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Abstract – Various problems in physics and engineering lead to the problem of run-

length probability distribution function (pdf) in a finite time series. In this study to find 

the pdf of run-lengths in such a series, first infinite sequence properties are reviewed 

and then finite series run length pdf is derived on the basis of simple set theory. This 

paper presents the derivation of exact run length pdf in finite length dependent series. In 

the derivation, two different definitions of runs are considered as the integration method 

for infinite series and combinatorial analysis for finite time series. The analytical 

derivations are solved numerically and the results are presented in forms of cumulative 

pdf, expectation, variance and higher order moment changes with the sample lengths. 

On the other hand, homogenous run properties based on Bernoulli trials are used in 

many physical and engineering applications for many decades. Heterogeneous regional 

Bernoulli trial probability distribution model is not available so far in applications and 

numerical calculations. Herein, a plausible, rational and logical mathematical derivation 

of the heterogeneous case is derived, which reduces to the classical homogeneous 

Bernoulli trial case. This paper provides regional probabilistic success and failure period 

areal coverage modeling, which is useful for temporal and spatial pattern recognition of 

spatial risk predictions and parameter assessments. The basis of the methodology is 

mutually exclusive and independent sub-areal (site) success and failure occurrences’ 

heterogeneous probabilities. 

 

Key Words: Bernoulli trials, combinatorial, finite sample, heterogeneity,random field, 

runs. 

 

1. INTRODUCTION 

 

 From the statistical point of view, a run is defined by Mood (1940) as a 

succession of similar kind of elements proceeded and succeeded by different kinds. The 

number of elements in such a run is referred to as its length. The theory of runs has been 

successfully applied to recurrent events by Feller (1957).  

 Supposing that x1, x2, x3,......, xn in a sequence of independent random variables 

and x0 is a preselected value. It is then possible to truncate the given sequence at x0 

level. Such a truncation procedure leads to a new sequence of two basic elements, 

namely, a success when xi - x0 0 and a failure if x1 - x0  0. Moreover, these two basic 

elements are, in fact, the Bernoulli trials. In the classical statistics literature, a success 

run of lengths s is defined as an uninterrupted sequence of either s or at least s 

successes. Therefore, a run length has an integer value. Various statistical properties of 

runs or their functions can be employed in many engineering problems. For instance, in 

water resources engineering x0 might represent the demand necessary for water supply 



 

 

 

222                                                             Z. Şen 
 

 

to an urban area or agricultural need for water. In addition, the length of a success run 

corresponds to wet spells whereas a failure  run-length is representative of dry spells. 

During the subsequent sections in this paper Mood’s basic definition of runs will be 

adopted. 

 The main purpose of this paper is to present a rigorous analytical methodology to 

model theoretically the spatial or temporal heterogeneous probabilities in a given region or 

during certain time duration. The formulation in this study reduces exactly to the well-

known Binomial pdf, and it empowers the meteorologists and hydrologists alike to model 

areal or temporal drought, flood, and wet or dry spell occurrences even in the most 

complicated set of heterogeneous probability of occurrences. 

 

2. RUNS OF INFINITE SEQUENCES 

 

 So far in the application of runs theory two different approaches have been 

followed in studies of run lengths, namely, the integration and the combinatorial 

approaches. 

It appears that the integration approach refers to runs of infinite population as employed 

by [2]. If the sequence of random variables is stationary and ergodic then any run length 

is synonymous with the first run. The relation between the probability mass, Ps = j of 

a given sequence run-length, s = j, and the probability distribution function Ps  j is 

given as [2] 

     1jsPjsPjsP                                                                               (1) 

However, the following relationship for the r-th order moment about the origin has been 

presented. 
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In general, for stationary and ergodic stochastic processes it is possible to write 

     






1k

j,kPjPjsP                                                                                          (3) 

where Pj is the probability of j successive successes and, Pk,j is the joint 

probability of the simultaneous occurrence of j successes to be followed by k successive 

failures. In general, the computation of Pk,j can be achieved through the multiple 

integration of the joint probability distribution function (PDF), f(x1, x2,......., xk+j), of 

random variables x1, x2, x3,...., xk+j which can be written as 

      
 

 


0 0

0 0

x x

x x

jk21jk21 dx......dxdxx,....x,xf........j,kP
     (4) 

In the case of dependent random variables, equation (4) has been evaluated in terms of 

tetrachoric series expansion [3]. However, for independent and identically distributed 

random variables, equation (4) simplifies down to k+j factors which render the multiple 

integration into its simplest form as  
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        
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or in terms of success and failure probabilities which are expressed as 

 




0x

idxixfp  

and 

 



0x

idxixfp1q  

respectively. With these two last expressions, equation (5) takes the form as 

  jpkqj,kP                                                                                                                    (6) 

On the other hand, for k = 0 

  jpjP                  (7) 

Furthermore, the substitutions of equations (6) and (7) into equation (3) leads to 

  1jpjsP                (8) 

or from equation (1) 

  1jqpjsP                           (9) 

By making use of this probability mass, the expected and then the variance values of 

success runs in an infinite sequence can be obtained as [2] 

 
q

1
sE               (10) 

and 

 
2q

p
sV               (11) 

respectively. It is also possible to extent the above mentioned procedure to cover the 

dependent random variables. Various properties of run-lengths for the Markov process 

have been already derived [4]. 

 

3. RUNS OF FINITE SEQUENCES 

 

 In the case of finite sequences the runs have been examined by means of the 

combinatorial analysis [5]. It is possible through this analysis to find the total number of 

either success or failure runs regardless of their lengths and the longest run-length of 

any given type. 

However, the combinatoric analysis fails to yield any statistical moments such as the 

expected value of say, success run-length in a finite sequence. The following 

methodology which is based on the integration approach has been developed in order to 

evaluate the probability mass of a run-length in finite sequences.  
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Let Si = s = i be an event denoting the occurrence of  s successive runs of length i in 

an infinite sequence of Bernoulli trials. It is then possible to verify from equation (9) 

that the union of all these events is 








1i

SiE              (12) 

where S is a universal set with probability equal to one. Furthermore, all these events 

are mutually exclusive , that is 

).......,,2,1j,i(

ji

jEiE 





                   (13) 

in which  denotes the empty set with zero probability. However, for a finite sequence 

of length n,  no run-length greater than n can occur. Hence, the sample space is 

restricted by n. Therefore, 


n

1i

iE



           (14) 

where  represents a subsample space contained in the universal set S. Since the 

elementary events Ei are mutually exclusive, the following  statement can be written for 

the probability of the subsample, P as, 

    1
n

1i
iEPP 



            (15) 

In order to render the subsample space to a proper one over which the mass of 

probabilities of elementary events is equal to one, it is necessary to reappraise the 

probabilities of  Ni’s as PE which transforms equation (15) into an equality form by 

defining a new set denoted as ‘ : 

   



n

1i

1/iEP'P         (16) 

where 

 
 
 




P

iEP
/iEP


        (17) 

Since, Ei is an element of the set, , it is, therefore, known from set theory that 

PE.= PEi the substitution of which into equation (17) gives. 

 
 
 


P

iEP
/iEP          (18) 

which is fundamental in evaluation probability mass of run-length in finite sequences. 

In the case of independently and identically distributed random variables equation (15) 

can be evaluated by considering equation (9) which yields 

  nq1P            (19) 

Furthermore, equation (18) can be written more explicitly as 
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 
 

nq1

isP
n/isP




  

or 

 
nq1

1nqp
n/isP




             (20) 

where n has been employed instead of , since it is the only parameter that 

characterizes .  

It is convenient to interpret equation (20) as the truncated form of the probability mass 

function given by equation (9) at a truncation level equal to n. On the other hand, the 

expected value of success run-length in a finite sequence with n elements can be found  

by subtracting equation (20) from equation (2) with r = 1 which after some algebra 

yields 

 
nq1

nnp

q

1
n/sE


               (21) 

where the second term on the right hand side becomes zero when n goes to infinity, 

hence equation (21) reduces to equation (10). In a similar manner, the variance of s can 

be evaluated by finding the second order original moment which becomes 

3q

nnqpnp1
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nqp2nnnqp2np12n/sE




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


     (22) 

or the variance can be estimated as 

 
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





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
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which for n  reduces to equation (11) 

The calculation of higher order moments than two is possible but requires very tedious 

algebraic work. Perhaps, it is better to find these methods numerically on a digital 

computer. For instance, the m-th order moment can be evaluated by 

 









n

1i

n/isPmin/msE  

All the above referred formula is applicable for failure runs provided that p and q in the 

formulations are interchanged. 

 

4. RUNS OF DEPENDENT VARIABLES IN A FINITE SEQUENCE 

 

 So far in the runs theory applications two different approaches are followed for 

run-lengths. These are the integration and the combinatorial approaches. This approach 

refers to runs of infinite population. If the sequence of random variables is stationary 

and ergodic then any run-length is synonymous with the first run. In general, the 

relation between the probability mass, Ps = j of a given sequence run-length, s = j, 

and the probability distribution function (pdf), Ps  j, is given as [2], 
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     1jsPjsPjsP         (24) 

This gives rise to the following relationship for the r-th order moment about the origin,  

     









 












1j

jsPr1jrj

1j

jsPrjrsE      (25) 

In general, for stationary and ergodic stochastic processes one can write, 

     






1k

j,kPjPjsP         (26) 

where Pj is the probability of j successive successes and, Pk,j is the joint 

probability of the simultaneous occurrence of j successes followed by k successive 

failures. The computation of Pk,j can be achieved through the multiple integration of 

the joint pdf, f(x1, x2,......., xk+j), of random variables x1, x2, x3,...., xk+j, which can be 

written as, 

        jkdx...2dx1dx

0x 0x

0x

jkx,...,2x,1xf

0x

jkj,kP 

 







      (27) 

In the case of dependent random variables, Eq. (27) has been evaluated in terms of 

tetrachoric series expansion [3]. Factorization for dependent and identically distributed 

random variables simplifies Eq. (27) down to (k + j) factors as follows [4],  

          










1k

2i
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2ki
0x1ix|0xixP0xkx|ox1kxP0x1ix|0xixP0x1xPj,kP    (28) 

Furthermore, each conditional probability in this expression is simplified in terms of 

success and failure probabilities as, 

 

   

   

   r10x1ix|0xixP

r1
q
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10x1ix|0xixP
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q

p
0x1ix|0xixP

r0x1ix|0xixP









       (29) 

where p and q are the success and failure probabilities which are expressed as, 

 




0x

idxixfp  

and 

 



0x

idxixfp1q  

respectively. With these two last expressions, Eq. (28) takes the form as, 
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      1jr

1k

r1
q
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1r1pj,kP 











        (30) 

On the other hand, for k = 0 

  1jprjP            (31) 

Furthermore, the substitutions of Eqs. (30) and (31) into Eq. (26) lead to, 

  1jrjsP            (32) 

from Eq. (1) 

    1jrr1jsP           (33) 

By making use of this probability mass, the expected and then the variance values of 

success runs in an infinite sequence can be obtained as [2],  

 
r1

1
sE


           (34) 

and 

 
 2r1

r
sV


           (35) 

respectively. It is also possible to reduce the above mentioned procedure to cover the 

independent random variables, when substitution of p instead of r. 

 

5. COMBINATORIAL METHOD AND FINITE SEQUENCE 

 

 In finite sequence cases, the runs are examined by the combinatorial analysis [5]. 

It is possible through this analysis to find the total number of either success or failure 

runs regardless of their lengths and the longest run-length of any given type [6]. 

However, the combinatorial analysis fails to yield any statistical moments such as the 

expected value of say, success run-length in a finite sequence. The following 

methodology which is based on the integration approach is developed in order to 

evaluate the probability mass of a run-length in finite sequences, which helps to 

calculate the statistical moments.  

Let Si = s = i be an event denoting the occurrence of s successive runs of 

length i in an infinite sequence of Bernoulli trials. It is then possible to verify from Eq. 

(33) that the union of all these events is 








1i

SiE           (36) 

where S is a universal set with probability equal to one. Furthermore, all these events 

are mutually exclusive, that is 

),...,2,1j,i(

ji

jEiE 





        (37) 
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in which  denotes the empty set with zero probability. However, for a finite sequence 

of length n, run-lengths greater than n cannot occur, because the sample space is 

restricted by n, therefore, 


n

1i

iE



           (38) 

where  represents a sub-sample space in the universal set S. Since the elementary 

events Ei are mutually exclusive, the following statement can be written for the 

probability of the sub-sample, P as, 

    1
n

1i
iEPP 



           (39) 

In order to render the sub-sample space to a proper one over which the mass of 

elementary events’ probabilities is equal to one, it is necessary to reappraise the 

probabilities of  Ni’s as PE, which transforms Eq. (39) into an equality form by 

defining a new set as ‘. 

   



n

1i

1|iEP'P         (40) 

where 

 
 

 




P

iEP
|iEP


        (41) 

Since, Ei is an element in the set, , it is, therefore, known from set theory that 

PE.= PEi, the substitution of which into Eq. (41) gives. 

 
 
 


P

iEP
|iEP          (42) 

this is fundamental in evaluation probability mass of run-length in finite sequences. 

In the case of independently and identically distributed random variables Eq. (39) can 

be evaluated by considering Eq. (33) which yields, 

   nr11P           (43) 

Furthermore, Eq. (42) can be written more explicitly as, 

 
 

 nr11

1irr1
n|isP




         (44)                                                                        

where n has been employed instead of , since it is the only parameter that 

characterizes . It is convenient to interpret Eq. (44) as the truncated form of the 

probability mass function given by Eq. (33) in a finite sample size n. The graphical 

representation of Eq. (44) for different sample sizes and r values [4] are given in Figure 

1. 
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Figure 1. Run-length probability variations by sample size 

 

6. FINITE LENGTH RUN-LENGTH  STATISTICAL 

 

On the other hand, the expected value of success run-length in a finite sequence 

with n elements can be found  by substitution of Eq. (33) into Eq. (25) with r = 1, which 

after some algebra yields 

 
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
 
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nr11r1

1nrrn1nnr
n|sE        (45) 

where the second term on the right hand side becomes zero when n goes to infinity, 

hence Eq. (45) reduces to Eq. (34). The expected value variation with the sample size is 

presented in Figure 2. 

 

 
 

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample size

P
ro

ba
bi

lit
y

q = 0.3

r = 0.70;  = 0.0

r = 0.754;  = 0.3

r = 0.718;  = 0.1

r = 0.795;  = 0.5

r = 0.844;  = 0.7

r = 0.911;  = 0.9



 

 

 

232                                                             Z. Şen 
 

 

 
 

 

 

 

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

Sample size

Ex
pe

ct
ed

 ru
n 

le
ng

th

q = 0.7

r = 0.30;  = 0.0

r = 0.340;  = 0.1

r = 0.426;  = 0.3

r = 0.520;  = 0.5

r = 0.632;  = 0.7

r = 0.788;  = 0.9

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Sample size

Ex
pe

ct
ed

 ru
n 

le
ng

th

q = 0.6

r = 0.826;  = 0.9

r = 0.694;  = 0.7

r = 0.598;  = 0.5

r = 0.519;  = 0.3

r = 0.437;  = 0.1

r = 0.400;  = 0.0



 

            

 

           Temporal and Spatially Heterogeneous Finite Length Runs Analysis               233 
 

 

 

 
 

 

 

 

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

Sample size

Ex
pe

ct
ed

 ru
n 

le
ng

th
q = 0.5

r = 0.747;  = 0.7

r = 0.856;  = 0.9

r = 0.666;  = 0.5

r = 0.597;  = 0.3

r = 0.532;  = 0.1

r = 0.500;  = 0.0

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

Ex
pe

ct
ed

 ru
n 

le
ng

th

Sample size

q = 0.4

r = 0.884;  = 0.9

r = 0.796;  = 0.7

r = 0.732;  = 0.5

r = 0.676;  = 0.3

r = 0.625;  = 0.1

r = 0.600;  = 0.0



 

 

 

234                                                             Z. Şen 
 

 

 
 Figure 2. Run-length expectation variations by sample size 

 

In a similar manner, the variance of s can be evaluated by finding the second order 

original moment which becomes, 
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On the other hand, the variance can be estimated as, 
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which for n  reduces to Eq. (36). Variation change with the sample size is presented 

in Figure 3. 
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Figure 3. Run-length variation changes by sample size 

The calculation of higher order moments than two is possible but requires very tedious 

algebraic work. Perhaps, it is better to find these methods numerically on a digital 

computer. For instance, the m-th order moment can be evaluated by 
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The third and fourth order expansion of this series with the substitution of Eq. (44) in 

this last expression is given in the Appendix. All the above referred formula is 

applicable for failure runs provided that p and q in the formulations are interchanged. 

 

 

7. SPATIALLY HETEROGENEOUS RUNS 

 

 Natural phnomenon evolves temporally as well as spatially and they are recorded 

through the measuring instruments at a set of pointstemporally. Such a space-time 

distribution is referred to as a field quantity. Since natural phenomenon cannot be 

predicted with certainty they are assumed to be random and hence, it is necessary to study 

a new class of fields, i.e., random fields. Quantitatively, a random field is characterized as 

(s, t) and called a random function at a point, s, and time, t. It is obvious that random field 

concept is generalization of a stochastic process for which time is the scale variable. The 

expression "the random function of the coordinate (s, t)" must be understood in the sense 

that at each point (s, t) of four-dimensional space-time, the value  (s, t) is a random 

variable, and consequently, cannot be predicted exactly. In addition, the values  (s, t) are 

subject to a certain law of probability. A complete description of a random field can be 
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achieved by constructing all the finite dimensional pdf of the field at different points in 

space. A random field  (s) at a fixed time instant with the given finite dimensional pdf is 

called homogeneous, if this function is invariant with respect to a shift of the system of 

points. The same random field is called statistically homogeneous and isotropic (if it is 

homogeneous in the sense indicated above), while the pdf's are invariant with respect to an 

arbitrary rotation of the system of points such as of a solid body and to a mirror reflection 

of this system with respect to the arbitrary plane passing through the origin of the 

coordinate system. In other words, statistical moments depend upon the configuration of 

the system of points for which they are formed, but not upon the position of the system in 

space [7]. 

 In this section precipitation phenomenon is modeled as a random field where time-

wise probabilities at a fixed site are referred to as the PoP and spatial probabilities for a 

fixed time instant are coverage probabilities (CP).  The areal probability is the fraction of 

the area hit by rainfall. It does not provide a means for depicting which of the subareas is 

going to be hit with precipitation event. However, it simply represents the estimate of what 

the fractional coverage area will be.  By definition the PoP at any desired threshold 

value, x0, such as standard 0.01 inches is equivalent to the exceedence probability of this 

value. If the pdf of precipitation at site i is denoted by fi(X) then the PoP, pi, at this site is 

 




0x

ii dXXfp          (49) 

Even in the heterogeneous point probability case one can simple calculate the average CP, 

p , for a given number, n, of sites as, 





n

1i

ip
n

1
p           (50) 

In the special case where the point probability is homogeneous over the forecast area, p  is 

equal to the common value of the point probability. However, in heterogeneous case it 

does not mean any physical correspondence.  

 

7.1 Theoretical treatment 

 In the most general case, none of the sites have equal PoP's which implies that the 

random field is heterogeneous. It is quite likely that probabilities might vary from place to 

place even within a single area. In practice, in addition to the spatial correlation variations, 

the following three situations give rise to heterogeneous and anisotropic random fields. 

These are; 

 (i) Identical pdf's of precipitation at different sites but non-uniform threshold 

levels, 

 (ii) Non-identical pdf of precipitation at sites but uniform threshold level, 

 (iii) Non-identical pdf's at sites and non-uniform threshold levels.  

 Let the PoP and its complementary probability at j-th site within a region of n sites 

be given by pj and qj, (j=1, 2,...., n), respectively. They are point-wise mutually exclusive 

and complementary, i.e., pj + qj = 1. The CP, P(C=i|n) including i sites can be evaluated 

through enumeration technique after the application of summation and multiplication rules 

of probability theory.  For the derivation of this expression the conceptual model can be 
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visualized as in Figure 4, where there are n mutually exclusive sites represented in square 

boxes.  

                                     
 

 

Figure 4. Probability derivation conceptual model 

 

Each box has two mutually independent and exhaustive events as pj and qj for site j. If out 

of n sites, i sites are required to have precipitation and the remaining (n-i) sites without, 

then the whole possible cases (alternative sequences) can be categorized into two mutually 

exclusive groups. The first group includes i cases with n possibility in each site and the 

second (n-i) sites again each with n possibilities. Since the PoP on each site is independent 

from others then the probability of precipitation occurrence collectively can be found from 

the multiplication rule of independent events as p1.p2.p3 . . . pi for one pattern. In case of i 

sites with precipitation will have i(i-1)(n-2) . . . 1 = i!, mutually exclusive alternatives each 

with probability of precipitation. Mutually exclusive events imply summation in the 

probability theory, and therefore, the successive summation terms express all the possible, 

collective and exhaustive joint probabilities of i sites. The second part on the right hand 

side in Figure 1 corresponds to the joint probability of the remaining (n – i) sites each 

belonging to respective pattern of joint PoP occurrence at i precedent pattern. Again the 

independence principle of the probability theory provides the multiplication of the 

remaining non-precipitation occurrence sites.  

 The explanation in the last paragraph can be translated into a mathematical 

formulation as follows: 
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where the i summation terms in the first horizontal big bracket includes all the possible 

combinations of i precipitation occurrences at n sites, whereas the second horizontal big 

bracket implies the multiplication term corresponding to possible non-precipitation 

combinations. 

For heterogeneous PoP's the term in the first horizontal big bracket simplifies to n(n-1) . . . 

(n-i+1)p
i
 and the in the next horizontal big bracket multiplication yields to q

n-i
, hence 

Eq.(51) reduces to, 

  ini qp
i

n
iCP 









          (52)  

This is the well-known Binomial distribution with two-stage Bernoulli trials [2].  

 

7.2 . Numerical applications 

 

 The first numerical application will be the confirmation of the basic expression 

(Eq. 51) with the well-known Binomial pdf. For this purpose, a Matlab program is 

developed for heterogeneous point probabilities of different sizes. In Figure 5, Eqs. (51) 

and (52) results are plotted versus each other at all probability levels. The scatter of points 

for different sample sizes fall exactly on the 45
o
 line confirming the validity of 

heterogeneous probability formulation, as in Eq. (51). 

 

 

 

           
 

After the validation of Eq. (51), it is now possible to use this formulation for any set of 

heterogeneous probability sequences in time or groups within an area. Prior to real data 

application, it is helpful to look at various coverage probability variations with number of 

sites and the number of wet spells among such sites. For instance, Figure 6 shows the areal 

or temporal heterogeneous probabilities sets {0.1, 0.2, 0.3, 0,4, 0.5, 0.6, 0.7, 0.8, 0.9}. 

Although the probability values are in a systematic sequence in this set, they may occupy 

any location site among the available number of locations. In this figure n = 12 sites are 

considered and the variation of coverage probabilities are calculated according to Eq. (51) 

Figure 5. Comparisons of Eqs. (3) and (4) 
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if 1, 2, . . , 8 sites are subject to wet spells. The coverage probability indicates the 

probability of any 1, 2, . . . , 8 sites to be under the influence of wetness. These wet sites 

are randomly distributed in a given area of 12, say, meteorology stations, or any 1, 2, . . . , 

8 wet sites among the available 12 time periods.   

 
 Figure 6. Some heterogeneous ACP variation 

Another example is given in Figure 7 for n = 9 sites and with the same probability of set as 

in the previous example. The comparison of these two figures indicates that as the number 

of sites increases the CP also increases.  

 
Figure 7. Some heterogeneous ACP variation 
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8. CONCLUSIONS 

 

 Run-length probability distribution function (pdf) is derived for stationary 

stochastic dependent processes in finite lengths. The necessary analytical derivations are 

achieved through the combinatorial methodology.   

 Analytical derivations of various point precipitation including probability of 

precipitation (PoP) concept and the areal or temporal coverage probabilities conditioned on 

a certain number of wet sites (precipitation occurrence more than a given threshold level) 

have been presented for heterogeneous and homogeneous precipitation evaluations over a 

region. In this paper, the general formulation of heterogeneous probability areal or 

temporal coverage probability calculation is developed based on the random field concept, 

where the temporal and areal precipitation occurrences are assumed independent from site 

to another. This general formula reduces exactly to homogeneous case, where the well-

known Binomial probability distribution is valid.  The application of the suggested 

formulation is shown first for its confirmation with the Binomial pdf for homogeneous 

probabilities values and it is seen that the general formula reduces to the classical Binomial 

pdf exactly. Theoretically its application is presented a set of probabilities with 9 and 12 

sites. The factual data application is shown for 6 meteorology stations in and around 

Istanbul City, Turkey. It is hoped that in the future theoretical methodology developed 

herein can be extended to areally dependent precipitation events. 
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