ 0 ¼ ĉ44 and v44 ¼ $44 ¼ 0.

At s ¼ 3, c034 ¼ 5, g34 ¼ 8, ĉ34 ¼ 6:2, $34 ¼ 0 and v34 ¼ 2:16.

At s ¼ 2, c024 ¼ 9, g24 ¼ 12, ĉ24 ¼ 11, $24 ¼ 0 (all riders sit at 3), v24 ¼ 2.

At s ¼ 1, c014 ¼ 12, g14 ¼ 15, ĉ14 ¼ 12:5, $14 ¼ 0 (all riders sit at 2), v14 ¼ 1:25.
In this example, the cost variance takes on moderate values; it increases with respect to the leg

number of segments in a less than proportional way since the more segments in a leg, the more

opportunities to get a seat.

Instance 2 (continued). Let us apply the line-costing algorithm to the modified trip matrix, hence to

the modified sitting probabilities. By entry station i from 1 to 3 and exit station j from 2 to 4, the mean

costs and cost variances are, respectively:

½Ĉij� ¼
5:06 10:30 16:28

7 14:40
8

2
4

3
5 and ½vij� ¼

1:03 6:43 13:75
0 1:44

0

2
4

3
5

Under increased entry-exit flows it turns out that the cost variance may take much larger values.

4. NETWORK REPRESENTATION AND COST–FLOW RELATIONSHIP

Let us now turn to our second objective: to combine seat capacity and passenger comfort states with

route choice in a model of traffic assignment to a transit network. This involves the following three

issues: firstly, to link the stations of line access and egress to the network paths from origin to

destination nodes; secondly, to represent the line legs as network sub-paths and include the leg average

cost in the path cost; thirdly, to determine the line matrix of leg flows on the basis of the OD flows and

their network routes.

To address these issues, we shall first provide a network representation that accommodates transit

routes on the basis of one arc per leg of entry–exit stations, i.e. the leg-as-arc format. Then, we shall

define the model variables, from the variables of flow and cost by network element to the path and

hyperpath variables. Lastly, we shall define the cost–flow relationship in accordance with the line

model and provide a continuity property.

The hyperpath setting has been the standard framework for static models of traffic assignment to a

transit network since the fundamental contributions of Spiess [24], Spiess and Florian [2] and Nguyen

and Pallotino [25]. Loosely speaking, a transit hyperpath is a bundle of paths from a set of origin nodes

to a single destination node, with routing options at nodes of access to transit lines, and associated

routing proportions that stem from the lines’ cost and service frequency. The set of hyperpaths may be
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subject to restrictions, of which the main instance is a bundle of paths that comply with a given

sequence of transit stations for access, transfer and egress: this is the ‘optimal route’ model of De Cea

and Fernandez [26].

4.1. Network representation

In a traffic assignment model, the network representation is purported to describe the routes that are

available to the network users in terms of path topology and of physical and economic attributes such as

travel time and money cost. It is also purported to model the users’ route choices and to aggregate the

resulting chosen paths into path flows and link flows—in other words the traffic loads.

Let us consider a network G ¼ ½N;A� that is comprised of a set N of nodes n and a set A of arcs

a � ðm; nÞ with tail node nþa ¼ m and head node n�a ¼ n in N. The subset of the arcs that go out (resp.

come in) node n is denoted as Aþ
n (resp. A�

n ).

A transit line ‘ in L, the set of lines (or transit routes), has S‘ stations i numbered from 1 to S‘ and

S‘�1 segments ði; iþ 1Þ. A line station is modelled by two nodes: nþ‘;i for access and n�‘;i for egress,
except at the line endpoints where only access or egress is permitted. The set of network nodes required

to model the line is N‘ ¼ Nþ
‘ [N�

‘ with Nþ
‘ ¼ fnþ‘;i : i ¼ 1 � � � S‘�1g the subset of access nodes and

N�
‘ ¼ fn�‘;i : i ¼ 2 � � � S‘g that of egress nodes. The line segments are not represented by network arcs

but give rise to access–egress pairs of stations, ði; jÞ with 1 � i < j � S‘, each of which is represented

by a leg arc a � ðnþ‘;i; n�‘;jÞ. Let A‘ ¼ fa � ðnþ‘;i; n�‘;jÞ : 1 � i < j � S‘g denote the line subset of leg

arcs, in number of jA‘j ¼ 1
2
ðS‘�1ÞðS‘�2Þ. Thus line ‘ is represented by 2ðS‘�1Þ nodes and

ðS‘�1ÞðS‘�2Þ=2 arcs; these network elements are called the line nodes and the line arcs, respectively.

There are also network nodes to represent the trip end centroids (i.e. the zones of origin and

destination), the endpoints of walk arcs, and the junctions where a rider may choose a line option: a

such nodem is connected to a line access node nþ‘;i by a boarding arc a � ðm; nþ‘;iÞ. Symmetrically, there

are alighting arcs a � ðn�‘;j;mÞ. The network arcs include the line leg arcs, the boarding arcs, the

Table II. Notation for network problems.

N Set of nodes n
A Set of nodes a � ðnþa ; n�a Þ with tail node nþa and head node n�a in N
Aþ
n � fa : nþa ¼ ng subset of arcs tailed at n

A�
n � fa : n�a ¼ ng subset of arcs headed to n

nþ‘;i (resp. n
�
‘;i) Access (resp. Egress) node at station i along line ‘

A‘ Arc subset of line legs a � ðnþ‘;i; n�‘;jÞ with i < j

ca Travel cost along arc a
fa Frequency associated to arc a
k‘ Seat capacity of line ‘ during the assignment period
f‘ Service frequency of line ‘ by unit time during the assignment period
S Set of destination nodes s
Ws Set of origin–destination pairs destined to s
qns OD flow from n to s
xAS Flow vector by arc and destination
xA Flow vector by arc

h ¼ ð�h; ĥÞ Hyperpath with arc set �h and routing field ĥ

ĥr Proportion of hyperpath flow on path r along h

RnsðhÞ Set of elementary paths r along hyperpath h from n to s

Fh
m

Combined frequency at node m for the boarding arcs in Aþ
m\h

wh
m

Waiting delay at node m along h

Cnsðh; xASÞ Travel cost from n to s along h with respect to flow state xAS
XNS � ½qhns�n;s;h Hyperpath flow vector

mns Dual variable of minimum cost from n to s
xNSðXNSÞ Vector function of hyperpath costs by OD pair
xNþAðZNS : XNSÞ � ZNS � xNSðXNSÞ with node-based part xN and arc-based part xA
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alighting arcs and the arcs of other transportation modes such as walking, used for transfer or

connection to and from the centroid nodes. Figure 4 depicts the kinds of nodes and arcs associated to a

transit route ‘, be it by inclusion or by connection.

In large transit networks the representation of line legs as network arcs yields a very large

assignment network. Taking as instance the Paris multimodal transit network that involves 120 train

routes and 1320 bus routes, the assignment network involves about 570 000 arcs, among which 354 000

leg arcs, 131 000 transfer arcs and 84 000 other walking arcs. A segment-based representation would

involve about 242 000 arcs, among which 26 500 segment arcs only [21].

The leg-as-arc representation involves an important assumption about route choice and user

behaviour: that each rider who chooses a leg will travel along it up to its exit station, whatever the

service mode he gets. Yet, in the basic transit assignment model of optimal strategy, the rider is

assumed to be cost-minimizing under dynamic information limited to his perception. Indeed, a rider

standing on-board that could not get a seat does perceive that he is standing; eventually he would

consider whether to continue aboard or to exit at the current stop where he failed to get a seat. Such

within-leg rerouting behaviour is prohibited under the leg-as-arc representation.

4.2. Model variables and hyperpath issues

A transit line ‘ has attributes ðf‘; k‘Þ of vehicle frequency and seat capacity, respectively, during the

assignment period.

Any arc a has an average traversal cost, ĉa, and a service frequency, fa, which is set to either line

frequency f‘ when a is a boarding arc to line ‘ or infinity otherwise.

The set of destinations is denoted by S – for sink nodes. To a destination s is associated a set Ws of

OD pairs w ¼ ðo; sÞ with OD flow of qos. To the setW ¼ [s2SWs is associated the vector of OD flows

q ¼ ½qw�w2W , which is the OD trip matrix.

At the arc level, let xas denote a flow of users on arc a destined to s.

A vector of arc-destination flows xAS ¼ ½xas : a2A; s2S� is called a network flow state. Its

restriction to the legs of a transit line ‘ is denoted as x‘S ¼ ½xas : a2A‘; s2S�.
A hyperpath h ¼ ð�h; ĥÞ with destination node s is a pair of an arc set �h and a routing field ĥ. The

hyperpath arc set �h contains no oriented cycle and is such that each arc a2�h belongs to a positive path
within �h towards s. The routing field ĥ is a mapping of A onto ½0; 1� such that ĥa ¼ 0 if a=2�h andP

a2Aþm ĥa ¼ 1 for all nodesm lying between n and s along �h (except for s), Aþ
m being the set of arcs that

go out of m.

From a given node n to a destination node s, let Hns denote the set of hyperpath arc sets �h from n to

s via the network, eventually submitted to some more restrictions (e.g. to obtain an optimal-route

model in the sense of De Cea and Fernandez, 1988).

Figure 4. Representation of transit line within assignment network.
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In transit assignment, the routing field ĥ associated to a hyperpath arc set �h is further constrained at
each node m that is connected to a line access node nþ‘;i by a boarding arc on the basis of the following
condition of flow share:

ĥa ¼
1fa2�hgfa
F�h
m

(7)

wherein F�h
m ¼Pa2Aþm 1fa2�hgfa denotes the combined frequency of the active lines that can be accessed

from this node.

We further constrain the arc set �h of hyperpath h by imposing two node-based conditions as follows:

(i) if Aþ
m\�h contains boarding arcs then it cannot contain a nonboarding arc, and

(ii) if Aþ
m\�h does not contain boarding arcs then it is limited to at most one arc, for which ĥa ¼ 1.

Under these conditions the routing field ĥ is uniquely determined by the arc set �h, which enables us
to assimilate hyperpath h ¼ ð�h; ĥÞ to its arc set �h.

Then, given a network flow state xAS, the travel cost from node n to destination s along hyperpath

h2Hns is defined as the average travel cost along its paths:

Cnsðh; xASÞ ¼
X

r2RnsðhÞ
hr

X
m2r

wh
m

 !
þ
X
a2r

caðxASÞ
" #

(8)

wherein:

- RnsðhÞ is the set of elementary paths along h from n to s,

- hr ¼
Q

a2r ha is the path flow proportion,

- caðxASÞ is the travel cost of arc a conditional on flow state xAS,

- wh
m � am=F

h
m if m has outgoing boarding arcs or 0 otherwise: it stands for the waiting delay at

node m.

The waiting weighting factor am is equal to one if the transit lines accessible from m are serviced by

vehicles with interarrival times that obey to a negative exponential distribution; under other service

assumptions it may take a different value, so that wh
m would in all way stand for the average waiting

time at m until the arrival of the next vehicle from among the transit lines that are accessible (i.e. their

boarding arc a2h).

4.3. Cost–flow relationship

The arc costs are assumed to depend on the network flow state, xAS, on the basis of the following cost–

flow function:

xAS 7!cAðxASÞ ¼ ½caðxASÞ : a2A� (9)

This framework encompasses a range of congestion effects:

- Local congestion induced by the local arc flow xa ¼
P

s2S xas, by restricting caðxASÞ ¼ caðxaÞ.
- Seat congestion along a transit leg a2A‘, by restricting caðxASÞ ¼ caðx‘Þ in which x‘ ¼ ½xa : a2A‘�.

More precisely, the effect of the seat congestion model on the leg cost can be stated in three steps.

Firstly, the line-loading algorithm amounts to a pair of functions:

p0‘ ¼ P0
‘ðx‘Þ (10a)

pþ‘ ¼ Pþ
‘ ðx‘Þ (10b)

for the sitting probabilities along the line stations, either from on-board or at entry. These depend on the

line trip matrix, x‘.
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Secondly, the line segment costs ci;iþ1 at seating and ci;iþ1 at standing can be modelled as functions

of the line trip matrix:

ci;iþ1 ¼ Ci;iþ1ðx‘Þ (11a)

ci;iþ1 ¼ Ci;iþ1ðx‘Þ (11b)

The only constraint is that Ci;iþ1 � Ci;iþ1 at each point x‘.

Thirdly, the line leg costing algorithm derives the mean leg costs from the sitting probabilities p0‘;i
and pþ‘;i together with the segment costs ci;iþ1 and ci;iþ1:

ĉi;j ¼ Ĉi;jðp0‘ ; pþ‘ ; ½ci;iþ1�i2‘; ½ci;iþ1�i2‘Þ (12)

Thus, by the composition of functions, leg a � ði; jÞ along line ‘ is associated with

ca ¼ Ĉi;j P
0
‘ ðx‘Þ;Pþ

‘ ðx‘Þ; ½Ci;iþ1ðx‘Þ�i2‘; ½Ci;iþ1ðx‘Þ�i2‘
� �

(13)

which is hereafter denoted by ca ¼ caðxASÞ, knowing that a is a leg arc.

To ensure the existence of a traffic equilibrium, we require a property of regularity (i.e. at least

continuity) for the cost–flow relationship. It turns out that under the basic definition (13) some

discontinuities may arise in the line loading algorithm at points x‘ such that kdi ¼ 0 and ydi ¼ 0 at a

given station i and stage d.

This leads us to define a continuous approximation of the cost functions, on the basis of a positive

parameter e—to be chosen close to zero—and the derived variables kdi and y
d
i of residual capacity and

standing riders, respectively:

c0i;j ¼ ca�ði;iþ1Þ þ c0iþ1;j (14a)

z"0i ¼ min y0i ;max "; k0i
� �� �

(14b)

g"
i;j ¼ ci;iþ1 þ

z"0iþ1

y"0iþ1

c0iþ1;j þ 1� z"0iþ1

y"0iþ1

 !
g"
iþ1;j if y"0iþ1 > 0 or ci;iþ1 þ c0iþ1;j if y"0iþ1 ¼ 0 (14c)

z"þi ¼ min yþi ; max "; kþi
� �� �

(14d)

c
_ "

i;j ¼
z"þi
y"þi

c0i;j þ 1� z"þi
y"þi


 �
g"
i;j if y"þi > 0 or c0i;j if y

"þ
i ¼ 0 (14e)

On comparing (14) to (5), if k0iþ1 � " then z"0i ¼ min y0i ; k
0
i

� �
so that if y0iþ1 > 0 then (14c) is

equivalent to (5b). Similarly, if kþi � " and yþi > 0 then (14e) is equivalent to (5c). Parameter "makes a

lower bound on any residual capacity, so as to ensure the regularity of the composite cost function

(conditional or average). Letting " ! 0þ makes the approximate costs in (14) as close as required to

the basic costs in (5), except at the points of discontinuity with kdi ; y
d
i

� � ¼ ð0; 0Þ.
Let us, then, replace (13) with the following (15):

c"a ¼ Ĉ
"

i;jðP0
‘ ðx‘Þ;Pþ

‘ ðx‘Þ; ½Ci;iþ1ðx‘Þ�i2‘; ½Ci;iþ1ðx‘Þ�i2‘Þ (15)

which is hereafter denoted by c"a ¼ c"aðxASÞ, knowing that a is a leg arc.

Theorem 1 continuity of leg cost–flow relationship

Assume that transit line ‘ has segment seated and standing costs Ci;iþ1 and Ci;iþ1 that are functions

of leg trip matrix, x‘ � 0. If the segment cost functions are continuous (resp. sub-differentiable) with

respect to x‘, so are the approximate average leg cost functions Ĉ
"

i;j defined in (15), and so are the

average leg cost functions Ĉi;j defined in (13) except at points where kdi ¼ 0 and ydi ¼ 0.

To demonstrate the theorem we shall use three lemmas.

Lemma 1 regularity of sitting probability
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For ðk; yÞ � 0 let pðk; yÞ � minf1; k=yg if k > 0 and y > 0, else pðk; yÞ � 0 if k ¼ 0, else

pðk; yÞ � 1 if k > 0 and y ¼ 0. Then function p is continuous with respect to ðk; yÞ, except at ð0; 0Þ. It is
continuously differentiable except along fk ¼ yg.
Proof The property is obvious if k > 0, y > 0 and k 6¼ y since then either k > y yielding p ¼ 1,

or y > k hence p ¼ k=ywhich is continuously differentiable on the restricted domain. The line fk ¼ yg
separates the two sub-domains of differentiability. If k > 0 then p is right continuous at y ¼ 0 since

k=y ! 1 as y ! 0þ hence p ¼ 1. If k ¼ 0 and y > 0 then pð0; yÞ ! 0 as y ! 0þ meaning that p is

continuous in y at ð0; 0Þ.
Lemma 2 continuity throughout line loading

At every station i and stage d along line ‘, the functions kdi and ydi are continuous and sub-

differentiable with respect to x‘. This regularity property also holds for every derived function x
ðiÞd
j and

x
ðiÞd
j . The sitting probability pdi is regular except perhaps if y

d
i ¼ 0.

The proof proceeds by induction from the origin station i ¼ 1 with k�1 ¼ k‘ and variables x
ð0Þþ
j ,

x
ð0Þþ
j , xþ�0 and x

þ
�0 that are nil. This implies that k01 ¼ k‘ and y

0
1 ¼ 0, which are regular w.r.t. x‘. Let the

induction assumption be that the lemma property holds at station i and stage d. Let us consider the case

where the next station and stage pair is station iþ 1 at stage ‘0’ where the riders standing on-board try

to get a seat. From the induction assumption, the number of seated passengers that exit at iþ 1, x
ðiÞþ
iþ1 , is

regular: the same applies to k0iþ1 ¼ k�iþ1 þ x
ðiÞþ
iþ1 , to y0iþ1 ¼ xþ�i�x

ðiÞþ
iþ1 and their minimum function

p0iþ1y
0
iþ1

	 
 � min k0iþ1; y
0
iþ1

� �
because the operators of addition, subtraction and minimization preserve the regularity property. If

y0iþ1 > 0 then p0iþ1 ¼ p0iþ1y
0
iþ1

	 

=y0iþ1 is regular as well, and so are the products p0iþ1x

ðiÞþ
j for j > i and

the derived functions x
ðiþ1Þ0
j and x

ðiþ1Þ0
j . If y0iþ1 ! 0 then p0iþ1y

0
iþ1

	 
! 0 as do the products p0iþ1x
ðiÞþ
j ,

hence regularity also holds.

This demonstrates that the induction assumption holds for the next stage of ði;þÞ. If ði; dÞ ¼ ði; 0Þ
then the next stage is ði;þÞ: the proof of the lemma property is similar, because the simple operators of

minimization, addition, subtraction, product and division by a positive function maintain the regularity

w.r.t. x‘. Caution is only required when ydj ¼ 0 since the function of sitting probability may not be

continuous there.

Lemma 3 continuity throughout line costing

If the segment cost functions Ci;iþ1 and Ci;iþ1 by comfort state are continuous (resp.

sub-differentiable) w.r.t. x‘ between stations k and j, then so are the approximate functions of

seated cost, average cost, conditional cost, cost variance and conditional variance for the line leg ðk; jÞ.
The proof proceeds by induction from the egress station j to the upstream stations k in backward

order. To initialize the Induction process, let us consider a ‘fictitious’ leg ðj; jÞ where all the cost

functions are null. Then, assuming that the lemma property holds at every station i located between

k þ 1 and j, let us establish that it also holds at station k. From (5a) the basic seated cost function is

regular since regularity is maintained through the operator of addition. From Lemma 2 and the

conservation of regularity through maximization and minimization, the z"di functions in (14b) and (14d)

are regular. From Lemma 1 and the truncation of the residual capacity from below at level ", the

approximate sitting probabilities z"di =y
d
i are regular, even at ydi ¼ 0 where this ratio is equal to 1. Thus

the composite costs in (14c) and (14e) are regular.

The same lines of proof ensure the regularity of the approximate functions of cost variance that are

adapted from (6) by replacing the true sitting probabilities with the z=y ratios. This ends up the proof

that the induction assumption holds at station k.

The same proof also applies to the basic cost functions Ĉij defined in (13) at x‘ such that

ðkdi ; ydi Þ 6¼ ð0; 0Þ for every station i2‘ and stage d2f0;þg.
Overall, Lemmas 1–3 make Theorem 1 hold true.

The approximate cost function is lower than the basic cost, because the approximate residual

capacity is larger than the true residual capacity: this enables to (fictively) increase the sitting
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probability and the proportion of riders who incur seated cost instead of standing cost. Thus the

approximate cost function tends to make the leg more attractive than it would be under the basic cost:

the effect on route choice, however, is limited since both the seated cost and the sitting probabilities are

maintained.

5. EQUILIBRIUM ANALYSIS

Having laid the foundation, we are now ready to define a traffic equilibrium and to carry out the relevant

mathematical analysis. We shall first set up the feasible set of flow states and their hyperpath

representation, then define a traffic equilibrium in the form of a NCP. After providing an equivalent

characterization in the form of a VIP, we shall demonstrate the existence of an equilibrium state. The

MSAmakes a heuristic algorithm to compute an equilibrium state: its convergence can be assessed in a

rigorous way on the basis of a duality gap criterion, for which we shall provide a simple formula.

5.1. On feasible flow states and hyperpath representation

Definition 1, Feasible network flow state. A network flow state xAS ¼ ½xas�a2A;s2S is feasible if it is

nonnegative and if it satisfies the node conservation of flow by destination:

xas � 0 8a2A; s2S (16a)

X
a2Aþ

m

xas ¼ qms þ
X

a2A�
m

xas 8s2S;m2N;m 6¼ s (16b)

in which Aþ
m [resp. A�

m] denotes the subset of arcs that go out [resp. come in] node m and qms is a given

OD flow from node m to destination node s.

Let Ex be the set of feasible network flow states.

Recalling the sets Hns of hyperpaths from n to s, a hyperpath flow state XNS is defined as a linear

combination of elementary flows along hyperpaths h with coefficients qhns:

XNS ¼ ½qhns : s2S; n2Nnfsg; h2Hns� (17)

Definition 2. Feasible hyperpath flow state. Given the OD trip matrix qNS ¼ ½qns�n2N;s2S, a
hyperpath flow state XNS is feasible if it is nonnegative and it satisfies the conservation of flow by OD

pair:

qhns � 0 8s2S; n2Nnfsg; h2Hns (18a)

X
h2Hns

qhns ¼ qns8s2S; n2N; n 6¼ s (18b)

A hyperpath flow state, XNS, induces a network flow state, xAS ¼ AðXNSÞ, in the following way:

xas ¼
X
n2N

X
h2Hns

qhns

X
r2RnsðhÞ

ĥr1fa2rg (19)

in which RnsðhÞ denotes the set of elementary paths within h from n to s (positive paths with no node

repetition), 1fa2rg is equal to 1 if a2r or 0 otherwise, and ĥr ¼
Q

a2r ĥa is the proportion of flow carried

out from n to s via route r on h.

From the basic properties of hyperpaths [25], a feasible hyperpath flow state induces a feasible

network flow sate. Nonnegativity (16a) comes from (18a), (19) and the nonnegativity of ĥa hence of ĥr.

The conservation of the destination flow at node m in (16b) is derived as follows:X
a2Aþ

m

xas�
X

a2A�
m

xas ¼
X

n2N
X

h2Hns
qhns

X
r2RnsðhÞ ĥrDrm

in which Drm ¼Pa2Aþm 1fa2rg�
P

a2A�m 1fa2rg. Now, if m is not incident to r then all the terms in the

sum are zero, yielding Drm ¼ 0. Then, if m is incident to r but not an endpoint node n or s of r, then

Drm ¼ 0 since one and only one arc in Aþ
m has 1fa2rg ¼ 1 and the same applies to A�

m . Lastly, if m ¼ n
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then Drm ¼ 1 since 1fa2rg ¼ 0 for all a in A�
m . ThusX

a2Aþ
m

xas�
X

a2A�
m

xas ¼
X

h2Hms
qhms

X
r2RmsðhÞ ĥr ¼

X
h2Hms

qhms ¼ qms

from the assumption (18b) on XNS.

5.2. Definition of traffic equilibrium using an nonlinear complementarity problem

Definition 3. Traffic Equilibrium. Given the OD trip matrix qNS ¼ ½qns�n2N;s2S and the cost–flow

relationship defined by (8), (9) and (15), a hyperpath flow state XNS ¼ ½qhns : s2S; n2Nnfsg; h2Hns�
with xAS ¼ AðXNSÞ is a traffic equilibrium if there exists a matrix mNS ¼ ½mns : s2S; n2Nnfsg� such
that, for all s2S; n2Nnfsg:

qhns � 0 8h2Hns (20a)

X
h2Hns

qhns ¼ qns (20b)

C"
nsðh; xASÞ�mns � 0 8h2Hns (20c)

qhns½C"
nsðh; xASÞ�mns� ¼ 0 8h2Hns (20d)

The interpretation is as follows: to each destination s and from each node n, a hyperpath cost

C"
nsðh; xASÞ cannot be less than mns and only a hyperpath with cost C"

nsðh; xASÞ ¼ mns may carry a

positive flow qhns, which implies that under equilibrium the dual variable is a minimum hyperpath cost

for the OD pair ðn; sÞ. This coincides with Wardrop’s definition of user equilibrium in traffic

assignment, according to which each user makes his routing choice so as to minimize his own travel

cost.

The set of conditions (20) is a NCP in the variable ðXNS;mNSÞ, with associated cost function as

follows:

ðXNS;mNSÞ7!½C"
nsðh;AðXNSÞÞ�mns : s2S; n2Nnfsg; h2Hns�

5.3. Equilibrium characterization using a variational inequality problem

Theorem 2 characterization of traffic equilibrium

A hyperpath flow state XNS ¼ ½qhns : s2S; n2Nnfsg; h2Hns� that is feasible for the OD trip matrix

qNS ¼ ½qns�n2N;s2S is a traffic equilibrium if and only if, for any feasible hyperpath flow state

YNS ¼ ½hhns : s2S; n2Nnfsg; h2Hns�, it holds that:

xNSðXNSÞ � ðYNS�XNSÞ � 0 (21)

in which xNSðXNSÞ ¼ ½C"
nsðh;AðXNSÞÞ : s2S; n2Nnfsg; h2Hns�.

Proof Assume first that XNS is an equilibrium state. Letting mNS be the associated matrix of dual

variables as of (20), for any YNS ¼ ½hhns� it stems from (20c) that

hhns½C"
nsðh; xASÞ�mns� � 0 8h2Hns

Summation over h2Hns yields that
P

h2Hns
hhnsC

"h
ns �

P
h2Hns

hhnsmns ¼ qnsmns

From (20d) we get that
P

h2Hns
qhnsC

"h
ns ¼

P
h2Hns

hhnsmns ¼ qnsmns, henceX
h2Hns

C"h
ns ðhhns�qhnsÞ � 0

This yields (21) after summing over s2S and n2N.
Conversely, assume that (21) holds at XNS and take YNS ¼ ½hhns� equal to XNS except perhaps on

node–destination pair ðn; sÞ: if there is only one hyperpath h in Hns then letting mns ¼ Cnsðh; xASÞ
obviously satisfies (20c and 20d). If there are two or more hyperpaths in Hns, for any h with q

h
ns > 0 let
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us define hhns ¼ qhns�u and hh
0

ns ¼ qh
0

ns þ u for a small positive number u: then (21) yields that

C"h0
ns �C"h

ns

� �
u � 0

which implies that the cost of any hyperpath h with positive flow qhns in XNS is minimal on Hns: on

defining mns ¼ minh2HnsC
"
nsðh; xASÞ, then (20c and 20d) follows.

5.4. Equilibrium properties

Theorem 3 existence of traffic equilibrium

Assuming that the cost functions Ca are continuous, there exists an equilibrium state for the model of

transit assignment with seat capacity.

Proof Based on the VIP formulation and Theorem 1, the assumption ensures that the cost functions

xAS 7!C"
nsðh; xASÞ are continuous with respect to the network flow state xAS. As this state stems from a

continuous function A of variable XNS (a combination of hyperpath flows), the composed function

XNS 7!C"
nsðh;AðXNSÞÞ is continuous, and so is function xNS. As the domain set EX of feasible hyperpath

flows is convex and compact, this ensures that the variational inequality admits at least one solution.

The uniqueness of an equilibrium does not hold in general, as will be shown in Section 6.

5.5. A criterion of duality gap for convergence to equilibrium

The VIP formulation is useful to establish the existence of an equilibrium state and also to design an

equilibration algorithm. As our model satisfies the assumptions in Ref. [27] about the mapping of arc

costs, the two methods that these authors showed to be globally convergent are applicable to search for

equilibrium: namely the linearized Jacobi method and the projection method. However, for the sake of

simplicity we prefer to use thewell-knownMSA: although we have not demonstrated this method to be

globally convergent on theoretical grounds, it is possible to assess its convergence in any application by

evaluating the duality gap at the current flow state. Indeed, when the duality gap comes close to zero it

is guaranteed that the current flow state is close to a traffic equilibrium, since the duality gap is

continuous when the VIP function xNS is continuous.

Then the remaining issue is to evaluate the duality gap at each current flow state of a given iteration

in the MSA. It would be most cumbersome to compute the duality gap in a straightforward way, since

this would require not only to store all the used hyperpaths in the computer memory, but also to perform

a hyperpath costing along each of them to evaluate their cost under the current traffic conditions.

Hereafter a simple method is provided, of which the only requirement is to update two real variables by

iteration along the MSA. It is applicable to any hyperpath-based transit assignment model in which the

hyperpath cost depends on the flow state only through the arc costs, not the node costs (thus the line

frequency cannot be related to the traffic flows).

Let us consider hyperpath flow state XNS [resp. ZNS] with associated network flow state xAS [resp.

zAS] and coordinate qhns [resp. h
h
ns] on hyperpath h from node n to destination s. Our aim is to evaluate

the cost to carry the flow ZNS under the travel conditions associated to XNS: this cost is defined as

xNþAðZNS : XNSÞ � ZNS:xNSðXNSÞ ¼
X

s2S
X

n2N
X

h2Hns
hhnsC

"
nsðh; xASÞ (22)

Let us split this cost into an arc-based part, xA, and a node-based part, xN . The arc-based part is

xAðZNS : XNSÞ ¼
X

s2S
X

n2N
X

h2Hns
hhns

X
r2RnsðhÞ ĥr

X
a2r caðxASÞ

¼
X

a2A caðxASÞ
X

s2S
X

n2N
X

h2Hns
hhns

X
r2RnsðhÞ ĥr1fa2rg

hence

xAðZNS : XNSÞ ¼
X

a2A caðxASÞza (23)

which is easy to evaluate whatever the ZNS state.
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About the node-based part,

xN �
X

s2S
X

n2N
X

h2Hns
hhns

X
r2RnsðhÞ ĥr

X
m2r w

h
m

let us notice that wh
m does not depend on xAS (when no congestion effect is involved in line frequency)

and that any term
P

r2RnsðhÞ ĥr
P

m2r w
h
m is a function of h and RnsðhÞ only, from here denoted as rhns.

Thus the node-based part is a linear function of ZNS only, on the basis of its coordinates h
h
ns in the space

of hyperpaths:

xNðZNSÞ ¼
X

s2S
X

n2N
X

h2Hns
hhnsr

h
ns (24)

Consider now an auxiliary hyperpath flow state Y
ðkÞ
NS that arises at the kth iteration in an MSA

application with sequence of step sizes ðzkÞk�0 such that z0 ¼ 1. The global costY
ðkÞ
NS � xNSðXðkÞ

NSÞ of that
auxiliary state under the traffic conditions induced by the current flow state X

ðkÞ
NS is merely

Y
ðkÞ
NS � xNS X

ðkÞ
NS

� �
¼
X

s2S
X

n2N qnsu
ðkÞ
ns

in which u
ðkÞ
ns is the travel cost by unit flow from node n to destination s under flow state X

ðkÞ
NS : this stems

from the definition of the auxiliary state by the assignment of all OD flows to their hyperpath of

minimal cost under the current traffic conditions. Based on (23) it is straightforward to recover

xN Y
ðkÞ
NS

� �
¼ Y

ðkÞ
NS � xNS X

ðkÞ
NS

� �
�xA Y

ðkÞ
NS : X

ðkÞ
NS

� �
¼
X

s2S
X

n2N qnsu
ðkÞ
ns

h i
�
X

a2A caðxASÞy
ðkÞ
a (25)

Let us now turn our attention to the current state X
ðkÞ
NS , which is constructed as the weighted average

of the previous auxiliary states Y
ðjÞ
NS, for j < k, with weight coefficients z

ðkÞ
j ¼ zj=Gk�1 where

Gk �
Pk

j¼0 zj. The arc-based transport cost is evaluated straightforwardly. Being a linear function, the

node-based transport cost can be derived from the linear decomposition of X
ðkÞ
NS :

xN X
ðkÞ
NS

� �
¼ xN

Xk�1

j¼0
z
ðkÞ
j Y

ðjÞ
NS

� �
¼
Xk�1

j¼0
z
ðkÞ
j xN Y

ðjÞ
NS

� �
(26)

Lastly, let us define bk �
Pk

j¼0 zjxN Y
ðjÞ
NS

� �
so that the ratio bk�1=Gk�1 amounts to the node-based

costs of the current flow state under its own traffic conditions:

xN X
ðkÞ
NS

� �
¼ bk�1

Gk�1

(27)

To sum up, at iteration k in the MSA algorithm the duality gap is

DGk ¼ X
ðkÞ
NS�Y

ðkÞ
NS

� �
� xNS X

ðkÞ
NS

� �
¼ bk�1

Gk�1

þ
X

a2A caðx
ðkÞ
AS ÞxðkÞa

h i
�
X

s2S
X

n2N qnsu
ðkÞ
ns

h i
(28)

This duality gap formula applies to any hyperpath-based transit assignment model in which the

cost–flow relationship pertains to the arcs—as in (9) and (15)—and the node-based waiting costs are

independent of the flow.

5.6. Assignment algorithm: a method of successive averages

Traffic assignment to a transit network with seat congestion can be performed by means of the

following equilibration algorithm, which makes use of two network flow states xAS for a current state

and yAS for an auxiliary state, two related overall arc flow vectors xA and yA, one matrix of node

potentials by destination u ¼ ½uns : s2S; n2N�, an iteration counter k, real variables b, G,U, W and Z.

Input variables consist in G, L, arc costs c ¼ ½ca�a2A and c ¼ ½ca�a2A, line attributes f ¼ ½f‘�‘2L and

k ¼ ½k‘�‘2L, OD trip matrix q ¼ ½qos�o2Os;s2S, a tolerance h on the convergence level, and a sequence of
decreasing positive numbers ðzkÞk�0 with z0 ¼ 1.
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The equilibration algorithm is made up of five steps:

Initialization. Set xAS :¼ 0 and xA :¼ 0. Let k :¼ 0, b :¼ 0 and G :¼ 0.

Cost–Flow Relationship. Evaluate the arc costs ca ¼ CaðxASÞ for all a2A as in Section 4.3.

Network Costing and Flow Loading. Let U :¼ 0 and yA :¼ 0. For every destination node s2S:
- Find the optimal hyperpath destined to s under the current arc costs, yielding node potentials uns.

- Load the OD flows ½qns : n2N� on the currently optimal hyperpaths destined to s, yielding arc flows

yas.

- Let U :¼ U þPn2N qnsuns. Let ya :¼ ya þ yas for all a2A.
Flow Update. LetW :¼ U�Pa2A caya. If k > 0 let Z :¼ b

G�U þPa2A caxa. Then let G :¼ Gþ zk,

b :¼ bþ zkW , xAS :¼ xAS þ zkðyAS�xASÞ and xA :¼ xA þ zkðyA�xAÞ.
Convergence Test. If k > 0 and Z � h then terminate, else let k :¼ k þ 1 and go to step Cost Flow

Relationship.

This is a mere MSA, in which the auxiliary flow state yAS is a user-optimized assignment of all the

OD flows on the basis of the costs induced by the current flow state xAS. The convergence criterion Z is

the duality gap of the previous section.

In the application of the algorithm, working variables uns need not be saved by destination, which

allows for using only one vector ½un : n2N� instead of a matrix ½uns : s2S; n2NnS�. Furthermore, in

the standard case where the arc costs depend on xAS through xA only, then it is not necessary to save the
arc flows by destination. Thus the memory requirements of the algorithm exceed those of the

uncapacitated model of Spiess and Florian [2] only by the representation of one arc per leg.

The network assignment algorithm was implemented in cooperation with the RATP (Paris metro

operator), with some refinements that pertain to the issues of line sub-services and of generalized cost

including mean and variance of leg cost: results are available in two related papers [21,28]. In short, the

equilibrium results appear to be stable in terms of arc flows and elementary costs (including access–

egress costs by service mode), though variable in terms of selected hyperpaths. The comparison

between the seat-congestion model and the previous model, a standard hyperpath transit assignment

model, showed that at the morning peak the transit flows could vary by as much as 30% along the metro

lines that carry about 5000–20 000 passengers per hour and per direction. Along the regional train lines

the relative change is limited to a small percentage, because there are few alternative transit routes and

their base flow is as high as 20 000–60 000 passengers per hour and per direction. A number of 30

iterations was sufficient to achieve a satisfactory level of convergence, meaning that including seat

capacity in static transit assignment is similar to modelling link travel time functions in static roadway

assignment as concerns the computational costs.

6. A SIMPLE CASE OF HYPERPATH CHOICE

To illustrate the seat congestion effect in conjunction with hyperpath choice in the context of traffic

assignment, let us consider a simple case inspired from the transit network in the Paris area. At the

morning peak period, the most crowded transit line in Paris is a heavy metro line called line A of RER

(the Réseau Express Régional, in fact a regional train with very high frequency), particularly so in the

westbound direction because there is a major Business Centre at station La Défense, and at the Châtelet

station which allows for transfer between three RER lines and five metro lines. Trip-makers willing to

board line A at Châtelet to La Défense have to wait for the second or third train to come, because of a

queue. Thus it is highly likely that on-board they will stand within high crowding. To avoid congestion,

some trip-makers prefer to use an alternative route: those coming from the Belleville metro station may

board line A either at Châtelet after using line 11, or at station Nation after using line 2. Boarding line A

at Nation is easier as there is no queue.

6.1. Case data and test parameters

Figure 5 illustrates the network and transport data for a trip from Belleville to La Défense. On line A,

the leg from Châtelet to La Défense costs either 11minutes at seating or 20minutes at standing, on the

basis of Stated Preference data [28]. The leg from Nation to Châtelet costs 6minutes when seated,
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which is assumed here. The leg from Belleville to Châtelet via line 11 takes 15minutes including

transfer, as takes the leg from Belleville to Nation via line 2 also including transfer.

Service frequencies are about 20 veh/hour on line 11, 30 veh/hour on line 2 and 30 veh/hour on line

A. The waiting weighting factor a is set equal to 1. The traffic flows and capacity are described on the

basis of three parameters q, j and k: q is the OD flow from Belleville to La Défense; j is the flow from

other origins boarding line A at Châtelet; k is the seat capacity available on line A at the Nation station.

On the Belleville-La Defense relationship, Path 1 with access to line A at Châtelet and Path 2 with

access to line A at Nation make up three hyperpaths: hyperpath 1 made up of path 1 alone; hyperpath 2

made up of path 2 alone; and hyperpath 3 that combines path 1 and path 2 at the Belleville station.

Figure 6 depicts the assignment network under the leg-as-arc format. For numerical illustration, let

us fix OD flows qBD � q ¼ 8000 passenger per hour and qCD � j ¼ 7000 per hour. The latter flow is

assigned to its single path at every iteration in theMSA, whereas the former is assigned to its Hyperpath

1 (simple path boarding line A at node C) at the Initialization Step, then to its hyperpath 3

(combination) at every iteration with k > 0.

At equilibrium, the sitting probability along line A is 1 at Nation and 51% at Châtelet. The evolution

of the duality gap along the iterations in the MSA is displayed on Figure 7, with step size set to

Figure 5. Transit map for the Belleville–La Défense relationship.

Figure 6. Assignment network for the Belleville–La Défense relationship.
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zk ¼ 1=ð1þ k=50Þ in the convex combination at iteration k > 0. For reference, the total travel cost at

equilibrium is 6640 passenger.hour.

If seat capacity was neglected, then from Belleville only Path 1 would be attractive, yielding a total

travel cost of 8000	 310 þ 7; 000	 140 ¼ 5933 passenger.hour. Thus the generalized travel costs

would be underestimated by 10%, whereas the traffic loads onto the links to the Chatelet and Nation

stations would be even more significantly different.

6.2. On paths hyperpaths and costs

On the Belleville-La Defense relationship the respective hyperpath costs are the following functions of

the probability p to take a seat on boarding at the Châtelet station:

cmin
1 ¼ 11pþ 20ð1�pÞ þ 60

30
þ 15 ¼ 37�9p

ĉ1 ¼ cmin
1 þ a

f ðline11Þ ¼ 40�9p

cmin
2 ¼ 11þ 6þ 60

30
þ 15 ¼ 34

ĉ2 ¼ cmin
2 þ a

f ðline2Þ ¼ 36

ĉ3 ¼ aþ f11c
min
1 þ f2c

min
2

f11 þ f2
¼ 36:4�3:6p

6.3. Equilibrium analysis and nonuniqueness

Let us first assess the domain where path 1 has cost less than path 2:

ĉ1 � ĉ2 , p � 4
9

Then let us assess the domain where the combination, hyperpath 3, is better than any single path: the

conditions are that

cmin
1 � ĉ2
cmin
2 � ĉ1

�
, p2½1

9
; 2
3
�

Thus the supply-demand equilibrium takes on the following states, depending on the value of

parameter p:

p < 1=9: only path 2 is used.

p ¼ 1=9: both path 2 and hyperpath 3 may be used.

p2�ð1=9Þ; ð2=3Þ½: only hyperpath 3 is efficient, not path 1 or path 2 on a single basis.
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Figure 7. Duality gap against iteration number in the MSA.
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p ¼ 2=3: both path 1 and hyperpath 3 may be used.

p > 2=3: only path 1 is used.

Knowing which hyperpaths are used, we may relate p to parameters k, j and q:

When path 1 alone is used, then p ¼ min 1; k=ðjþ qÞf g, so the requirement that p > 2=3 yields that
q < ð3=2Þk�j.

When path 2 alone is used, then p ¼ max ðk�qÞ=j; 0f g, so the requirement that p < 1=9 yields that
q > ðk�jÞ=9.

If hyperpath 3 alone is used, then p ¼ ðk�p2qÞ=ðjþ p1qÞ where p2 ¼ f2=ðf2 þ f11Þ and

p1 ¼ 1�p2: the requirement that 1=9 < p < 2=3 yields that

k�j=9

p2 þ p1=9
> q >

k�2j=3

p2 þ 2p1=3

At states where several hyperpaths are used, the OD flow q splits into hyperpath flows xi so that

p ¼ ðk�p2x3�x2Þ=ðjþ p1x3 þ x1Þ, which yields

px1 þ x2 þ ðpp1 þ p2Þx3 ¼ k�pj

At p ¼ 2=3, x2 ¼ 0 so ð2=3Þx1 þ ðp2 þ ð2=3Þp1Þx3 ¼ k�ð2=3Þj: the smallest q complying to this

requirement is ðk�ð2=3ÞjÞ=ðp2 þ ð2=3Þp1Þ if all OD flow is carried by x3 and none by x1, and the

largest is ð3=2Þk�j all carried by x1.

At p ¼ 1=9, x1 ¼ 0 so x2 þ ðp2 þ ð1=9Þp1Þx3 ¼ k�ð1=9Þj: the smallest q complying to this

requirement is k�ð1=9Þj if all OD flows are carried by x2 and none by x3, and the largest is

ðk�ð1=9ÞjÞ=ðp2 þ ð1=9Þp1Þ all carried by x3.

At a given OD flow q, from one up to five traffic equilibria may exist:

- on ½0; ðk�2j=3Þ=ðp2 þ 2p1=3Þ� there is one equilibrium state with p > 2=3;
- on ½ðk�2j=3Þ=ðp2 þ 2p1=3Þ; ð3=2Þk�j� there are three equilibria, first with p > 2=3, second with

p ¼ 2=3 and last with p2�ð1=9Þ; ð2=3Þ½;
- on ½ð3=2Þk�j; k�ð1=9Þj� there is one equilibrium with p2�ð1=9Þ; ð2=3Þ½ (assuming a nonempty

interval, i.e. 9k < 16j);
- on ½k�ð1=9Þj; ðk�j=9Þ=ðp2 þ p1=9Þ� there are two equilibria with either p2�ð1=9Þ; ð2=3Þ½ or

p ¼ ð1=9Þ;
- on ½ðk�j=9Þ=ðp2 þ p1=9Þ; k� one equilibrium state with p < 1=9 (assuming a nonempty interval);

- the case where ½ðk�2j=3Þ=ðp2 þ 2p1=3Þ; ð3=2Þk�j�\½k�ð1=9Þj; ðk�j=9Þ=ðp2 þ p1=9Þ� 6¼ ?

might also arise, leading to five equilibria at any value of q within the intersection.
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Figure 8. Equilibrium states in a cost-flow diagram.
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For q > k our study should be modified to take into account the seat congestion on the Nation—

Châtelet segment.

Figure 8 depicts the hyperpath costs with respect to OD flow q, for parameter values of k¼ 10 000

and j¼ 8000. As p1 ¼ 0:4 and p2 ¼ 0:6, ðk�j=9Þ=ðp2 þ p1=9Þ > k so the regime with p < 1=9 falls
out of the range ½0; k� for q. From 0 to ðk�2j=3Þ=ðp2 þ 2p1=3Þ only path 1 is used. From

ðk�2j=3Þ=ðp2 þ 2p1=3Þ to ð3=2Þk�j, either path 1 alone, or hyperpath 3 alone, or both can support

equilibrium. From ð3=2Þk�j to k�j=9 only hyperpath 3 is used. From k�j=9 to k, either path 2 alone,
or hyperpath 3 alone, or both can support equilibrium.

7. CONCLUSION

We have represented seat capacity in the basic framework for static traffic assignment to a transit network:

namely the hyperpath model with line combination. The occupancy of the seat capacity influences the

quality of service to the rider: by line segment the cost of being seated is less than that of standing. The

competition of the riders to get a seat makes the seat allocation process a random process under priority

rules, with sitting probabilities at each stage along the line. Each rider gets a service mode along his leg,

with deterministic cost but allocated in a probabilistic way. We have defined line problems of, first, flow

loading to yield the sitting probabilities and, second, leg costing to yield the leg average cost and cost

variance. Each problem has been associated with a computationally efficient algorithm, with complexity

of O S2‘
� �

to yield the results for all of the legs. The line algorithms amount to a complex cost–flow

relationship which derives the average cost by leg from the entry–exit matrix of leg flows.

In a network setting, the leg costs influence the riders’ route choice. Each leg has been represented

by one network arc that can be included in a hyperpath to a given destination. Traffic equilibrium has

been defined as a nonlinear complementary problem and cast into a VIP. Using a regularized cost–flow

relationship, the existence of an equilibrium has been demonstrated. Uniqueness does not hold in general.

A method of successive average has been provided as a heuristic equilibration algorithm, together with a

theoretically sound convergence criterion on the basis of a duality gap. A simple formula has been

given for the duality gap, which is generic for a class of static transit assignment models.

Further work on the seat congestion model might focus on the following issues:

� Identification of more comfort states, e.g. several types of seats or comfort classes.

� In-vehicle choice of egress station depending on the current user’s comfort state.

� A discomfort function may be associated to each comfort state. Provided that seating is still more

valuable than standing, the loading algorithm is unchanged and in the costing algorithm it is required

to evaluate the discomfort function only once by segment, stage and comfort state.

� Inclusion of ‘transaction’ costs because of effort to get a seat; in conjunction with modelling other

capacity constraints in transit such as access–egress capacity at vehicle dwelling in a station.

� Inclusion of costs which are nonlinear functions of the number of segments in leg or the leg travel time.

� Taste differentiation among the riders, so as to model heterogeneous trade-offs between state

discomfort, travel time and also the fare.

� Discrete choice model to compete or not for a seat, so that the sitting probability might be varied

among candidate riders. This would enable to model a higher share for longer legs.

� Discrete choice model of the user’s willingness to obtain a given comfort state by associating a

‘choice’ probability to each comfort state.

� Priority rules for social or commercial purpose.

In the author’s opinion, the discomfort function, taste differentiation and discrete choice extensions

could yield some properties of equilibrium uniqueness.
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. APPENDIX A. HOW TO DEAL WITH A CIRCULAR LINE

A circular transit line ‘ is such that the vehicles serve each station 1 to S‘ along the line then again

station 1 and so on. It cannot be assumed that there are no passengers in a vehicle when it comes to

dwell at station 1, which makes the line loading a much more involved problem, whereas the line

costing problem is not more difficult. Indeed, the line costing requires only one adaptation from the

basic treatment in Section 3.4: when costing the legs ði; jÞ for all access stations i upstream of j, we have

now to consider a list fjþ 1; � � � S‘; 1; � � � j�1g of access stations.

To adapt the line loading algorithm and determine the sitting probabilities, let us denote by x‘
�ithe

total passenger flow on segment ði; iþ 1Þ where iþ 1 denotes station 1 if i ¼ S‘. As no passenger has

interest in travelling the line in its entirety, we can safely assume that

x‘
�i ¼

X
j;k
q‘jkdj�i<k

wherein dj�i<k ¼ 1 if i lies between j and k downstream of j and strictly upstream of k in the direction of

the stream, or dj�i<k ¼ 0 otherwise.

If there is one station at which x‘
�i � k‘, then station iþ 1 can be chosen as the initial station to

begin the line loading algorithm, with Initialization stage replaced by

Initialization. Let x0�i :¼ xðiÞ, x0�i :¼ 0, x
ðiÞ0
j :¼Pk q

‘
kjdk�i<j and x

ðiÞ0
j :¼ 0.

If there is no station with vacant seat capacity left for incoming riders, then pþi ¼ 0 for every i and all

of the p0i satisfy that p0i y
0
i ¼ k0i .

The seated riders who exit at station i vacate a residual capacity equal to their flow which is

k0i ¼
X
j

q‘ji

Yi�1

k¼jþ1

ð1�p0kÞ:

As all of this is occupied with sitting probability p0i by the standing riders who remain on board, it

holds that

p0i

X
k<i<j

q‘kj

Yi�1

m¼kþ1

ð1�p0mÞ ¼
X
j

q‘ji

Yi�1

k¼jþ1

ð1�p0kÞ:

This makes a system of S‘ nonlinear equations in S‘ variables p
0
i . It can be solved as a fixed-point

problem

p0 ¼ Fðp0Þ, in which

Fiðp0Þ ¼

P
j

q‘ji
Qi�1

k¼jþ1

1�p0k
� �

P
k<i<j

q‘kj
Qi�1

m¼kþ1

1�p0m
� �

Solving this problem yields the sitting probabilities p0i .
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