
Signalling method for mobile communications network
Badoui Y. Heik, Rahim Tafazolli

Center for Communication Systems Research, University of Surrey, Surrey GU2 7XH, UK
E-mail: B.Yamine-Heik@surrey.ac.uk

Published in The Journal of Engineering; Received on 14th October 2014; Accepted on 24th November 2014

Abstract: In this study, a novel and generic signalling method is proposed that results in a significant reduction in signalling messages
exchanged between a user equipment and the network over the air interface. Reduction of signalling messages in future mobile cellular
systems is an important issue because of the current trend of deploying smaller cells while achieving higher than expected data area capacities.
To demonstrate the effectiveness of this method within the standard constraints, some signalling procedures of the 3rd generation mobile stand-
ard, Universal Mobile Telecommunication System (UMTS), are investigated. In one application, the number of UMTS packet switch call setup
messages was reduced down to three messages only. In such a scenario, measurements show that the gains in comparison with prior call setup
is 61% in the duration of the call setup, 50% in the downlink processing delays, 93% in the downlink radio power transmission and 79% in the
uplink radio power transmission.
1 Introduction

In any system, the higher size level of signalling messages of any
procedure means less bandwidth left for traffic, more latency for
procedure setup and more processing on all of the equipment
involved in that procedure. Keeping in mind that the size of the sig-
nalling messages matters, but the number of signalling messages
involved is a big contributor to additional latency and processing
in the network. In this paper, a novel generic storage method
called the dynamic storage method (DyStoM) is proposed. It
reduces the size and also the number of messages in any signalling
procedure by looking at the repetitive information in a signalling
procedure in order to store them during the first run and avoid
sending them again during a following procedure run. An
example of static information is the data channel configuration of
the user, whereas an example of dynamic information is the radio
channel resources.
On the basis of the presence of repetitive information in the wire-

less system, different methods have already been proposed in prior
articles. In [1], two different methods are described. The first one is
based on hardcoding the static information at user equipment (UE)
and at radio network controller (RNC). The second one consists of
broadcasting information, on the air interface, that will be used later
by the UE during any handover, e.g. fromGSM, to universal mobile
telecommunications system (UMTS). In [2], a method consists of
comparing a configuration to send to the UE with a hardcoded con-
figuration at the RNC and at the UE. If the difference is small only
that difference is sent with the identity of the stored one, otherwise
the complete configuration is sent. In [3], broadcast information is
used to send information in advance, not handover messages like in
[1], but instead a part of a signalling message that will be exchanged
later during any upcoming UE call setup. In [4], repetitive informa-
tion consisting of parts of signalling messages of the UMTS call
setup is stored on an external server. When any change occurs to
the stored information, the UE is notified via the air interface and
the UE triggers a connection to that server to obtain the latest
update. In [5], another method is used to store the repetitive infor-
mation dynamically at UE and at the RNC, but this method uses the
broadcast channel on the air interface as a means to achieve that
storage. As yet another option in prior articles shows in [6] a new
method consists of setting a timer on the receiver and/or transmitter.
As long as this timer does not run out, both equipment exchanges
receive a reduced radio resource control (RRC) message, otherwise
a full message is sent. In [7] and for some particular type of calls like
J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272

This is an open
push-to-talk over cellular, the contents of the message that carries the
data user traffic configuration in UMTS call setup, are embedded in the
message that carries signalling channel configuration. In other words,
the RRC radio bearer setup (RBS) is embedded in the RRC connection
setup (CS). To reduce the size of the final message, the hardcoding of
the contents of both messages is proposed. However, the major draw-
back of that method is that any call with that method will go
non-encrypted over the air interface.

It should be noted that the hardcoding solution is not practical,
because on one hand it forces all vendors and operators to use the
same values for all stored parameters, and on the other hand any
change in the stored configuration would mean a software
upgrade. That is why all the other methods described in [1–7]
were proposed. However, there are two main disadvantages with
the solutions in the prior articles. First, most if not all of them
use the air interface as an input for their algorithm in order to
update the stored configuration. This means that these methods
do not apply between two pieces of equipment where there is no
air interface. Second, all of these methods only store a part of
one signalling message, whereas with the proposed method not
only one part of the message could be stored but more importantly
parts of different messages could be embebbed into one message. In
addition, with the proposed method parts of different messages
could be embedded into one message. To the knowledge of the
authors there is no such approach in prior articles.
2 Dynamic storage method

Fig. 1 is an example of a signalling procedure exchanged between
two pieces of equipment.

The objective of DyStoM is to store part of the information of
that procedure during the first run in order to exchange only the
remaining information during the second procedure run. A flow-
chart of that method is shown in Fig. 2, and then a description of
each step is described in the following paragraphs:

Step 1: Repetitive procedure, information and actions: In any
system, in order to apply the DyStoM one should look at the occur-
rence of any type of repetitive procedure, information or action. An
example of a repetitive procedure would be a call setup. An
example of repetitive information is the contents of exchanged mes-
sages, and an example of a repetitive action would be a user moving
in the same geographical area everyday.
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Fig. 1 Messages contents during first call
Step 2: Divide each message into two parts α and β: Each message
of the procedure is divided into two parts called α and β. Part α con-
tains the part of the message where the values of some, if not all,
parameters change every time the procedure is executed. Part β con-
tains the remaining part of the message, where the values of the
parameters remain fixed every time the procedure is executed. As
a result β part could be stored whereas part α should not.

Step 2.1: Define a server and client(s): A server is the only piece of
equipment that has the authority to change the value of β at any
time. Contrary to this, a client node is the piece of equipment
where the value of β cannot be changed. It is up to the server to
update the client with the new value of β. Depending on the
system that is used, the equipment that is involved in the signalling
procedure could be acting as a server or as a client.

In a first scenario, one piece of equipment acts as a server and the
other piece of equipment acts as a client. This scenario is called
‘server to client’. In a second scenario, each piece of equipment
acts as a server. This scenario is called ‘server to server’.
Steps 3: Storing β on server and client: For any signalling proced-
ure exchanged between two or more pieces of equipment, DyStoM
is mainly used in the following three scenarios:
1. Store β of one message during the first call and only send its α part
during following calls. An application to UMTS is described in [8].
2. Store a complete message during the first call and skip sending it
during following calls. An application to UMTS is described in [9].
3. Store βi of different messages during the first call, and then send
all their αi in a much lower number of messages during the second
call, ideally in one message. An application to UMTS is studied in
this paper.

Step 4: Evaluation: It is important to note that for the sake of effi-
ciency β part is stored when it makes a reasonably large part of the
total signalling procedure.
The number of signalling messages is reduced whenever there is
any benefit in terms of latency and/or interference, processing,
transmission power etc.
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
Step 5: ‘Open interface’ or ‘closed interface’ based on client
address change: The ‘open interface’ is a system where the
address of the server remains fixed over time, whereas the
address of the identity of all peer nodes, called clients, changes,
whereas in a ‘closed interface’ all pieces of equipment involved
in the signalling procedure, server and client(s), have a fixed
address that does not change in time. An example of the application
of ‘closed interface’ to UMTS is described in [10], where steps 7.1,
7.2 and 7.3 shown in Fig. 2 are described. In this paper, only the
case of ‘open interface’ is studied.
Step 6: ‘Open interface’ method: Below all of the steps of method 1
are described, and these are step 6.1, 6.2, 6.3 and 6.4 as shown in
Fig. 2.

Step 6.1: Define tag on server and clients: A new parameter called a
tag is defined on piece of each equipment. That tag is an integer
coded in a certain number of bits, for example, 8 bits. Each value
of tag on a piece of equipment represents a certain configuration of
βi on that piece of equipment. If both pieces of equipment have
the same value of tag, then that means they both have the same con-
figuration of βi, meaning the same values for all parameters of βi.
Otherwise, each piece of equipment has a different configuration of
βi. The tag on the server is called the serverk_βi_tag, where each k
represents one server, and on a client it is called the clientj_βi_tag,
where each j represents one client.
Step 6.2: Define rules on tag: Suppose that at t1, if the client and
server each have a tag equal to 5, the client is switched off or is
moved temporarily to another network or goes out of service for
a long period T. Also suppose that during that period T the operator
changes the value of βi many times in a way that means that at a
certain time during T the value of the tag on the server is again
5. In a case where the tag is coded in 8 bits this would occur at
time t2, after 256 changes of βi. Now suppose that the client that
went away from the network with a value tag equal to 5 comes
back to the network at time t2. The value of the tag on client is
equal to 5 and is the same as on the server; however, the βi on the
server is different than the βi at the client. To avoid such a situation
of confusion, different rules on tags are defined, as shown below.

Rule 1: Initially, the tag on all client(s) is equal to zero, whereas the
tag on the server should not take, at any time, the value of 0, but
starts with the value of 1. In that way, during the first call and
according to the algorithm in step 6.4 below, βi is always sent to
the client by the server as the tag on the client is equal to 0 and
is different than the tag on the server which is equal to 1.
Rule 2:Whenever the client is switched off/on or moved to another
network, the tag on the client is set to 0. In this way, when the client
comes back to the network, the most updated βi will be sent by the
server, which has a tag value that is always >0 by definition of tag
Rule 1.
Rule 3: The value of the serverj_βi_tag is incremented by 1 each time
the value of one parameter of any βi is changed on the server side.
Rule 4: A new timer called the serverj_timer is defined on the server
j side. During that timer the value of the serverj_βi_tag [1, 255]
could not take the same value twice.
Rule 5: A new timer called the clientk_timer is defined at client k.
When that timer expires the clientk_βi_tag is set to 0.
Note that a synchronisation between the timer on the server and
the timer on the client is necessary in order to avoid any confustion
with the tag values at the client and at the server. This might happen
for example if the client is a UE that comes back to the network
after losing synchronisation for a while e.g. the UE goes out of
coverage or the UE goes roaming.

In this paper the timers synchronisation is done as following:
First, the value of serverj_timer is sent to the client e.g. via a dedi-

cated message or via other ways like over the air interface. Later the
first call, the value of clientk_timer is defined as equal to
Commons J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272



[(severj_timer)–tcall]. Then during the second and the following call
clientk_timer = severalj_timer in other words tcall is just a temporary
value that is used to synchronize clientk_timer & serverj_timer. Tcall
is defined as following: when the client sends a request message,
denoted ‘UL request’, to the server, the value of tcall is sent to the
client via a dedicated message, denoted ‘DL response’, where tcall
is calculated as follows: It is equal to the timestamp of the ‘DL re-
sponse’, minus the timestamp of the most recent start time of time-
rj_server at the server. For example, if serverj_timer starts at 12:00
for a duration of 1 hour and if ‘DL response’ is sent at 12:40 then
tcall is simply equal to 40 minutes and clientk is equal to 20
minutes during the first call. Later during the second & following
calls clientk_timer becomes equal to the serverj_timer = 1 hour.

Step 6.3: Define ‘request procedure’ and ‘configuration procedure’.
The DyStoM algorithm simply consists of comparing the value of
the tag on the client with the value of the tag on the server. If
they are equal, the server only sends the α part, otherwise it sends
the messages as demonstrated in prior articles.

Two cases are studied.
In the first case, in order for that algorithm to work the server

needs to know the value of the tag at the client side. This is done
by the client sending the tag value to the server, for example, in a
message, before the algorithm makes a decision. This scenario is
called a ‘request procedure’.
On the other hand, in a second case it is possible that many sig-

nalling procedures can be composed of only two messages or
perhaps more where the message to be reduced is the first
Fig. 2 Flowchart of DyStoM

J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272

This is an open
message that is sent from the server to the client. In this paper,
this procedure is called a ‘configuration procedure’. In this scenario,
the server does not know the value of the tag at the client side, and
therefore it cannot compare the tag value of the client with the tag
value at the server. As a result, the proposed algorithm in this paper
does not apply in the case of a ‘configuration procedure’. A new al-
gorithm is required for that purpose and is a subject for future study.

Furthermore, in some procedures the server can transfer informa-
tion to the client, but the client does not acknowledge or communi-
cate the version of the stored configuration to the server. An
example of such a procedure is when the UE is in idle mode and
listening to the information being broadcast from the radio base
station. Again, this procedure is similar to the case of the configur-
ation procedure and its storage algorithm is left for future study.

Step 6.4: Algorithm_oi to store and synchronise β at all nodes.Another
parameter called the full_size_message is introduced, and this is coded
in 1 bit. If the value is 0, it means that the signalling procedure is sent in
the manner described in the previous articles, otherwise the reduced
version of the signalling procedure is sent. The flowchart is shown in
Fig. 3 below. Note that this parameter could be sent in either the
message which needs to be reduced or in any message before.

3 Reducing the number of RRCmessages in UMTS call setup
down to three

In Fig. 4, the UMTS packet switch call described in prior articles is
shown. Note that for a speech call the call flow is slightly different;
however, the same method and calculations apply.
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Fig. 3 ‘Open interface’ algorithm flowchart
3.1 Steps to reduce UMTS call setup down to three messages

This section is composed of four steps: A1, A2, A3 and A4 as
shown in Fig. 5.

Step A1: In UL and DL, divide each message i into two parts α_i
and β_i. Each RRC message of the call setup i is divided into
two parts α_i and β_i, as defined in step 2 in Section 2, then the con-
tents of each part are called information elements (IE) and are
shown in tables below.

The way that the IEs are placed in α_i or β_i in the tables repre-
sents a working configuration. However, these IE’s could be further
Fig. 4 UMTS call setup in prior article

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
optimised by each vendor, for example, some IE in the α part could
be moved to the β part and vice versa. For example, one non-access
stratum (NAS) message like an activate PDP context request
(APDPR) or activate PDP context accepted (APDPA) is carried
via one RRC message, called the direct transfer, between the UE
and RNC, and then via one radio access network application part
(RANAP) [11] message between the RNC and core network. The
size of the RRC message carrying the NAS is very small. That is
why the size of such RRC messages is not considered in this
paper. Instead the α_i and β_i of the NAS messages are shown in
the tables below and studied.

Step A2: Group all DL α_i in one message: New_APDPA. In prior
articles there are five messages which are sent in the DL direction,
as shown in Fig. 4. For two of them, the ‘CS’ and the ‘RBS’ mes-
sages, the tables of the α and β parts are shown in [8]. For the ‘se-
curity mode command’ (SMC) and the APDPA messages, α and β
are shown in Tables 1 and 2 below. On the other hand, we consider
in this paper that some messages are composed only of the β part.
The contents of these messages are not shown in the tables below
because they are stored during the first call and their size is not con-
sidered in the calculations below. The ‘measurement control’ is one
example of such messages.

On the basis of the study and the observation of the timestamps
of an UMTS call setup and in order to obtain the maximum gain of
DyStoM, the α parts of all DL messages are sent in one message
called the new_APDPA, which is demonstrated as follows

new APDPA = a CS+ a RBS+ a SMC+ a APDPA (1)

In practice, this requires the transmitter machine to delay the trans-
mission of different signalling messages and then combine them in
one message. The same principle is followed for the UL messages
described in the following step A3.
Commons J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272



Fig. 5 Steps to reduce UMTS call setup down to three messages

Table 2 Activate PDP context accepted

α_APDPA protocol discriminator
transaction identifier

message type
negotiated LLC SAPI

PDP address
protocol configuration options

negotiated QoS
radio priority
Step A3: Group all UL α_i in two messages: New_CR and Z. In
prior articles and as shown in Fig. 4, there are seven messages
exchanged in the UL direction. α_i and β_i are two of them: the
connection request (CR) and the CM service request (CMSR) are
shown, respectively in Tables 3 and 4. Whereas we consider the
APDPR as being composed of only the β part, based on remarks
in the previous step A2 this message is not included in the following
calculation.

As the CR and CMSR are of a request type they are embedded in
one UL message, which is called the new_CR message

new CR = a CR+ a CMSR (2)

For three other messages, CS complete (CSC), SMC complete
(SMCC) and RBS complete (RBSC), all of them are already used
as a response to one corresponding DL message sent in the
Table 1 Security mode command

α_SMC message type
RRC transaction identifier

integrity check info
integrity protection mode info

security capability
CN domain identity

UE system specific security capability

J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272

This is an open
new_APDPA. For example, RBSC is a response to the RBS sent
in the new_APDPA. That is why they are combined in one UL
message, called Z, that is sent after processing the new_APDPA.
Note that for simplicity reasons and due to the fact that these mes-
sages are of a small size, it is considered that each of these three
messages is composed of only the α_i part. It follows that

Z = CSC priorart+ SMCC priorart+ RBSC priorart (3)
Table 3 Connection request

α_CR message type
measurement results on RACH

initial UE identity
β_CR establishment cause

protocol error indication

access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Table 4 CM service request

α_CMSR message type
mobile identity

ciphering key sequence number (3 bits)
β_CMSR skip indicator

protocol discriminator
CM service type

mobile station classmark
Note that the UL measurement report message could be sent either
with the Z message or afterwards. In this paper and for simplicity
purposes it is sent after, and that is why it is not considered in
the calculations. In all cases, it could not be sent before the UE
has obtained a dedicating signalling channel, meaning before the
UE receives the new_APDPA. Fig. 6 shows the UMTS call flow
with the proposed new method. Note that the node B application
part [12] and RANAP messages remain the same as those described
in prior articles.

Step A4: Use the DyStoM algorithm_oi to store and synchronise the
β_i on all equipment. A storage algorithm is required in order to
keep the β parts synchronised on the UE and the RNC in all situa-
tions, for example, if the UE goes out of coverage for a long period.
Two tag parameters called the UE_cellx_tag and the
RNC_cellx_tag are defined. In the case of a first call, the first tag
is sent in the RRC CR and the second tag is sent in the APDPA,
whereas in the second and following calls the first tag is sent in
the new_CR and the second tag is sent in the new_APDPA. Keep
in mind that all rules on the tag as described in Section 2 apply.

The algorithm works as follows.
If the UE_cellx_tag # RNC_cellx_tag, then the call setup is per-

formed as in the prior articles and without any storage. Otherwise,
Fig. 6 Proposed UMTS packet switch call setup

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
the new call setup is performed where only one message is sent in
the DL and two messages are sent in the UL.

After defining how the messages are sent with the DyStoM, the
measurements and the calculations of their durations and of their
processing time are described in the following sections.

3.2 Measurements in prior art

This section is composed of only one step B1 as shown in Fig. 5.

Step B1: Obtain the timestamps and the size of each message in
prior articles via a protocol analyser. The size and the duration of
each RRC message of an R99 PS call setup carrying a configuration
of DL384/UL164 kbps are taken via a protocol analyser, inserted
between the RNC and UE, and are shown in [8]. However, the time-
stamps of the messages is not shown in [8]. That is why another
R89 PS call setup is performed instead, and the timestamps are
shown in Fig. 7.

Only RRC messages are shown in Fig. 7 as RRC is the only
protocol affected by the proposed method.

By calculating the difference of the timestamp of the last message
activate PDP context accept with the timestamp of the first message
‘CR’, the duration of an UMTS call setup according to prior articles is

16 : 42 : 20 : 359− 16 : 42 : 18 : 219 = 2140ms

3.3 Calculate the duration of new call setup

To calculate the duration of the new call setup, first the duration of
each message, the new_CR, new_APDPA and Z message is calcu-
lated. Then an additional duration is added on top of them which is
caused by a processing time and delays on the interfaces. This is
shown in Fig. 8 and then the calculations are described in the fol-
lowing four steps: C1, C2, C3 and C4.
Commons J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272



Fig. 7 Timestamps of UMTS PS call setup in prior articles
It therefore follows that

New call setup duration = duration(new CR)

+ UL processing delay+ duration(new APDPA)

+ DL processing delay+ duration(Z) (4)

By using the nominations in Fig. 8, it follows that

New call setup duration = t1− t0 = T1+ T2+ T3+ T4+ T5

(5)

Step C1: Calculate the duration of new_CR.

The CR is the first message that is sent during a call setup and is
carried on the random access channel (RACH) channel. According
to reference [13], during one single time transfer interval (TTI),
equal to 10 or 20 ms depending on the UE selection, 168 bits of
the signalling message are sent on an air interface. In this paper,
the duration of the RACH is considered as 20 ms. The challenge
to fit the new_CR (6) into the 168 bits still remains.
To calculate the size of the new_CR, the size of each IE listed in

tables above is calculated.
α_CR = (‘Message Type’ + ‘Measurement results on RACH’ +

Initial UE identity’) = 8 + 6 + 68 = 82 bits where Initial UE
Identity is TMSI-and-LAI-GSM-MAP.
α_CMSR = (‘Message Type’ + ‘Mobile Identity’ + ‘Ciphering

key sequence number’) = 6 + 48 + 3 = 57 bits.
Fig. 8 Duration and delays of the new call setup

J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272

This is an open
As a result, (2) becomes

new CR = 82+ 57 = 139 bits (6)

On top of 139 bits and 8 bits of the UE_cellx_tag, in addition
another number of bits used as an overhead for Abstract Syntax
Notation 1 (ASN.1) [14] encoding are added. This is left to
vendor implementation. However, these additional bits should not
exceed 168− (139 + 8) = 21 bits.

Step C2: Calculate the duration of new_APDPA. In prior articles,
the RRC CS is sent on the forward access channel (FACH)
channel. Similarly, the new_APDPA which is a new version of
CS is also sent on an FACH channel. In that case, according to ref-
erence [13], every TTI equal to 10 ms, two radio link control (RLC)
[15] blocks are sent, with each composed of 152 bits.

As a consequence, the duration of the new_APDPA is calculated
by dividing its size by 2 × 152 = 304 bits. For that purpose, and
based on measurements and calculations performed in [8], in
prior articles, the size of α_CS is 202 bits, the size of α_RBS is
278 bits, the size of SMC in prior articles is 120 bits and for
APDPA the prior articles state 536 bits. It follows that

new APDPA = 202+ 278+ 120+ 536 = 1136 bits (7)

On top of the 1136 bits, 8 bits for the RNC_cellx_tag plus the add-
itional ASN.1 overhead bits should be considered. Unlike the case
of the new_CR, there is no size limit for the total size of the
new_APDPA. Note that the size of all overheads is small in com-
parison with the size of the new_APDPA, and that is why it is
not included in the following calculation. It follows that the
number of TTI to carry new_APDPCA = 1136 bits/304 bits. This
requires 4xTTI. It therefore follows that the duration of the
new_APDPA is equal to 4 × 10 ms = 40 ms.

Step C3: Calculate the duration of Z message. In prior articles,
according to [8], the size of the CSC is 208 bits, the size of the
SMCC is 72 bits and the size of the RBSC is 56 bits. On the
basis of (3), it follows that

Z = 208+ 72+ 56 = 336 bits (8)

All of these three messages are sent on an RLC AM mode [8]. As
the Z message occurs after the RBS which is embedded in the
new_APDPA, it follows that the Z message is sent on 3.4 kbps as
described in [16], where according to [13] one RLC block carrying
128 bits is sent every TTI = 40 ms.

By dividing 336 bits by 128, it follows that the Z message
requires 3 × TTI. The duration of the Z message is then 3 × TTI =
3 × 40 ms = 120 ms.

Step C4: Existence of UL and DL delays. Whenever a message is
sent by either the RNC or by the UE, its response message from
the opposite entity is not instantaneous. Instead there is a duration
that is composed of the processing time in the equipment [17]
and the delays on the interfaces. In this paper that duration is repre-
sented by the UL_delay (Resp–Req) for a delay at the RNC and by
the DL_delay (Resp–Req) for a delay at the UE, where Resp is the
response message and Req is the request message, and the delay
would correspond to the difference of timestamps on the receiver
side between the Resp timestamp and the Req timestamp.

3.4 Gain comparison with prior articles

This section is composed of three steps: D1, D2 and D3 as shown in
Fig. 5.
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Table 5 Summary of gains by the proposed method

Type of benefit Prior art, ms Proposed method, ms Gain, %

DL processing delay 1080 549 50%
UL processing delay 108 108 0%
DL transmission
duration

590 40 93%

UL transmission
duration

660 140 79%

duration PS call setup 2140 837 61%
Step D1: Calculate the gain of the UL and DL delays.
Step D1.1: Case of UL: With the proposed new method, there is
only one delay in the UL as there is only one message in the DL.
That delay is represented by T2 in Fig. 8. It corresponds to the dif-
ference in the timestamp between the new_APDPA and the
new_CR. For simplicity purposes and to be relevant to prior arti-
cles, the UL_delay (new_APDPA–new_CR) is considered to be
equal to the delay in prior articles UL_delay (CS–CR). That consid-
eration is because of two factors. First, the new_APDPA is sent on
an FACH message which carries the CS in a prior article. Second,
the delays at the core side required to gather the information from
different messages to be sent in one message are considered to be
negligible. This is due to the fact that on the core side there is no
scheduled information as in the case of the air interface. On the
basis of Fig. 7

T2 = UL delay(new APDPA−new CR)

= UL delay(CS−CR) = 16 : 42 : 18 : 327

− 16 : 42 : 18 : 219 = 108ms

Note that for all other UL messages that are exchanged in prior arti-
cles, for example, UL CMS and UL APDPA messages, they trigger
a RANAP message between the RNC and core network and their
corresponding UL_delay is considered to be null in this paper.
This is due to the fact that in prior articles, as shown in the
figure, the delay of RANAP messages is very small.

As a conclusion, the new method does not bring any gain in UL
processing delays in comparison with prior articles.

Step D1.2: Case of DL: In prior articles, in DL the biggest delays
are the ones that occur during the signalling channel configuration
DL_delay (CSC–CS) and then during the data channel configur-
ation DL_delay (RBSC–RBS). From Fig. 7, their corresponding
DL_delay are

DL delay(CSC−CS) = 16 : 42 : 18 : 858

− 16 : 42 : 18 : 327 = 531ms

DL delay(RBSC−RBS) = 16 : 42 : 20 : 148

− 16 : 42 : 19 : 599 = 549ms

Other delays, for example, the DL_delay (SMCC–SMC) are not
counted as their values are very small. It follows that the total DL
processing delays in prior articles is

DL delay(RBSC−RBS)+ DL delay(CSC−CS)

= 531+ 549 = 1080ms

With the proposed method, the new_APDPA carries both the sig-
nalling and data channel configuration. As a result, the signalling
and data channel processing are performed simultaneously, and as
a consequence the DL_delay (new_APDPA–Z ) in this paper is con-
sidered to be equal to the max (DL_delay (RBSC–RBS), DL_delay
(CSC–CS)) = 549 ms.

It follows that the gain of the processing time in comparison with
prior articles is

1080− 549 = 531ms

Step D2: Calculate the gain in transmitted power. In UMTS, every
message is transmitted with a certain power, and regardless of
whether it is in UL or in DL, it is transmitted with a certain
power. The formulas used by the UE and by the Node B are
vendor specific and they take a few factors into consideration, for
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
example, the radio power path loss. In this paper, for the same
radio conditions, for example, the same radio path, we consider
that the same amount of radio energy is consumed with the pro-
posed method and that in prior articles. The gain is then deduced
by comparing the total transmitted duration with the proposed
method and that described in prior articles. In prior articles, accord-
ing to [8] the total duration of all RRC messages in DL is 590 ms,
and in UL it is 660 ms. With the proposed new method, the total
duration of all DL is represented by one message, the
new_APDPA is 40 ms, and for UL it is new_CR (20 ms) + Z
(120 ms) which is equal to 20 + 120 = 140 ms. It follows that the
gain in transmission time in DL is 93% (40 out of 590 ms) and in
UL it is 79% (140 out of 660 ms).
Step D3: Calculate the gain of new call setup. On the basis of (4),
the duration of the call setup with the proposed new method
becomes

New call setup duration= 20+ 108+ 40+ 549+ 120= 837ms

(9)

Therefore the gain in comparison with prior articles is

2140− 837 = 1303ms

Note that in order to further reduce the call setup duration the
UL_delay and DL_delay should be reduced. This requires an im-
provement in the actual hardware and software on all equipment
involved in the UMTS call setup.

A summary of all gains is shown in Table 5.

4 Conclusion and future work

In this paper, a novel generic storage method is described. It con-
sists of reducing the size of signalling messages by storing repeti-
tive information or repetitive tasks during a first call whenever
certain conditions apply in order to avoid processing them in the
following calls.

The application of this generic method to UMTS was described.
It was shown that there is a huge benefit achieved by this applica-
tion. In fact the UMTS call setup was reduced down to three mes-
sages, and as a consequence there is less call setup delay, less
processing and less energy consumption in comparison with that
described in prior articles, and by having less signalling messages
exchanged and a shorter message size the probability of interference
is reduced.

4.1 Future work

The same method could apply to many signalling procedures, re-
gardless of whether in UMTS or in other systems such as wireless
or wire line.

On the other hand, there is one case left where the existing
generic method does not apply. It corresponds to the ‘CR’ case
where the message to reduce is the first message that is sent from
the server to the client. This is left for future study.
Commons J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272



5 References

[1] 3GPP TS 25.331: ‘UMTS; Radio Resource Control (RRC)’, v11.8.0,
2014-01

[2] Grilli F., Vayanos A.: ‘Default configurations with differential encod-
ing in wireless communication system’. US Patent US20060040645,
February 2006

[3] Mikola J.: ‘Channel setup in a wireless communication network’. US
patent 2005/0250504, November 2005

[4] Fischer P., Feuillette R.: ‘Method and procedures for radio bearer
setup’. US Patent 2010/0182963, July 2010

[5] Kitazoe M., Grilli F., Tenny N.E.: ‘Stored radio bearer configurations
for UMTS networks’. US Patent US20060229102, October 2006

[6] Gupta M., Koc A., Vannithamby R.: ‘Reduced signaling overhead
during radio resource control (RRC) state transitions’. Patent
WO2013106060, July 2013

[7] Xu B., Ling L., Tao W.: ‘Methods for air interface message trans-
fer in fast call setup processes’. US Patent 7853258, December
2010

[8] Heik Y.B., Tafazolli R.: ‘Dynamic storage method for the UMTS
radio resource control’. Mosharaka for Researches and Studies,
J Eng, 2015, Vol. 2015, Iss. 2, pp. 59–67
doi: 10.1049/joe.2014.0272

This is an open
Fourth Int. Conf. on Communications, Computers and Applications
(MIC-CCA 2011), 2011, pp. 49–53

[9] Heik Y.B., Tafazolli R.: ‘Storing the RRC measurement control
message in order to make earlier measurements’. Mosharaka for
Researches and Studies MIC-CNIT2011, 2011, pp. 95–99

[10] Heik Y.B., Tafazolli R.: ‘Reducing the size of two NBAP messages
exchanged during a UMTS call setup’. Mosharaka for Researches
and Studies MIC-CNIT2011, 2011, pp. 91–94

[11] 3GPP TS 25.413: ‘UTRAN Iu interface RANAP (Radio Access
Network Application Part) signaling’, v11.5.0, 2013-12

[12] 3GPP TS 25.433: ‘UMTS, UTRAN Iub interface Node B Application
Part (NBAP) signaling’, v11.7.0, 2014-01

[13] 3GPP TS 34.108: ‘UMTS, LTE, Common test environments for User
Equipment (UE), Conformance testing’, v11.7.0, 2013-10

[14] ITU-T Rec. X.680-X.683: ‘ASN.1 (Abstract Syntax Notation One)’
[15] 3GPP TS 25.322: ‘UMTS, RLC (Radio Link Control)’, v11.2.0,

2013-04
[16] Heik B., Tafazolli R.: ‘Reducing the emergency call setup duration in

UMTS’. Proc. IEEE 19th Telecommunications Forum TELFOR 2011
Serbia, Belgrade, November 2011, pp. 343–346

[17] Mishra A.: ‘Performance characterization of signaling traffic in
UMTS core networks’. IEEE Globecom, 2003, pp. 1141–1146
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)


	1 Introduction
	2 Dynamic storage method
	3 Reducing the number of RRC messages in UMTS call setup down to three
	4 Conclusion and future work

