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Abstract: Human reproductive and sexual behaviors are heritable and may represent 
integral life history traits that are likely partially subserved by the dopamine system. Two 
dopamine receptor polymorphisms, DRD4 48bp VNTR and DRD2 TaqI A, were examined 
in relation to the Sexual-Orientation Inventory (SOI), age at first sexual intercourse, desired 
age of marriage, and desired age to have children in 195 (45% male) individuals from a 
general student population. As DRD4 7R alleles have been associated with migratory 
behavior, we also examined whether those with more 7R alleles had a greater frequency of 
multi-racial ancestries. Minor alleles of both polymorphisms (7R and A1 respectively) are 
believed to decrease the function of their respective receptors. Individuals with DRD4 7R 
alleles were more likely to have had sexual intercourse and to desire children earlier in life. 
In addition, DRD4 7R+ individuals were more likely to report multi-racial ancestries. 
Individuals with DRD2 A1 alleles were more likely to not want children and not want to 
marry. These results suggest that polymorphisms in the DRD4 and DRD2 genes are 
meaningfully associated with variation in reproductive and sexual behaviors. These results 
are provisionally interpreted as consistent with other findings suggesting that DRD4 7R and 
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DRD2 A1 alleles are adaptive for lower offspring investment strategies in dynamic social 
environments. 

Keywords:  dopamine, reproduction, mating, inter-racial marriage, migration, DRD2, 
DRD4 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
Introduction 

Among humans, genetic studies have shown significant heritable components to the 
age at which people first have sexual intercourse (Hunt and Rowe, 2002; Guo and Tong, 
2006), begin trying to conceive (Rodgers, Kohler, Kyvik, and Christensen, 2001), and have 
their first child ( Kohler, Rodgers and Christensen, 1999; Mealey and Segal, 1993), along 
with how many children they desire, expect and actually have (Kohler and Christensen, 
2000; Kohler, et al., 1999; Rodgers et al., 2001). Additionally, the propensity to marry 
(Johnson, McGue, Kruger, and Bouchard, 2004), histories of maintaining lasting pair bonds 
(Kohler and Christensen, 2000; Trumbetta and Gottesman, 2000) and propensities for 
multiple mating (Trumbetta and Gottesman, 2000) have heritable components. Recent 
findings show that reproductive outcomes become more heritable with increasing female 
reproductive choice, suggesting that the heritable variation acts not primarily via 
modifications of physiological ability to reproduce, but instead via behavioral influences 
(Kohler, Rodgers, Miller, Skytthe, and Christensen, 2006).  

The dopamine system is a good candidate system to modulate such behaviors 
because it is involved in reward and motivation, and has been implicated in sexual 
(Dominguez and Hull, 2005; Melis and Argiolas, 1995; Melis et al., 2006; Succu et al., 
2007) and pair bonding behaviors (Aragona et al., 2006; Curtis and Wang, 2005; Fisher, 
Aron, and Brown, 2005; Gingrich, Liu, Cascio, Wang, and Insel, 2000; Smeltzer, Curtis, 
Aragona, and Wang, 2006). Two particularly promising genes that might be behaviorally 
associated with reproductive behavior are those of the dopamine receptors D4 and D2 
(DRD4 and DRD2 respectively). Some empirical evidence supports this, albeit 
preliminarily. Polymorphisms of the DRD4 gene have been associated with sexual desire, 
arousal and function (Zion et al., 2006).  Long alleles of the DRD4 48 bp VNTR 
polymorphism have been associated with increased sexual novelty (Hamer, 2002). DRD4 
48 bp VNTR 3R+ genotypes have been found related to age at first sexual intercourse in 
one study (Guo and Tong, 2006) although DRD4 48 bp VNTR was unrelated to age at first 
sex in another study (Miller et al., 1999). In the DRD2 gene, the intron5/exon6 2-haplotype 
has been associated with earlier age at first sexual intercourse among U.S. couples (Miller 
et al., 1999; however MacMurray, Madrid, Bottini, Muhleman, and Comings, 2002) and 
decreased number of children among Hispanic women (Legro et al., 1994). In a university 
population, the DRD2 TaqI A A1 allele has been associated with having more children in 
those under 35 years old, but fewer children in those over 35 (Comings, 2000). In a group 
of adult male Mayan Indians, A1 carriers had an earlier age at the birth of their first child 
and increased total fertility (MacMurray et al., 2002). 

The preceding findings are suggestive of genetic influences on reproductive 
behavior via these dopamine receptor genes, but are clearly far from definitive. In the 
current study we explored how DRD4 48 bp VNTR and DRD2 TaqI A genetic 
polymorphisms relate to sexual and reproductive behaviors. Specifically, we examined how 
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restriction in sexual behavior as measured by the Sexual-Orientation Inventory (SOI), age 
at first sexual intercourse, desired age at first child, and desired age at first marriage 
associated with these genetic polymorphisms. Based upon evidence that minor alleles of 
these polymorphisms are associated with greater reactivity to dopaminergic rewards 
(Hutchison, McGeary, Smolen, Bryan, and Swift, 2002b; Hutchison, LaChance, Niaura, 
Bryan, and Smolen, 2002a; McGeary et al., 2006; Noble, 2003), we predicted that 
possession of the DRD4 48 bp 7 repeat (7R) allele and DRD2 TaqI A A1 allele would be 
associated with less restricted reproductive behavior, or more “r-selected” life history 
strategies. 

Interestingly, 7R alleles of DRD4 48bp VNTR are present at higher frequencies in 
populations that have migrated farther (Chen, Burton, Greenberger, and Dmitrieva, 1999). 
The genetic structure of this same “migratory” 7R allele suggests that it originated and was 
positively selected for between 40 and 50 thousand years ago (Wang et al., 2004). 
Therefore, we tested a novel hypothesis that the geographical patterns of DRD4 distribution 
may be due to differences in reproductive behaviors. Those exhibiting more migratory 
propensities may be more likely to explore novel geographic and social environments, 
putting them in contact with more potential mates of other races. As such, we predicted that 
7R alleles would be associated with more multi-racial ancestries. 

 
Materials and Methods 

Participants 
Between February and April 2005 a total of 195 subjects were recruited for 

participation from the Human Subject Research Pool at the State University of New York 
at Binghamton as part of a larger series of studies examining the associations of genetic 
polymorphisms of the dopamine system with behavior (Eisenberg et al., 2007). No 
screening measures were placed on who could participate. Because population stratification 
is a potential problem in genetic association studies (Hutchison et al., 2002b; Hutchison, 
Stallings, McGeary, and Bryan, 2004), race was closely examined by asking participants to 
identify the ancestry of all four of their grandparents as has been recommended by Shields 
et al. (2005). Participants were allowed to select as few or as many ancestry groups to 
describe each grandparent from the following categories: European, African American, 
East Asian, South Asian, Middle Eastern, Native North American, Native South American, 
Pacific Islander, African and an open ended “other” category. 

 
Candidate Genes and Genotyping 

 
DRD4 48 bp VNTR 

The DRD4 48-bp VNTR polymorphism is in exon 3 of the gene coding for the 
dopamine D4 receptor. The VNTR polymorphism varies between 2 and 11 repeats of a 
similar 48 bp coding region sequence, with a tri-modal distribution of 2, 4 and 7 repeat 
alleles (2R, 4R and 7R) in most, but not all, populations (Ding et al., 2002). Although the 
functional significance of the DRD4 VNTR polymorphism has not been definitively 
characterized, long alleles (typically 7R as opposed to 4R) have been generally found to be 
functionally less reactive in in-vitro expression experiments (Asghari et al., 1995; Czermak, 
Lehofer, Liebmann, and Traynor, 2006; Schoots and Van Tol, 2003; Van Craenenbroeck et 
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al., 2005; Van Tol et al., 1992), with some heterogeneity (Asghari et al., 1994; Cho, Beorn, 
Van Tol, Caron, and Kim, 2006; Jovanovic, Guan and Van Tol, 1999; Oak, Lavine and 
Van Tol, 2001; Watts et al., 1999).  Additionally, in vivo human pharmacological studies 
are also generally consistent with the notion that 7R alleles are associated with less 
responsive D4 receptors than 4R alleles ( Brody et al., 2006; Hamarman, Fosella, Ulger, 
Brimacombe, and Dermody, 2004; Hutchison et al., 2003; Hutchison et al., 2006; 
McGough et al., 2006).  

DNA was collected with QuickExtract buccal swabs and extracted with BuccalAmp 
solution as directed by the manufacturer (Epicenter). Subjects were instructed to rinse their 
mouths out with water before swabbing. The DRD4 48bp VNTR locus was genotyped using 
an adaptation of a previous protocol (Boór et al., 2002).  

The DRD4 48bp VNTR PCR reaction contained 1x Q-Solution (Qiagen), 1x Buffer 
(Qiagen), 1 µM Primer 1 (5’ GCGACTACGTGGTCTACTCG 3’), 1 µM Primer 2 (5’ 
AGGACCCTCATGGCCTTG 3’), 200 µM dATP, dTTP, dCTP and 100 µM dITP and 
dGTP, 0.3 units HotStar Taq (Qiagen), 1 µl of DNA template, in a total volume of 10 µl. 
Thermocycler conditions were: 15 min at 95° to activate the enzyme and denature the 
DNA, 40 cycles of 1 minute denaturation at 94°, 1 minute annealing at 55°, 1.5 minute 
extension at 72°, followed by one cycle of 10 minute extension at 72°. A 4R PCR product 
is 475 bp. Samples were visualized under UV on 1.4 – 2.0% ethidium bromide agarose gels 
with a 100 bp ladder. Some gels were placed in a 1x boric acid bath for 10-15 minutes to 
increase contrast and allow better visualization of 9R alleles. With different concentrations 
of DNA template we observed allelic dropout of both short and long alleles. Because of 
these problems of allelic dropout and a previous report of only 84% correspondence 
between DRD4/48bp genotype techniques (Hamarman et al., 2004), all samples were run at 
1/1, 1/40 and 1/80 dilutions for confirmation. If a minor allele was consistently observed at 
any dilution, the subject was considered to have that allele. DRD4 48bp genotyping had a 
99% success rate with one subject who yielded no PCR product and another whose results 
varied between runs. 

 
DRD2 TaqI A 

The DRD2 TaqI A site is a single-nucleotide polymorphism with a major A2, and 
minor A1 allele. The A1+ genotype (heterozygous or homozygous A1) has been most 
strongly associated with substance abuse, particularly alcoholism, albeit with some 
ambiguity (Noble, 2003). The A1+ genotype has also been related to pathological 
gambling, novelty seeking, and, the related psychological construct, sensation seeking 
(Noble, 2003; Ratsma, van der Stelt, Schoffelmeer, Westerveld, and Gunning, 2001). 
Although it is unclear why, the A1 allele is associated with decreases in dopamine D2 
binding and glucose metabolic rates in many brain regions (Blum et al., 2000; Noble, 2003; 
Thompson et al., 1997). The DRD2 TaqI A locus is 9.4 kb downstream from the coding 
region for the DRD2 gene, is not in any known regulatory region, and has no known 
mechanism to influence DRD2 expression. The DRD2 2-haplotype of the intron5/exon6 is 
in linkage disequilibrium with the DRD2 TaqI A locus, but the nature of the linkage 
remains to be elucidated (MacMurray et al., 2002). The DRD2 exon 6 polymorphism is 
silent (ALFRED-The Allele Frequency Database) and the intron 5 polymorphism is not 
known to be functional, so their linkages to TaqI A does not explain the functional 
associations of TaqI A. The TaqI A polymorphism is also in a nearby kinase gene, the 
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Ankyrin Repeat and Kinase Domain Containing 1 (ANKK1) gene, where it causes a 
Glutamate Lysine substitution (Dubertret et al., 2004; Neville, et al., 2004). The results of 
the amino acid substitution are not known, but could impact interactions of ANKK1 
proteins with other proteins including the dopamine D2 receptor (Neville, Johnstone and 
Walton, 2004). No other polymorphism has been revealed to be in linkage disequilibrium 
with TaqI A that could clearly account for its functional associations (Dubertret et al., 
2004; Neville, et al., 2004). DRD2 TaqI A was typed with a PCR/RFLP method (based on 
GSFL Research Group, 2003). 

The DRD2 TaqI A PCR reaction contained 0.5 µM forward (5' CAC GGC TGG 
CCA AGT TGT CTA 3’), 0.5 µM reverse primers (5’ 
CACCTTCCTGAGTGTCATCAA3’), 200 µM dNTP, 2.5 mM MgCl2, 0.25 units HotStar 
Taq (Qiagen), 1X Buffer (Qiagen), 2.5 µl DNA template in a total volume of 10 µl. Cycle 
conditions were: 15 min denaturation at 95°C, 40 cycles of 30 s denaturation at 94°, 30 s 
annealing at 55°, 1 min extension at 72° and one final extension of 7 minutes at 72°. The 
PCR product was digested with TaqI enzyme (New England Biolabs) overnight at 65° and 
visualized under UV on a 1.4% ethidium bromide agarose gel with 100 bp ladder. The 300 
bp PCR product is not cut by the restriction enzyme in A1 alleles, and A2 alleles yield a 
125 and 175 bp fragment. DRD2 TaqI A was typed successfully in 100% of the subjects. 

 
Phenotypic Measures: 

 
Sociosexual Orientation Inventory (SOI) 

 The SOI measures restriction of sexual and pair-bonding behaviors. It has been 
validated on student populations around the world (Schmitt, 2005; Simpson and Gangestad, 
1991). Those who score lower on the SOI generally engage in sex later in relationships that 
are “characterized by reliably greater expressed love, dependency, commitment and 
investment (Simpson and Gangestad, 1991, p. 876).” The SOI generally corresponds with k 
versus r-selected reproductive strategies (high versus low parental care/investment 
strategies; Gangestad and Simpson, 1990; Simpson and Gangestad, 1992; Simpson, 
Gangestad, Christensen, and Leck, 1999). The SOI was slightly altered to differentiate 
hetero and homosexual activity and sexual identity, but because the sample contained only 
one subject self-identified as bisexual and four self-identified as homosexual, they were not 
distinguished from those self-identified as heterosexual in the further analyses. 

 
Additional survey items 

Subjects were asked their desired age to marry, have their first child, or whether 
they did not want to marry or have children. They were also asked their age at first sexual 
intercourse, or if they were virgins.  

 
Procedures 

All procedures were approved by the Human Subjects Research Review Committee 
at the State University of New York at Binghamton and all subjects gave informed consent. 
Participants attended group assessment sessions (with a maximum number of 10 subjects 
per group) and were initially provided with oral instructions followed by the DNA sample 
collection. All data were collected via personal computers (Macintosh G4s) in a computer 
lab using the database FileMaker (FileMaker, Inc.). Subjects were seated at least every 
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other seat to assure anonymity. In addition to the oral instructions, all measures were 
accompanied by on-screen written instructions and experimenters (DTAE and/or MM) 
were available throughout the sessions for questions. The sessions lasted approximately one 
hour. 

 
Data Analysis 

All data was examined for outlying data points, distribution normality and missing 
values. To assure that missing responses were not systematically biased by genotype, 
missing versus non-missing data for each self-report scale was analyzed across both DRD4 
VNTR and DRD2 TaqI A genotypes via 2  2 contingency tables using chi-square or 
Fisher’s exact statistics. Hardy-Weinberg (HW) equilibria were tested with the HWE 
program (Brzustowski, 2007). The DRD4 HW equilibrium was tested with the Markov 
Chain algorithm and the DRD2 HW equilibrium was tested with Fisher’s exact test. 

Based on previous association studies, those with at least one seven repeat allele at 
the DRD4 48bp VNTR locus were designated 7R+, while those without seven repeat alleles 
were designated 7R-. In terms of DRD2 TaqI A, individuals with at least one A1 allele were 
designated as A1+ and those who were homozygous for the A2 allele were designated A1-. 
The principal analyses used 2 (7R+/7R+)  2 (A1+/A1-)  2 (Male/Female) factorial 
analyses of variance (ANOVAs). Chi-square or Fisher’s exact tests were used to analyze 
categorical data. Significant main effects were evaluated to see if the minor alleles have the 
assumed dominant effect or an alternative additive, recessive or overdominant effect. 
Population stratification was addressed by re-examining the significant results within the 
largest single racial group (i.e., a group with minimized racial admixture); in this case, it 
was the European ancestry group. Rather than emphasizing statistical significance based on 
F-ratio or �2 value, due to the inherently diminished power by reduced sample size, 
comparisons were made between effect sizes in the findings from the overall sample and 
the subsample. Since this study employs multiple phenotypic scales, the potential exists for 
type I errors. For several reasons we have not employed a correction of our significance 
criteria for multiple testing (Bland, 2000; Perneger, 1998). The diversity of scales 
employed in this study should not decrease the sensitivity of analysis. In addition, because 
of the exploratory nature of our analysis (Perneger, 1998), and because some phenotypic 
variables are correlated (see Table 5), corrections for multiple tests are too conservative 
(Bland, 2000). Nonetheless, it is important for the reader to bear this caution in mind as 
they interpret the results. A two-sided significance criterion of p ≤ .05 was used throughout. 

 
Results 
 
Sample Background 

The sample is described demographically in Table 1. It had a roughly equal sex 
ratio, a narrow age range (as expected in a college population) and was predominately of 
European descent. Because of the small spread in age, age was generally not included as a 
covariate. Genotype and allele frequencies are given for DRD4 48bp VNTR and DRD2 TaqI 
A in Tables 2 and 3 respectively. Genotype frequencies were comparable to other samples 
of mixed populations with predominately European descent. Both loci were in Hardy-
Weinberg Equilibrium (DRD4 VNTR: Markov Chain algorithm, p = 0.38; DRD2: Fisher’s 
exact, p = 1.0). 
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Table 1. Sample characteristics, (n = 195). Subjects were undergraduate students recruited through a 
psychology department’s human subject pool. 
Variable Descriptive Statistics 

Sex  42% male; 58% female  

Age Median = 19.33 (IQR = 18.83-20.35) 

Ethnicity 44.1% European, 14.4% East Asian, 11.8% South/Central 
American, 5.1% South Asian, 3.1% Native North American, 
1.5% African American, 1% Pacific Islander, 1% African, 13.8% 
multiracial, 5.6% unknown.  (The total does not sum to exactly 
100% because of rounding) 

 
Table 2. DRD4 48 bp VNTR allele frequencies, genotypes and genotype classifications. 
Allele frequencies are unremarkable for a mixed U.S. population. Genotypes were in Hardy-Weinberg 
Equilibrium (Markov Chain algorithm, p = 0.38) 
*The 7R+ genotype classification includes those with at least one seven repeat allele and 7R- reflects those 
without any seven repeat alleles. DRD4 status could not be ascertained from two participants. 
Allele/Genotype n % 
Allele   
2 39 10.1 
3 15 3.9 
4 265 68.7 
5 1 0.3 
7 64 16.6 
9 2 0.5 
Total 386 100 
Genotype   
2/2 3 1.6 
2/3 1 0.5 
2/4 30 15.5 
2/7 2 1.0 
3/3 1 0.5 
3/4 10 5.2 
3/7 2 1.0 
4/4 85 44.0 
4/5 1 0.5 
4/7 52 26.9 
4/9 2 1.0 
7/7 4 2.1 
Total 193 100.0 
Genotype Classification*   
7R- 133 68.9 
7R+ 60 31.1 
Total 193 100 
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Table 3. DRD2 TaqI A allele frequencies, genotypes and genotype classifications.  
Allele frequencies are unremarkable for a mixed U.S. population. Genotypes were in Hardy-Weinberg 
Equilibrium (Fisher’s exact, p = 1.0). 
*The A1+ genotype includes both A1/A1 and A1/A2 while A1- denotes the A2/A2 genotype. 
Allele/Genotype n % 
Allele   
A2 274 70.3 
A1 116 29.7 
Total 390 100 
Genotype   
A2/A2 96 49.2 
A2/A1 82 42.1 
A1/A1 17 8.7 
Total 195 100 
Genotype Classification*   
A1+ 99 50.8 
A1- 96 49.2 
Total 195 100 

 
Dependent variables are described in Table 4 and each continuous variable is given 

with its inter-correlations with the other variables in Table 5. Unsurprisingly, the desired 
age for marriage and children were highly correlated and less restrictive socio-sexual 
profiles were associated with earlier age at first sexual intercourse. 
 
Table 4. Descriptive statistics for the dependent variables. First Sex = age subjects reported having their first 
sexual intercourse; Age for Children = desired age to begin having children at; Age for Marriage = desired 
age to get married at; SOI = Sociosexual Orientation Inventory; Are Virgins = whether subjects report being 
virgins or not; Want Children = whether subjects report a desire to have children or not; Want to Marry = 
whether subjects report a desire to marry or not; Are Multi-racial = if subjects report grandparents of all the 
same race or not. 
Continuous Dependent Variables    
Variable N Mean SD Min Max 
First Sex 128 16.90 1.55 13 22 
Age for Children 172 28.88 2.52 23 36 
Age for Marriage 175 26.49 2.27 22 36 
SOI 162 56.25 30.33 10 161 
Categorical Dependent Variables    
Variable N % Yes    
Are Virgins 185 30    
Want Children 182 95    
Want to Marry 182 96    
Are Multi-racial 185 15    

 

Table 5. Pearson’s product-moment correlations between continuous dependent variables. SOI = Sociosexual 
Orientation Inventory 
 First Sex Kids Age Marriage Age 
Kids Age 0.09   
Marriage Age -0.02 0.81**  
SOI -0.21* 0.09 0.03 
** p<.01         *p<.05     
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Missing Values Analysis 
Since more missing data by one genotype than another might alter subsequent 

analyses, all scales were examined for biased missing data. Missing values were due to 
subjects skipping one or more items on self-report scales or incorrectly entering subject ID 
numbers. The only scale that showed biased missing responses was the SOI, in which 7R- 
subjects were less likely to answer than 7R+ (80.5% and 91.7% respectively;  ηp

2 = 3.858, 
df = 1, p = .050, N = 193) and A1- individuals were less likely to complete the scale than 
A1+ individuals (78.1% and 88.8% completed respectively; ηp

2 = 4.117, df = 1, p = .042, N 
= 195). Post-hoc, binary logistic regression revealed no significant DRD4 by DRD2 
interaction effect on SOI missing data (results not shown). Since it is striking that missing 
data was biased by both DRD4 and DRD2 on the SOI, we further examined missing values 
for each item of the SOI individually. The only individual item to show bias was item 4, 
which asks subjects “How often do you fantasize about having sex with someone other than 
your current dating partner?” A1- subjects were more likely to omit item 4 than A1+ 
subjects (ηp

2 = 5.950, df = 1, p = .015, N = 195). 
 

Children and Marriage 
Individuals with 7R+ genotypes reported desire for children slightly earlier than 7R- 

subjects (28.26 years of age versus 29.18 respectively; F [1,162] = 5.184, p = .024, ηp
2 = 

.031).  The effect size was over twice as large with nearly the same level of significance in 
the European-only analysis (F [1, 61] = 5.198, p = .026, ηp

2 = .079). As shown in Table 6, 
the DRD4 association with desired age at first child tentatively reflects an additive effect of 
7R alleles. Marriage age, which is highly correlated with age at first child (Table 5), was 
only marginally associated with the 7R+ genotypes (F [1,165] = 3.054, p = .082) and in the 
same direction as the association with desired age at first child. 
 
Table 6. Desired age at first child by DRD4 genotype.  7R+ genotypes reported desire for children slightly 
earlier than 7R- subjects (28.26 years of age versus 29.18 respectively; F [1,162] = 5.184, p = .024, ηp

2 = 
.031). The effect appears to be additive in that increasing numbers of 7R alleles are associated with 
decreasing desired age of first child. 
Genotype N Mean Age SD 

not7/not7 117 29.18 2.63 

7/not7 50 28.28 2.20 

7/7 3 28.00 1.73 

Total 170 28.89 2.53 

 

Significantly more A1+ participants reported that they did not want to have children 
than A1- (Fisher’s exact, p = .002, CC = .230). Indeed, all ten subjects who reported not 
wanting to have children were heterozygous at the DRD2 locus. Similarly, all seven 
subjects who reported not wanting to get married were DRD2 heterozygous (A1+ versus 
A1- Fisher’s exact, p = .014, CC = .190). In European-only analyses, A1+ subjects still had 
less desire to have children and marry with larger Contingency Coefficients (CCs; children, 
Fisher’s exact, p = .016, CC = .282; marriage, Fisher’s exact, p = .089, CC = .219).  Since 
all who did not want children were heterozygous and all homozygous subjects wanted 
children, an overdominance inheritance pattern is suggested. However, with only 17 A1 
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homozygotes (Table 2), the certainty of overdominance is low. There were no other 
significant effects of gender, genotype or interactions thereof on desire for children or 
marriage (ps > .086). 

 
 Sexual Behaviors  

As expected, males reported less sexual restriction on the SOI than females (males 
= 67.19, females = 48.91; F [1,153] = 13.968, p < .001, ηp

2 = .084). Contrary to predictions, 
there were no genotype-SOI associations (not shown). However, the results on the SOI 
should be viewed in light of the significant bias in missing data on this scale with respect to 
both genetic loci. There were fewer virgins than expected in 7R+ subjects (16.1%) relative 
to 7R- subjects (36.2%;  ηp

2 = 7.505, df = 1, p = .006, CC = .198). Since age (despite its 
narrow range) could have an obvious relationship to virginity status, it was entered as a 
covariate in a binary logistic regression model, where the association between DRD4 and 
virginity remained (p = .008). The CC of DRD4 on virginity status was slightly smaller 
among Europeans than the pooled population (7R+ v. 7R-: Fisher’s exact, p = .352, CC = 
.143).  Similar to desired age at first child, when analyzing virgin status the 7R allele 
tentatively has an additive effect (Table 7). There were no other significant effects of 
gender, genotype or interactions thereof on SOI, age at first sex, or virginity status (ps > 
.159). 

 
Table 7. Virginity status by DRD4 genotype There were fewer virgins than expected in 7R+ subjects (16.1%) 
relative to 7R- subjects (36.2%;  ηp

2 = 7.505, df = 1, p = .006, CC = .198) and the effect appears to be 
additive such that increasing numbers of 7R alleles is associated with a decreased likelihood of being a virgin. 

 

 

Reproduction and Migration 
Consistent with the hypothesis that DRD4 48bp would be related to multi-racial 

ancestry, we found that 7R alleles were over-represented in those subjects with biracial and 
tri-racial ancestries (Table 8; Fisher’s exact, p = .002). Other methods described in the 
appendix were used to eliminate some possible biases and were also supportive of the 
multi-racial coupling hypothesis. 

 
Table 8. DRD4 and multi-racial ancestry. 7R alleles were over-represented in those subjects with biracial and 
tri-racial ancestries (Fisher’s exact, p = .002). Number of races is judged by self-identified ancestry of each of 
four grandparents. Percentages of row totals are given in parenthesizes.  
 Number of Races (%)  
Genotype 1 2 3 Total 
not7/not7 112 (88.9) 14 (11.1) 0 (0.0) 126 
7/not7 42 (79.2) 6 (11.3) 5 (9.53) 53 
7/7 2 (50.0) 2 (50.0) 0 (0.0) 4 
Total 156 (85.2) 22 (12.0) 5 (2.7) 183 

Genotype N % Virgin 

not7/not7 117 36.2 

7/not7 50 17.3 

7/7 3 0.0 

Total 170 30.0 
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Discussion 

 
The current study sought to examine the relevance of polymorphisms of the 

dopamine D2 and D4 receptor genes to variation in human reproductive and sexual 
behavior. The broad hypothesis was that minor alleles of these genes would be associated 
with less restricted reproductive behavior on an array of indices. The results generally 
supported that notion, although the findings were mixed with regard to the two genes and 
specific indices examined. DRD4 VNTR 7R+ status was associated with interest in 
reproducing at a slightly earlier age, earlier initiation of sexual activity, and multi-racial 
ancestry, whereas DRD2 TaqI A A1+ status was associated with reporting no interest in 
marriage or having children. Notably, these findings were robust when only individuals 
with European ancestry were included in the analysis, suggesting little influence of 
population stratification. Contrary to predictions, no associations were evident between 
genotypes and performance on the SOI. Of interest, the differential associations observed 
between the two genes and behaviors, and the absence of epistatic interactions, suggests 
that these polymorphisms have different influences. However, these findings should all be 
viewed in light of the exploratory nature of the study and our decision not to correct for 
multiple statistical tests (see methods). 

In terms of their consilience with the small existing literature on these 
polymorphisms and reproductive behavior, the DRD4 VNTR findings both converge with 
and diverge from previously reported findings. The results are consistent with past 
associations of the DRD4 gene with sexual desire, arousal and function (Zion et al., 2006). 
However, Miller et al. found no relation between DRD4 48 bp and age at first sex in a 
group of married couples (Miller et al., 1999), while Gou and Tong found that 3+ 
genotypes (but not 7R+) were associated with earlier first sex among a general United 
States population sample (Guo and Tong, 2006). The effect of DRD4 may be different in 
the subpopulation of college students than the more general populations represented among 
the other two studies (Guo and Tong, 2006; Miller et al., 1999).  

With regard to the results relating DRD4 48bp VNTR status to multi-racial ancestry, 
Chen et al. previously found that populations that have migrated further over the past 1,000 
to 30,000 years have a higher frequency of DRD4 7R alleles (1999). Consistent with this, 
we found that minor alleles of the DRD4 48bp VNTR polymorphism are associated with 
more multi-racial ancestry. However, the mechanisms to explain the migratory patterns 
observed by Chen et al. remain unclear. The reason 7R DRD4 48bp VNTR alleles are over-
represented in more migratory populations might not be because 7R+ individuals migrate 
more than the general population, but instead that they are more successful after migration. 
Speculatively, this success could come from appreciation for novel aspects of the 
environment, including mates. 

In terms of the DRD2 TaqI A findings, the results are inconsistent with two past 
studies that found A1+ subjects have more children at an earlier age (Comings, 2000; 
MacMurray et al., 2002). In one of those studies A1+ subjects less than 35 years of age had 
more children, but those over 35 had fewer (Comings, 2000), suggesting a complex nature 
to the association of DRD2 with reproductive desires and outcomes. These contradictory 
results might be resolved by considering the distinction between desire for children and 
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actually having children. It is possible that A1+ individuals who express less interest in 
having children nonetheless practice behaviors that make them more likely to have children 
early. However, at this point, such an interpretation must be speculative. Thus, these data 
may be consistent with the notion of the A1 allele being associated with a low offspring 
investment reproductive strategy, but the definitive relationship is not clear at this point. 

As noted above, contrary to our original prediction, the SOI scores did not differ by 
genotypes. This could be because aspects of sexual behavior assessed by the SOI are not 
relevant to aspects of the two polymorphisms examined, but could also be due to biases 
introduced by missing data for the SOI. The SOI was the only scale to show biased missing 
data at both loci. Of note, Item 4, which assumes a current dating partner and was biased by 
genotype, has also been noted as problematic in past studies which found it to be the most 
frequently omitted on the SOI (Clark, 2006). Possible explanations for these omission 
biases include that possession of these minor alleles could be associated with being less 
reluctant about reporting specific sexual experiences on surveys or being differentially 
likely to have a dating partner; those who were not dating might have chosen to omit Item 
4. The advertisement for this experiment did not mention that participants would be asked 
questions of a sexual nature, but other studies which are more forthright about this (e.g. 
Zion et al., 2006) might bias their subject pools. 

In addition to missing data with regard to the SOI, there are two additional 
limitations to the current study that are worthy of discussion. First, the study was relatively 
small and used a sample that was probably not representative of the general population. 
Second, the sample was within a relatively circumscribed age range, with virtually all 
participants being young adults. As a result, it is possible that some data suffered from 
restricted range, such as virginity status. Given these aspects of the design, these findings 
should be most prudently interpreted as being specific to this sample and require further 
validation in larger, more representative samples. 

In spite of these qualifications, these findings nonetheless converge with recent 
evolutionary theoretical approaches to the adaptive nature of DRD4 and DRD2 genetic 
polymorphisms (Campbell and Eisenberg, 2007; Harpending and Cochran, 2002). Minor 
alleles of DRD4 and DRD2 are associated with traits that ostensibly decrease fitness, 
including substance abuse, schizophrenia, movement disorders, migraines (Noble, 2003; 
Vandenbergh et al., 2000), disorganized infant attachment (Gervai et al., 2005; Lakatos et 
al., 2002; Van Ijzendoorn and Bakermans-Kranenburg, 2006), and ADHD (Li, Sham, 
Owen, and He, 2006). However, these minor alleles have been maintained in many 
populations and, in the case of DRD4 48bp 7R, there is evidence of positive selection 
(Wang et al., 2004).   

It is possible that these risk-conferring alleles are more adaptive in dynamic 
environments. In a dynamic social environment or changing ecological environment, ideas 
acquired from family members may be less innovative and adaptive than those ideas 
acquired from a broader survey of society (Richerson and Boyd, 2005). Perhaps consistent 
with wider surveying for ideas, DRD4 48bp 7R+ individuals have increased propensities 
for novelty-seeking (Savitz and Ramesar, 2004; Schinka, Letsch and Crawford, 2002; but 
Kluger, Siegfried and Ebstein, 2002), cognitive flexibility (Dreisbach et al.), higher activity 
levels (Langley et al., 2004), better sexual functioning (Zion et al., 2006) and may have 
faster response times (Langley et al., 2004; Swanson et al., 2000). Especially notable, while 
externalizing behaviors are normally negatively related to IQ, among 7R+ subjects (but not 
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7R-) there is no relationship between externalizing behaviors and IQ (DeYoung et al. 
2006). 7R+ individuals may be characterized by putting less value on familial influences 
and being more readily able to take advantage of dynamic social environments. Our 
evidence of younger desired age at first reproduction, earlier first sexual intercourse and 
more multi-racial ancestries among 7R+ individuals is generally consistent with a higher 
mating effort and lower offspring investment strategy suiting a dynamic social environment 
with less dependable family influences. Inter-racial marriage could provide new networks 
of kin support, and avenues for learning to take advantage of new environments. Similarly, 
although with less evidence, possession of a DRD2 A1 allele may adapt individuals better 
to such a low offspring investment, high mating effort strategy. 

In summary, the current study suggests that polymorphisms in the DRD4 48bp 
VNTR and DRD2 TaqI A genes influence variation in human reproductive and sexual 
behavior. The findings generally support the notion that minor alleles of these genes are 
associated with lower offspring investment reproductive strategies, but had mixed overlap 
with the small number of previous studies in this area. In addition, these results converge 
with recent evolutionary perspectives on these minor alleles that emphasize both their 
fitness-enhancing and fitness-decreasing influences.  
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Appendix 

 
Further Analysis of Multi-racial Ancestry Associations 

Because a two by three contingency table tests heterogeneity and not particular 
directionality, two further analytical techniques were used. First bi- and tri-racial subjects 
were collapsed into one category and the same trend was significant (ηp

2= 4.269, df = 1, p = 
.039). Second, the number of 7R alleles was linearly regressed against the number of 
different types of ancestors each individual had and the same relationship was found (ηp

2= 
1.111, F [1,181] = 9.360, p = .003). 

Because Native South American, Latino, Puerto Rican, Caribbean, and Hispanic 
groups are expected to (and in our sample have) high frequencies of 7R alleles and 
intermarriages between these potentially culturally and genetically related groups may bias 
the results towards our hypothesis, a further analysis in which having ancestors from these 
different groups did not qualify subjects as multi-racial was conducted. Similarly, results 
for these analyses with a binary or tertiary categorization of multi-racial status and L+ v. L- 
(L denotes a long allele of at least seven repeats) or 7R+ v. 7R- categorization of DRD4 
genotypes yielded all significant results (p = .014 - .046) 

In order to get a more fine grained analysis of the tendency for those with multi-
racial ancestries to have minor 48 bp alleles we analyzed each multi-racial subject by 
multiplying the fraction of each of their ancestries by the expected allele frequency for that 
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ancestry (based on those who are 100% of that ancestry). For example, if a subject was 
25% South Asian and 75% East Asian and South Asians have a 10% likelihood of being 
L+ and East Asians a 0% likelihood, the subject had a 2.5% likelihood of being L+. The 
differences between observed and expected likelihoods were calculated and averaged 
across all multiracial subjects. According to this method, those with multiracial ancestries 
had a 12% higher chance of being an L+ genotype than expected. With different genotype 
parsing methods 7R+ versus 7R-, 4/4 versus 7R+ and 4/4 versus 4R- the signal was even 
stronger with 14%, 23% and 33% enrichment of the risk-conferring genotypes respectively. 
These further analyses underscore the relevance of non-4R DRD4 genotypes to multi-racial 
ancestry. 
 




