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Abstract- Adaptive control technique is used to design suitable controllers to 

synchronize two different coupled chaotic systems with uncertainties. The information 

signal hidden in chaotic signal is transmitted and then successfully recovered at the 

receiver once synchronization is achieved. Different chaotic systems with uncertainties 

are chosen respectively as the transmitter and receiver systems to ensure higher security 

in communication. Numerical simulation examples verify the effectiveness of the 

proposed method.  
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1. INTRODUCTION 
 

 Chaos synchronization has been widely investigated for its advantages in 

practical applications, particularly in secure communication [1-3]. The process of secure 

communication via chaos synchronization is outlined as follows. Firstly, the 

information signal is added to a much stronger chaotic signal in order to hide the 

information in transmitter. Secondly, the generated chaotic signal containing the 

information is transmitted to receiver. Finally, the information signal can be recovered 

successfully if synchronization is achieved between the transmitter and receiver under 

certain conditions. 

 Chaotic systems can be used in signal transmission in various ways, for 

examples, driving-response scheme [4], adaptive synchronization strategy [5], 

parameter modulation [6], observer-based synchronization [7]. Adaptive control is an 

effective method to synchronize mostly systems with unknown parameters or 

disturbances, which can improve the security of information and be more suitable for 

communication [8-10]. However, most of the mentioned literatures were designed to 

synchronize two identical chaotic systems and recover single signal hidden in the 

transmitter. Studies on secure communication with several different signals and 

different chaotic structures between the transmitter and receiver are limited. Adaptive 

synchronization between different chaotic systems with unknown parameters was 

investigated [11,12]. However, the effects of noise and parameter mismatch were not 

taken into account, and the controller contains all the information appeared in the error 

dynamical system or the transmitter-receiver systems, which is hard to realize in 

practical application. 



 

 

J. Cai, M. Lin and Z. Yuan  167 

 In this paper adaptive control technique is used to design suitable controllers to 

synchronize different coupled chaotic systems with uncertainties, including unknown 

parameters, internal or external perturbations. Such transmitter-receiver systems have 

higher security. Because of the existence of uncertainties, the transmitter-receiver 

systems are usually difficult to achieve complete synchronization. So a concept of 

practical synchronization is introduced in this paper. Under some conditions, Lyapunov 

stability theory ensures that the transmitter-receiver chaotic systems can achieve 

practical synchronization, and the information signal hidden in the transmitted chaotic 

signal can be successfully recovered at the receiver. The designed controllers contain 

only feedback terms and partial nonlinear terms of the systems, and they are easy to 

implement in practice. The Lorenz system and Chen system are chosen as the 

illustrative example to verify the validity of the proposed method. 

 

2. SECURE COMMUNICATION SCHEME 

 

 Consider a class of chaotic systems with unknown parameters and disturbance as 

the transmitter  

                    
( ) ( ) ( , )

t

x f x F x d x t s

x Cx s

α= + + +


= +

&
                                                            (1) 

where nx R∈  is the state vector, mR∈α  is the unknown parameter vector, 1( ) nf x R ×∈  

and mnRxF ×∈)( are known function matrices, 1( , ) nd x t R ×∈  is the uncertainties 

including parameter perturbation and external disturbance, ns R∈  is the information 

signal vector which will be recovered at the receiver, n nC R ×∈  is a known constant 

matrix and n

tx R∈  is the output vector. 

 Let n

x R⊂Ω  be a bounded region containing the whole attractor of transmitter 

system (1) such that no trajectory of system (1) ever leaves it. This assumption is simply 

based on the bounded property of chaotic attractor. Also, let mRM ⊂  be the set of 

parameter under which system (1) is in a chaotic state. 

 The receiver system with a controller is constructed as follows 

( ) ( ) ( )

r

y g y G y u t

y Cy

β= + +


=

&
                                                                     (2) 

where ny R∈ , 1mRβ ∈  is the unknown parameter vector, 1)( ×∈ nRyg  and 1( ) n mG y R ×∈  

are known function matrices, ( ) nu t R∈  is the control input vector, n

ry R∈  is the output 

vector. Let n

y R⊂Ω  be a bounded region containing the whole attractor of receiver 

system (2) with 0)( =tu . 

 Due to the uncertainties in the transmitter system (1), the receiver system (2) is 

usually difficult to achieve complete synchronization with the transmitter system (1). 

Therefore a concept of practical synchronization, also called synchronization with 

uniform ultimate boundedness in other literatures, is introduced in this paper. 

 Definition 1 The transmitter-receiver systems (1) and (2) achieve practical 

synchronization if for any initial state xx Ω∈)0( and yy Ω∈)0( , there exist constants 
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0h >  and 0 0T >  such that the trajectory ))0(,( xtx  of system (1) and trajectory 

))0(,( yty  of system (2) satisfy 

                      || ( , (0)) ( , (0)) ||x t x y t y h− < , for any 0t T> ,                                        (3) 

where ||.|| denotes the Euclidean norm, and h  indicates the error bound. 

 According to this definition, our control objective is to design a suitable adaptive 

controller ( )u t  such that the receiver system (2) eventually synchronizes with the 

transmitter system (1), and finally reconstruct the informal signal. To this end, some 

assumptions are given as follows. 

 Assumption 1 The disturbance vector ( , )d x t  and information signal s  are 

norm bounded respectively, namely, || ( , ) || dd x t L≤ , || ( ) || ss t L≤ , where dL and sL are 

positive constants. 

 Assumption 2 The function vectors )(⋅f  and )(⋅g  are continuous on a bounded 

closed region Ω  containing both xΩ  and yΩ . So there exists a positive constant fL  

such that 

                                || ( ) ( ) || ff x g x L− ≤ , Ω∈x . 

 Assumption 3 The function vector )(⋅g  satisfies the Lipschitz condition, that is, 

there exists a positive constant gL  such that 

|| ( ) ( ) || || ||gg x g y L x y− ≤ − , for any nRyx ∈, . 

 Theorem 1 The transmitter-receiver systems (1) and (2) can achieve practical 

synchronization and the informal signal s  can be recovered by 

t rs x y= −% , 

if the Assumptions 1-3 hold, and the controller ( )u t  is designed as  

                                ˆˆ( ) ( ) ( )u t F x G y keα β= − + ,                                                            (4) 

where  e x y= −  is the error variable, the feedback coefficient k  is a constant to be 

determined, and the adaptive variables α̂ and β̂  satisfy the following adaptation laws 

ˆ ( )TF x eα =& , ˆ ( )TG y eβ = −
&

.                                                           (5) 

Proof The error dynamical system is 

           ˆˆ( ) ( ) ( )( ) ( )( ) ( , )e x y f x g y F x G y ke d x t sα α β β= − = − + − − − − + +& & & .        (6) 

Construct a Lyapunov function 

1 ˆ ˆˆ ˆ[ ( ) ( ) ( ) ( )]
2

T T TV e e α α α α β β β β= + − − + − − . 

Using Assumptions 1-3 and Eqs.(4)-(6), the time derivative of V satisfies, 

      

2
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2 2 2

1 2

1 2

1 1 1
( ) || || ( ( ) )
2 2 2

g f d sL k e L L Lε ε
ε ε

= + + − + + +  

where 1ε , 2ε  are small positive constants, and the equality 
2 2

2 2

a cb
ab

c
≤ +  has been 

used, in which c  is a positive constant. Let 

                                       2 2

1 2

1
( ( ) )

2
f d sL L Lε ε ε= + + .                                                     (7) 

If the feedback coefficient k  satisfies  

1 2

1 1
1

2 2
gk L

ε ε
≥ + + + ,                                                            (8) 

then we have 
2|| ||V e ε≤ − +& .                                                                       (9) 

By the inequality (9), we conclude that the trajectory of state error will approach to a 

hyper-ball determined by || ||e ε≤ , so practical synchronization can be achieved. From 

Eqs.(7)-(9), it is clear that ε  will be sufficiently small if 1ε  and 2ε  are chosen 

sufficiently small, which implies the synchronization error will also be sufficiently 

small. This can be realized simply by choosing larger value of k . Then the informal 

signal s  can be reconstructed approximately by  

t rs x y Cx s Cy s Ce= − = + − = +% . 

 Remark The controller (4) contains only the feedback term and partial nonlinear 

terms of the systems, while the controllers in Refs.[12-17] include all the information 

appeared in the error dynamical system or the transmitter-receiver systems. 

 

 3. ILLUSTRATIVE EXAMPLE 

 

 Secure communication between Lorenz system and Chen system is presented to 

simulate the proposed method. The Lorenz system with unknown parameters and 

perturbations is chosen as the transmitter system 

        

1 2 1 1 1 1

2 2 1 3 1 2 2 2

3 1 2 3 3 3 3

1 1 1

2 2 2

3 3 3

0 0 0 ( , )

0 0 ( , )

0 0 ( , )

t

t

t

x x x d x t s

x x x x x d x t s

x x x x d x t s

x x s

x C x s

x x s

α
α
α

 −          
          = − − + + +          
           −          

     
      = +               

&

&

&

             (10) 

Compared with Eq.(1), the relative notations are 

1 2 3( , , )Tx x x x= , 2 1 3 1 2( ) (0, , )Tf x x x x x x= − − , 2 1 1 3( ) ( , , )F x diag x x x x= − − , 
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1 2 3( , , )Tα α α α= , 1 2 3( , ) ( ( , ), ( , ), ( , ))Td x t d x t d x t d x t= , ( )1 2 3, ,
T

s s s s= . 

 The Chen system with unknown parameters and controllers is selected as the 

receiver system 
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2 1 3 1 1 2 2 2

3 1 2 3 3 3
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0 0 0 ( )
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    =         

&

&

&

                         (11) 

Compared with Eq.(2), the relative notations are 

1 2 3( , , )Ty y y y= , 1 3 1 2( ) (0, , )Tg y y y y y= − , 

2 1

1 1 2

3

0 0

( ) 0

0 0

y y

G y y y y

y

− 
 = − + 
 − 

, 

1 2 3( , , )Tβ β β β= .  1 2 3( ) ( ( ), ( ), ( ))Tu t u t u t u t=  is determined by Eqs.(4) and (5).  

It is easy to verify that the Lorenz system and Chen system satisfy Assumptions 1-3. 

Case 1 No disturbance is applied to the  transmitter system, that is, ( , ) 0d x t = . Suppose 

that the transmitted signal is ( )1 2 3, , (0.2sin 2 ,0.1 (sin( / 4)),0)
T Ts s s t sign tπ= , and 

                                    

1 1 0

0 1 1

1 0 1

C

− 
 = − 
 − 

. 

The Lorenz system with signal loading is in a state of chaos, whose attractor is 

displayed in Fig.1. Under the designed controller, the receiver system (11) can achieve 

practical synchronization with the transmitter system (10) as shown in Fig.2. It is clearly 

seen in Figs. 3 and 4 that the reconstructed signal s%  coincides with the informal signal 

s  with good accuracy. The error between the transmitted and recovered signals can be 

reduced to desired accuracy by simply increasing the feedback coefficient k . In the 

simulation, the unknown parameters in systems (10) and (11) are assumed to be 

“known” as T)38,28,10(=α and T)3,28,35(=β . The feedback coefficient 50k = , and 

the initial values are chosen arbitrarily as (0) (1.4, 1, 2.4)Tx = − , (0) ( 0.5,1.3,0.8)Ty = − , 

ˆ (0) (1, 4, 1)Tα = − , ˆ(0) ( 2,2.1,1.4)Tβ = − .  
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Fig.1 Chaotic attractor of the Lorenz system with information signal loading 
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Fig.2 Synchronization error between systems (10) and (11) 
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(d)Error signal 
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Fig.3 Process of signal 1s  transmission and recovery without disturbance 
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(c)Recovered signal 2s%  
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(d)Error signal 
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Fig.4 Process of signal 
2
s  transmission and recovery without disturbance 

Case 2 Parameter perturbation is applied to the transmitter system (10), for example,  

1 2 3

8
( , ) ( sin(2 ) (10 ), cos , sin(3 ) ( ))

3

Td x t t x t x t xλ λ λ= ⋅ ⋅ ⋅ .                 

Now the transmitter system (10) becomes, 

1 2 1

2 1 2 1 3

3 1 2 3

10 10(1 sin 2 ) 0.2sin 2 ,

28 (1 cos ) 0.1 (sin( / 4)),

8
(1 sin 3 ) ,
3

x x t x t

x x t x x x sign t

x x x t x

λ

λ π

λ

= − − +

= − − − +

= − −

&

&

&

 

where λ  represents the perturbed strength compared with the magnitude of state 
variables ( 1, 2,3)ix i = . The informal signals also can be well recovered. The results are 

shown in Figs. 5 and 6 with the perturbed strength 1%λ = . The other values of 

parameters are the same as those of Case 1. The above simulations are performed in 

computer algebraic system Mathematica, where instruction NDSolve is used. 
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Fig.5 Process of signal 
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s  transmission and recovery under disturbances 
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(c)Recovered signal 2s%  
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(d)Error signal 
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Fig.6 Process of signal 
2
s  transmission and recovery under disturbances 

 

 Now we discuss the effect of disturbance on the error between the transmitted 

signal and recovered one. The enlarged figure of Fig.3(d) combined with Fig.5(d) at 

[50,100]t∈  is shown in Fig.7(a), and that of Fig.4(d) combined with Fig.6(d) is shown 

in Fig.7(b). We see clearly that the disturbances result in larger error between the 

transmitted and recovered signals. 
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Fig.7 Effect of disturbance on the error between the transmitted and recovered signals 

  

4. CONCLUSIONS 

 

 In this paper we design adaptive controllers to synchronize two different chaotic 

systems with uncertainties, containing unknown parameters, internal or external 

perturbations. Using Lyapunov stability theory, we prove that under some conditions the 

transmitter-receiver systems can achieve practical synchronization, and the information 

signal hidden in the transmitted chaotic signal can be successfully recovered at the 

receiver. Furthermore the error between the transmitted and recovered signals can be 

reduced to desired accuracy. The designed controllers contain only feedback terms and 

partial nonlinear terms of the systems, and they are easy to implement in practice. The 

Lorenz system and Chen system are chosen as the illustrative example to verify the 

validity of the proposed method.  
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