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Abstract- We study the quantum properties of a nano-mechanical oscillator via the 
squeezing of the oscillator amplitude. The static longitudinal compressive force 0F  

close to a critical value at the Euler buckling instability leads to an anharmonic term in 
the Hamiltonian and thus the squeezing properties of the nano-mechanical oscillator are 
to be obtained from the Hamiltonian of the form 4/)( aaaaH    . This 
Hamiltonian has no exact solution unlike the other known models of nonlinear 
interactions of the forms 22aa  , 2)( aa  and  )( 222244   aaaaaa previously 
employed in quantum optics to study squeezing. Here we solve the Schrodinger 
equation numerically and show that in-phase quadrature gets squeezed for both vacuum 
and coherent states. The squeezing can be controlled by bringing 0F  close to or far from 

the critical value cF . We further study the effect of the transverse driving force on the 

squeezing in nano-mechanical oscillator. 
 
Key Words- Squeezing, Nano-mechanical Systems, Quantum Noise   
 

1.INTRODUCTION 
  

There is currently a wide effort to observe quantum behavior in nanoscale 
devices [1-4]. In the limit of high resonator frequency with high mechanical quality 
factors and long coherence lifetimes, the nanomechanical oscillator (NMO) phonons 
will be analogous to photons in an electromagnetic cavity. With current technology it is 
possible to reach resonator frequency of GHz order [5]. At a temperature of around 
50mK, one can principally prepare the resonator into the ground state. These sub-Kelvin 
temperatures are well within the range of todays dilution refrigerators. However cooling 
the resonator down to these temperatures requires some other techniques [6,7]. 

With the assumption that quantum mechanics should apply to these mesoscopic 
systems, variety of methods and techniques have been proposed to observe some 
quantum optical effects including solid-state laser cooling [6, 7], quantum 
nondemolition measurement [8, 9], phonon lasing [10] and squeezed state generation 
[11, 12]. There are also proposals analyzing macroscopic quantum tunneling [13], 
resonant multi-phonon excitations [14] and a variety of methods to entangle mechanical 
resonators with other quantum systems [15-18]. 

The next question is what could be the best way to study quantum properties of a 
NMO. In line with the work in quantum optics on squeezing, we can consider studying 
the squeezed states of the NMO. One proposal considers modulating the spring constant 
to produce squeezing [11] as it is known from the earlier work [19] that any modulation 
of the frequency of the oscillator can result in squeezing. Here we adopt a different 
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model. We consider the situation shown schematically in the Fig. 1. We show various 
forces acting on a nanobeam structure which is clamped at both ends vibrating in the 
transverse direction. There is a static mechanical force, F0, acting in the longitudinal 
direction and an ac-driving force to excite vibrations in the transverse direction. The 
longitudinal force F0 which is close to a critical value at the Euler instability gives rise 
to an additional term in the potential energy which is quartic in the fundamental mode 
amplitude x. The effective Hamiltonian that describes the system would be in the form 
H = p2/2m+mw2x2/2+ β x4/4. The derivation of this 

 
 

FIG. 1: (Color online) Schematic diagram of the freely suspended nanomechanical beam of total length L, 
width w and thickness d. The beam is clamped at both ends. A static, mechanical force F0 compresses the 
beam in longitudinal direction controlling the nonlinearity. An ac-driving force can be used to excite the 
beam to transverse vibrations. 
 
nonlinearity in x is given in the next section. Unlike the previous work on squeezing [11] 
in a NMO we would consider the effect of the nonlinearity in x. Note that the 
nonlinearity can be switched on and off by controlling F0. We would thus study the 
quantized behavior of a NMO subject to the force F0. 

The organization of the paper is as follows. The model is described in section 2 
and the effective Hamiltonian is derived briefly by referring to the previous works for 
the doubly clamped elastic rectangular beam. We discuss the previous works on the 
squeezing in nonlinear oscillators in section 3. Then, we study the quantum Dynamics 
and analyze the squeezing properties in section 4. The conclusion and future perspective 
are given in section 5. 
 

2. THE MODEL 
 

We start with an elastic rectangular beam of length L, width w and thickness d as 
shown in Fig. 1. The beam is freely suspended and clamped at both ends. The transverse 
motion in the direction of d is allowed. The dimensions are such that (L ˃˃ w > d) there 
is no appreciable vibrations in other directions. A static mechanical force F0 acts on the 
beam in the longitudinal direction (F0 > 0 for compression). An ac-driving 

field, t)cos(w f
~

e  F(t) ex  can also be added to excite the vibrations. The dynamics of the 

beam can be completely described by the transverse defection ϕ(s) parametrized by the 
arclength s[0;L] in a classical picture. Assuming single transverse degree of freedom 
for simplicity the nonlinear Lagrangian of the system, for arbitrary strong defections ϕ(s) 
is then [20, 21], 
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Here Lm /  is the mass density, EI is the product of the elasticity modulus E 
and the moment of inertia I. In  , prime denotes partial derivative with respect to s, i.e. 

./ s For small oscillations 1)(  s , the Lagrangian is quadratic and it leads to the 

linear equation of motion  
00   F                                                                                                     (2) 

The equation of motion can be separated and transformed into an eigenvalue problem 
with boundary conditions applied to the endpoints. One can write the general solution as 
a superposition  

n
nn

n
n sgtAtsts )()(),(),(   where gn(s) are the normal modes 

which follow as solution of the characteristic equation. For the doubly clamped 
nanobeam, we have ϕ(0) = ϕ(L) = 0 and ϕˈ(0) = ϕˈ(L) = 0 The expressions for ϕn's are 
then given by a superposition of trigonometric and hyperbolic functions, and the 
eigenfrequencies wn's are the solutions of transcendental equations. To obtain simple 
expressions for the eigenfunctions we can use the free boundary conditions, ϕˈ(0) = ϕˈ(L) 
= 0 leaving the essential physics of the problem unchanged. In that case the normal-
mode expansion becomes 
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When F0 has the critical value Fc =µ(π/L)2 , the fundamental frequency ω1 vanishes as 

  where CC FFF /)( 0  is the distance to critical to the critical force and the 

system reaches to the well known Euler instability. Close to the Euler instability F0 → 
Fc , for the doubly clamped beam one can get the simplified fundamental frequency 

001 )( wFFw c    where )/(/)3/2( 22
0 LdEw   is the fundamental frequency 

of the relaxed beam (F0 = 0). The frequencies of higher modes n = 2, 3, . . . remain finite. 
The dynamics at low frequencies is determined by the fundamental mode alone. Since 
the fundamental frequency  w1 vanishes at the critical value Fc, one has to include the 
contributions beyond the quadratic terms 2 and 2  in the Lagrangian. The next higher 

order terms, 22)2/(    and 4
0 )4/( F  are quartic in the Lagrangian. Inserting the 

normal mode expansion (3) in the Lagrangian and assuming that the fundamental mode 
n = 1 dominates the dynamics (by neglecting the higher modes n = 2, 3,…) one can 
quantize the theory by introducing the canonically conjugate momentum 1/ Aip     

with the “coordinate”  1Ax  . Note that when the driving frequency is close to the 
fundamental frequency of the beam, the fundamental mode will dominate also in 
absence of a static longitudinal compression force F0. However, a compression force 
close to a critical value helps to enhance the nonlinear effects which are of the 
importance of this paper. 
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By using the above definition of coordinate and the conjugate momentum, an 
effective quantum mechanical time-dependent Hamiltonian results describing the 
dynamics of a single quantum particle 
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with the effective mass 8/3 Lm  , the fundamental frequency 

)/(/)3/2( 22
1 LdEw  and the nonlinearity parameter )31()/(

~ 4   LFL c  

[22]. Now, Eq. (5) can be put in a second-quantized form by replacing x and p with the 
creation and annihilation operators a+ and a,  
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Upon scaling the Hamiltonian by 0w  we obtain the dimensionless form, 
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with the redefined dimensionless parameters, 

1

4
0

4

~

w

x




  , 
1

0

~

w

xf
f


                                                                                                        (9) 

where 10 / wmx   . One can obtain an expression for    that depends on the 

dimensions and the material properties of the beam. By substituting the parameters in 
Eq. (9) one finds 
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Note that the equation (10) is valid for 1 and  can  be controlled by fine tuning 
the distance parameter   at this regime. Table I lists the range of the nonlinearity 
parameter   as well as the relaxed fundamental frequencies and the critical 
compressions for three different sizes of Si nanobeams. Note that one should have 
extremely precise control over   to increase the nonlinearity. In light of the 
measurements done in the experiment [23]   was found to be of the size 510  for a 
100 nm length carbon nanotube. 
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TABLE I: Table shows calculated   values, the nonlinearity parameter, for two different beam size. For 

each size, the relaxed fundamental mode frequency w0 and the critical force  Fc defined in the text, are 
also shown. The parameter   shows the distance to the critical force near the Euler instability. 

 
3. PREVIOUS WORKS ON THE SQUEEZING 

IN NONLINEAR OSCILLATORS  
 

The squeezing produced by the nonlinearity has been investigated in the past by 
using a number of approximations however none of these are suitable for the problem of 
the NAMO. Milburn dropped all phase sensitive terms from (8) and studied [24] the 
simplified Hamiltonian, 

  2)(1 aaaawH                                                                                         (11) 
By solving exactly the phase space distribution function he showed that squeezing can 
be obtained for a coherent state of amplitude α = 0.5 for very short times. Buzek [25] 
and Tanas [26] studied Hamiltonian models of the form, 

22

2

1
aaawaH                                                                                                   (12) 

2)(
2

1
aaawaH                                                                                                 (13) 

They solved the Heisenberg equations of motion exactly and showed periodic squeezing 
for coherent states in both quadratures. Tanas [26] showed also that maximum 

squeezing can be obtained in the limit of large mean number  1
2   and  small times 

 1t .  No squeezing is allowed for the vacuum state in the above models. In this paper, 
we calculate the squeezing in an anharmonic oscillator for the anharmonicity quartic in 
x which is the amplitude of the fundamental mode of the oscillation. One could write x4 
in terms of creation and annihilation operators as follows: 

   aafaaaax ,4444                                                                                 (14) 

where  aaf ,   is a polynomial in a and a+ of order four which is given by 

  2 2 2 2 2 2, 6 4( ) 6( ) 12 3f a a a a a a a a aa a a a a                                              (15) 

The Hamiltonian containing the second and third terms given in Eq. (14) give rise to 
two-photon (or phonons in quantum mechanical descriptions of solid systems) 
transitions. It is known that two-photon transitions are necessary for producing squeezed 
states and thus the terms 22 ,aaaa  and their hermitian conjugate should be important. 
In the literature, multi-photon processes have also been analyzed to study normal and 
higher order squeezing in the limit of small times [27-29]. In relation to this paper, 
Tombesi and Mecozzi [30] studied the harmonic oscillator model which has four- 
photon transitions in the interaction term, 

)]([ 222244   aaaaaaH I                                                                               (16) 
This model was solved exactly. They showed that significant amount of normal and 
higher order squeezing is possible for initial coherent states of amplitude 1  with 

certain phases and for short times. No squeezing is allowed for the vacuum and 
fluctuations diverge as time grows. In the description of NMO systems the anharmonic 
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Hamiltonian models given in Eqs. (11), (12), (13) and (15) are no good for vacuum 
squeezing. Moreover, the nonlinearity λ cannot be controlled externally since it is an 
intrinsic property of the medium. To observe the nonclassical (quantum) properties of a 
mesoscopic system in general, the control of the parameter that gives rise to the 
nonclassical behavior would be crucial for an experimentalist. The harmonic oscillator 
having the nonlinearity of Eq.(14). that we shall work in the next sections, gives 
important squeezing in the in-phase quadrature for both vacuum and coherent states. 
Furthermore, it will be shown in section III that the physical model of the NMO allows 
one to control the nonlinearity by the application of a static external force. The 
numerical solution of the Hamiltonian shows that the vacuum squeezing displays 
periodicity and it stays squeezed for the whole cycle of the period. In fact, the vacuum 
squeezing is important for the mesoscopic resonators because bringing the harmonic 
oscillator representing the nano-mechanical system to its vibrational ground state is a 
necessary prerequisite for quantum state engineering. The effect of driving term is also 
examined. 
 

 
FIG. 2: Squeezing of the vacuum in the anharmonic oscillator model given by Eq. (8) changing from 
weak to strong nonlinearity β; (a) β=0.1, (b) β= 0.3, (c) β = 0.5, (d) β = 1.0. Solid line, Sx(t), normally 
ordered normalized fluctuations in x and dashed line, Sp(t), normally ordered normalized fluctuations in p 
as given by Eqs. (19) and (20) respectively. 
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FIG. 3: The squeezing Sx(t) for the coherent state of amplitudes, (a) 1.0 , (b) 5.0 , (c) 

0.1 , (d) 0.2 . The phase of   is equal to 2/ The nonlinearity parameter β is taken as 0.1. 

 
4. QUANTUM DYNAMICS AND SQUEEZING 

 
We first consider the case in which there is no driving. The Hamiltonian 
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has no analytical solution. For the numerical calculations, we employ the split-operator 
method [31] for the time propagation of the initial state. In this method, one can split the 
propagator on a time step t  as  

0( )( ) i H V tU t t e      

                 ])[( 32/)2/ 00 tOeee tiHtiVtiH                                                                 (18)                             

where 2/1 aaH  and 4/)( 4aaV   . That means splitting  the exponential of 
the operators which are not commuting is accurate to second order in the time step 

t .Therefore one can make the calculation as accurate as possible by taking the time 
step sufficiently small. Then we can calculate the normally ordered variances for x and 
p normalized over vacuum fluctuations, 
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where the sign : : means normal ordering with respect to the pair of creation operator 
a  and annihilation operator a . The denominators are the initial vacuum fluctuations of 

the of the fundamental mode amplitude x and its conjugate p. Negative values of Sx,p(t) 
means squeezing and it gets -1 when the squeezing is perfect. Fig. 2 shows squeezing 
for the vacuum for different nonlinearity values β=0.1, 0.3, 0.5 and 1.0. The maximum 
squeezing ranges from ~ -0.30 to ~ -0.80. The value -0.80 means that the uncertainty in 

x is squeezed to  45%80.01  of its vacuum value. 
 

 
FIG. 4: Maximum squeezing Sxmax vs. coherent state amplitude  . The dependence is shown for 

different values of the phase. The nonlinearity parameter β is equal to 0.1. 
 
 

 
FIG. 5: Time evolution of the normalized uncertainty product )0()0(/)()( pxtptx  for the 

vacuum. 
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One could also start with a coherent state to check squeezing. We analyzed squeezing 
for different initial coherent state amplitudes and phases,  ie  at the nonlinearity 

value of β = 0.1. Fig. 3 shows the time evolution of the squeezing for increasing 
coherent state amplitude   at the phase 2/  . Fig. 4 shows the dependence of the 
maximum squeezing to the phase. It can be seen from the figure that the phase does not 
make much difference for low amplitudes 5.0 but it changes squeezing behavior 

drastically for amplitudes larger than 0.5. Increasing the amplitude increases the 
maximum squeezing whereas the state never becomes squeezed after a short duration. 
On the other hand, low amplitudes show periodic squeezing all the time at a moderate 
value. One can also plot the time evolution of the normalized uncertainty product 

)0()0(/)()( pxtptx  for the vacuum. Fig. 5 shows that the oscillator recovers its 
minimum uncertainty periodically and the fluctuation remains bounded. 
 

 
 
FIG. 6: The effect of the driving term on squeezing. (a) shows the squeezing without driving and (b), (c), 
(d) show the effect for the dimensionless driving parameter (f) values of 0.1, 0.2 and 0.3 respectively. The 
nonlinearity parameter β is equal to 0.1. Solid line is for Sx(t) and the dashed line is for Sp(t). 
 
Next we analyze the effect of driving in the dynamics of the Hamiltonian given in Eq. 
(8). We calculate the propagator again by using the split-operator method. This time, we 
include the nonlinear term into H0 and we take the time dependent driving term as V (t) 
to employ the splitting given in Eq. (18). Fig. 6 shows the time evolution of the 
normally ordered variances for the in-phase and the out-of-phase quadratures for driving 
parameter values of f = 0.0, 0.1, 0.2 and 0.3 at the nonlinearity β = 0.1. We take the 
vacuum as the initial state. The frequency of the driving term, w, is on resonance with 
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the frequency of the oscillator, w0. As clearly seen, the effect of the driving is to 
enhance the squeezing in x periodically to a larger value. For the values of f in 
consideration, squeezing went from -0.30 (for f = 0.0) to -0.55 (for f = 0.3). Increasing 
the driving further does not enhance squeezing, rather it starts to enhance the 
fluctuations and the squeezing cycle becomes shorter. And the driving frequencies off 
the resonance do not help enhancing the squeezing at all. The upper limit maxf for the 

regime of validity of the fundamental mode description is given by the 1rst harmonic 
threshold, that is  12max 3 wwf    [13] which means for the dimensionless parameter, 

fmax < 3. 
 

4. CONCLUSION 
 

In this paper we show that squeezed states can be obtained in the amplitude of 
the fundamental mode of a nanomechanical oscillator which has quartic nonlinearity in 
its effective single particle quantum mechanical Hamiltonian. The quantum dynamics of 
the system is solved numerically both with and without external acdriving. For various 
strength of nonlinearity and driving, the squeezing dynamics is investigated for both 
initial vacuum and coherent states of different amplitudes. The terms that lead to 
multilevel transitions in the quartic nonlinearity is compared to similar models and 
proved advantageous results. It should be noted that working closer to Euler buckling 
instability produces larger squeezing due to large nonlinearity. This is reminiscent of 
similar result for quantum optical systems [32]. 
Finally, we comment on the possibility of observing squeezing in nano-mechanical 
beams. Remarkably, quantum squeezing may be controlled externally in these systems 
just by controlling strain provided by a classical compressive force. However, one has 
to cool down the resonator to mili-Kelvin temperatures. Moreover, controlling the 
nonlinearity at the desired values, one would have to apply compression with extreme 
delicacy,Fc-F0~10-6Fc. Controlling the strain to this precision for sufficient time to 
identify squeezing may be difficult. Thus, while observing squeezing will be 
challenging, the prospect of exploring tunable quantum squeezing in nano-mechanical 
beams and the connection to Euler buckling instability, are intriguing. 
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