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SUMMARY

Traffic control is an effective and efficient method for the problem of traffic congestion. It is necessary to
design a high-level controller to regulate the network traffic demands, because traffic congestion is not only
caused by the improper management of the traffic network but also to a great extent caused by excessive
network traffic demands. Therefore, we design a demand-balance model predictive controller based on
the macroscopic fundamental diagram-based multi-subnetwork model, which can optimize the network traf-
fic mobility and the network traffic throughput by regulating the input traffic flows of the subnetworks. Be-
cause the transferring traffic flows among subnetworks are indirectly controlled and coordinated by the
demand-balance model predictive controller, the subnetwork division can variate dynamically according to real
traffic states, and a global optimality can be achieved for the entire traffic network. The simulation results
show the effectiveness of the proposed controller in improving the network traffic throughput. Copyright
© 2016 John Wiley & Sons, Ltd.

KEY WORDS: traffic network control; urban road network; macroscopic fundamental diagram; traffic flow
equilibrium

1. INTRODUCTION

Traffic congestion produces environment pollution, reduces traveling efficiency, and thus causes
economic losses. In order to keep the public roads used in a well-organized way by all the drivers,
it is very important to adopt traffic control systems to manage transportation in a good manner.
Well-designed traffic control and management strategies are effective methods for regulating traffic
behaviors [1–5]. Therefore, to reduce the congestion degree in road networks, effective and efficient
road network control policies are very important for a better utilization of existing transportation
infrastructures.
A number of coordinated urban network control strategies have already been developed [6–10].

Fixed-time coordinated control strategies make control decisions off-line based on the traffic flow data
collected and stored in the past. Traffic-responsive coordinated control strategies can in real time
measure the traffic states in the network and adapt the control schemes according to the current
measured traffic states. Model-based coordinated control strategies do not only introduce feedback
control so as to adjust in real time the control decision according to the current detected traffic states
but also predict into the future using a prediction model to make decisions good also in the long run
[6, 11–18]. The structures for the coordinated control strategies can be centralized, distributed, or
hierarchical. A centralized coordination control strategy optimizes the whole traffic network and
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searches for a global optimal solution for the network. A distributed coordination control strategy allocates
the control efforts to each local traffic controller and coordinates the local controllers through information
exchange. A hierarchical coordination control strategy divides the overall complex control problem for
large-scale systems into multiple levels; on each level, a specific control problem will be solved.
There are already well-known coordinated traffic-responsive control strategies for urban traffic

networks. The Split Cycle Offset Optimization Technique (SCOOT) [8, 19] and Sydney Coordinated
Adaptive Traffic System (SCATS) [20] are widely used in many big cities around the world [6], for
example, SCOOT is used in Beijing, and SCATS is used in Shanghai. They are both dynamic traffic
control strategies based on measured current traffic states in distributed, multi-level, hierarchical
system structures. It has already been shown that these two systems work effectively in the real traffic
world, but these two systems focus more on dynamic intersection controllers and local coordinations
that consider only a few neighbor intersections. In the 1980s and 1990s, a number of model-based
optimization control strategies based on simple traffic models emerged, for example, Optimization Pol-
icies for Adaptive Control (OPAC) [11], PRODYN [12], control of networks by optimization of
switchovers (CRONOS) [13], RHODES [14], and Method for the Optimization of Traffic Signals In
Online controlled Networks (MOTION) [21], which can forecast the future traffic behavior of the net-
work based on models. With these forecasting models, the control strategies are able to make control
decisions to guarantee better performance within an area of the traffic network in a near future. A real
test was realized for OPAC in Reston, USA (16 intersections) [22], and for MOTION in the center of
Köln-Deutz, Germany (12 intersections). However, the models used in these control approaches are
mainly simple traffic models based on the traffic data measured by upstream detectors, which to some ex-
tent limit the performance for the future. Coordinated traffic-responsive control strategies that are able to
avoid parts of the online computational complexity were also proposed. UTOPIA/SPOT [23] is a hierar-
chical system with simple local intersection controllers and a central controller for an area of urban net-
works. The central controller optimizes the control actions for the whole area based on the model of
the network. The local controller makes the decision only based on local information, but with a penalty
term to guarantee that the local decision is not too far from the central decision. Therefore,
UTOPIA/SPOT avoids part of the online computational burden but results in suboptimal solutions. Traf-
fic-responsive urban control (TUC) [18, 24] was proposed for controlling an urban traffic network based
on the well-known simple store-and-forward model. TUC designs a feedback regulator off-line based on
the store-and-forward model and online derives the traffic signals using a feedback control law by feeding
it with real-time measured traffic states. Therefore, the TUC strategy reduces the online computational
complexity significantly by moving the time-consuming optimization off-line. Compared with the
fixed-time controller, TUC can reduce the total time spent by 20–54% for different scenarios [24].
TUC has been implemented in three cities—Chania, Greece (23 intersections); Southampton, UK (53 in-
tersection); and Munich, Germany (25 intersections)—and has been proven to have good control effects
[25]. Model predictive control (MPC)-based traffic network control strategies are proposed in real time,
which optimize the overall traffic throughput from a global point of view but also cost more computa-
tional effort. In fact, traffic congestion is not only caused by the improper management of the traffic net-
work but also to a great extent caused by excessive network traffic demands (traffic inputs).
Therefore, in this paper, we mainly focus on the demand control for large urban traffic networks, which is

a high-level control algorithm through adjusting the traffic input allowed to enter the traffic network. We di-
vide a large urban traffic network into subnetworks and design a demand-balancemodel predictive controller
for these subnetworks by regulating the proportion of the input traffic demands on the boundary of the whole
network. The demand-balance model predictive controller is designed based on a macroscopic fundamental
diagram (MFD)-based subnetworkmodel, which is improved from themodel proposed byGeroliminis et al.
[26]. It indirectly coordinates the exchanging traffic flows among the subnetworks and automatically bal-
ances the allocation of the vehicles among the subnetworks, so as to maintain the maximum traffic mobility
and to achieve the maximum traffic throughput. Because there is no control actions on the border of two
adjacent subnetworks, it is possible to divide the subnetworks dynamically according to real traffic states.
The paper is organized as follows. In Section 2, we briefly review the background of MFD.

Section 3 illustrates the content of MFD and its equilibriums, and then the MFD-based
multi-subnetwork model is shown in Section 4. The demand-balancing model predictive controller
is introduced in Section 5. Section 6 is a case study. Finally, Section 7 concludes the paper.
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2. BACKGROUND OF MACROSCOPIC FUNDAMENTAL DIAGRAMS

In 1935, a fundamental diagram (i.e., the flow–density relationship) is proven to exist for a single road
by Greenshields et al. [27]. In 1969, the fundamental diagram for complex traffic networks was
investigated by Godfrey et al. [28]. In recent years, convincing empirical results were obtained by
Geroliminis and Daganzo [29], which illustrate that there also exists a fundamental diagram-like
relationship for entire traffic networks. Thus, the fundamental diagram-like relationship between the
network-aggregated vehicle occupancy and traffic flow is named as MFD, or also named as network
fundamental diagram (NFD) of traffic networks. The MFDs show the characteristic between the
network traffic accumulation (i.e., the number of vehicles in the network) and the network weighted
average traffic flow. In the mean time, Daganzo and Geroliminis [30] theoretically analyzed the
existence of MFD for networks with many intersections. In addition, Helbing [31] gave another
version of analysis for the existence of NFD. In [32], the factors that influence the shape of MFDs
are concluded as the structure of traffic networks, the heterogeneity of the networks, the traffic
demands, and the control strategies. But, according to Geroliminis and Daganzo [30], the shape of
an MFD is an existing characteristic of the network structure and is irrespective of traffic demands.
However, the heterogeneity of the networks due to traffic congestion is found by Buisson and Ladier
to be responsible to the hysteresis phenomena in MFDs [33].
Because the MFD provides the information on how the average network traffic flow changes with

the network traffic density, it can illustrate the traffic mobility within a traffic network. In this regard,
the MFD can be used as a performance indicator for the estimation of the mobility of signalized traffic
networks under different control strategies [34–36]. Recently, control strategies have been proposed
based on MFDs to regulate the aggregated network output flow and to improve the network mobility
by adjusting the network inflow rate (i.e., adjusting the number of vehicles entering the network).
Some of the control strategies are designed based on the partition considering about the homogeneity
of the subnetworks [37–39]. Geroliminis et al. [26] proposed an MPC approach for a two-region urban
network based on the subnetwork MFD models, and Haddad et al. [40] analyzed and proved the
stability of the control approach for a two-region urban network. Ekbatani et al. [41, 42] proposed
an easy-to-implement feedback control strategy for regulating the inflow rate of an urban network to
increase the traffic mobility within the region, and in [43], the feedback-based gating control is applied
at junctions located further upstream of the protected network to deal with the time delay. Lin et al.
[44] designed a high-level traffic flow coordinator for a multi-level urban traffic network controller
based on the MFD features of the subnetworks. An MFD-based subnetwork model predictive controller
is proposed in [45], which can optimize and regulate the exchanging traffic flows among subnetworks to
obtain an overall network performance. In [46], an optimal hybrid control problem for a multi-region
MFD network is formulated as a mixed-integer nonlinear optimization problem to control the hetero-
geneous traffic network. In [47], a robust perimeter controller is designed for an urban region with the
MFD representation including MFD uncertainty, and in [48], a robust constrained control of uncertain
MFD networks is proposed to reformulate the nonlinear MFD model for multi-region MFD to a linear
model with parameter uncertainties.

3. MACROSCOPIC FUNDAMENTAL DIAGRAM AND ITS EQUILIBRIA

The MFD illustrates an aggregated feature for traffic networks, which can describe how the aggregated
network traffic flow changes with the aggregated network occupancy (or network accumulation) [29,
30], as Figure 1 shows. The network traffic accumulation A(t) refers to the number of vehicles in a
traffic network at a time instant t:

A tð Þ ¼ ∑
i∈L
ai tð Þ (1)

where ai(t) is the number of vehicles on link i at time instant t and L is the set of links in the traffic
network. The network traffic accumulation can also be replaced by the average traffic density in
the traffic network. The aggregated network traffic flow is actually the weighted network traffic
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flow (i.e., the space mean average flow), which represents the average traffic flow in a traffic
network; that is,

F tð Þ ¼
∑
i∈L
li�f i tð Þ
∑
i∈L
li

(2)

where F(t) is the weighted average network flow rate, fi(t) is the traffic flow rate on link i at time
instant t, and li is the length of link i.
However, a well-defined MFD curve in Figure 1 only exists for an ideal situation; that is, a well-

defined MFD curve can only be realized when the traffic flows in a traffic network are always evenly
scattered, that is, homogeneous [33]. When the traffic in a traffic network is heterogeneous, hysteresis
will occur, especially in the saturated and over-saturated regions (i.e., right-hand-side region of the
MFD curve). Therefore, the MFD curve expands to a region instead of a well-defined curve. During
the elimination of spillbacks and gridlocks within the network, hysteresis phenomena appear in this
region, because of the heterogeneity of the traffic flows in the network.
The traffic flows in a traffic network may reach an equilibrium on the MFD curve, that is, keeping a

constant average network flow and a constant network accumulation. The equilibrium can be achieved,
if the network output flow equals the network input flow, and the number of vehicles in the traffic net-
work does not vary with time. Traffic flow equilibria exist on the MFD of a traffic network, when the
average network input flow is proportional to the weighted average network flow; that is,

f in tð Þ ¼ 1
r
F tð Þ; (3)

which is bounded by f in tð Þ∈ 0;
1
r
Fc

� �
and r∈ (0, 1]; Fc is the critical average network flow on MFD.

If the traffic flows are scattered homogeneously in a traffic network, that is, always evenly scattered

within the traffic network, then for any average network input flow f in tð Þ∈ 0;
1
r
Fc

� �
, there exist two

network flow equilibria on the MFD, (Al(t), F(t)) and (Ar(t), F(t)), on each side of the MFD curve,
which satisfy f in tð Þ ¼ 1

r F tð Þ. But, if the traffic flows are scattered heterogeneously in a traffic network,
that is, unevenly scattered within the traffic network, then there exists only one network flow equilib-
rium on the MFD, (Al(t), F(t)), on the left-hand side of the MFD curve, which satisfies f in tð Þ ¼ 1

r F tð Þ.
For more details, please see [49].

4. MACROSCOPIC FUNDAMENTAL DIAGRAM-BASED MULTI-SUBNETWORK MODEL

Define a large urban traffic network with Ñ subnetworks; that is, the set of subnetworks is N={1, 2,
…, Ñ}. For each subnetwork, we assume that the subnetwork is simple enough to have a well-defined

Figure 1. A well-defined traffic network macroscopic fundamental diagram.
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MFD. Therefore, we are able to establish a subnetwork model by mapping the network output flow
through the number of vehicles in the network based on the MFD relationship. In each subnetwork,
the vehicles are conceptually divided into two parts, the vehicles intending to stay inside the subnet-
work and the vehicles intending to leave the subnetwork for neighboring subnetworks. These two parts
are calculated separately in the evolution of the MFD-based subnetwork model. The subnetwork
models are updated every time interval Ts.
Let us take subnetwork i for example (Figure 2) the number of vehicles in subnetwork i at time step

k is separated by its traveling directions, that is, by the destination subnetworks for the traffic flows.
We represent the number of vehicles in subnetwork i at time step k intending to stay in subnetwork
i as nii(k) and the number of vehicles in subnetwork i at time step k intending to go to subnetwork j
as nij(k), where j∈Ni and Ni is the set of subnetworks in the neighborhood of subnetwork i. They
are updated by the following equations:

nii k þ 1ð Þ ¼ nii kð Þ þ Ts dii kð Þ þ ∑
j∈Ni

pii kð Þ�Mji kð Þ �Mii kð Þ
" #

i∈N ;

nil k þ 1ð Þ ¼ nil kð Þ þ Ts dil kð Þ þ ∑
j∈Ni

pil kð Þ�Mji kð Þ
" (4)

�Mil kð Þ� i∈N ; l∈Ni (5)

where similarly the traffic demand for subnetwork i is also expressed separately by dil(k) and dii(k), the
traffic demand for subnetwork i at time step k intending to go to subnetwork l (l∈Ni), and the traffic
demand intending to stay in subnetwork i at time step k; Mji(k) is the traffic flow getting into subnet-
work i from subnetwork j (j∈Ni belongs to the neighborhood of subnetwork i) at time step k, andMil(k)
is the traffic flow leaving subnetwork i for subnetwork l (l∈Ni∪ i, if l= i, it represents the traffic flow in
subnetwork i intending to leave from subnetwork i at time step k); pil(k) represents the one-step
transition probability of the traffic flow transferring from subnetwork i to subnetwork l at time step
k (i, l∈N), which is the proportion of the traffic flow in the total network traffic flow intending to
go to different destinations. Therefore, we have

∑
l∈N

pil kð Þ ¼ 1 i∈N ; (6)

which illustrates that the sum of the one-step transition probabilities for the traffic flows in subnetwork
i equals 1, that is, the traffic flows intending to stay in subnetwork i and to leave for the subnetworks
in its neighborhood. Note that if subnetwork i and subnetwork l are physically not connected, then
pil(k) = 0. If subscript i= l, then the one-step transition probability pii(k) stands for the proportion of
the traffic flow in the network flow intending to keep on staying in subnetwork i at time step k. For all

Figure 2. Illustration for the traffic flows of subnetwork i.
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subnetworks i∈N, the transition probabilities can be written in a transition matrix, which provides the
transition probabilities among all subnetworks. The transition matrix has similar properties as Markov
transition matrix, that is, 0≤ pij(k)≤ 1,∑ j∈N pij (k) = 1(i∈N). However, the evolution of the traffic model
is a non-strict Markov process, in which the current traffic states (number of vehicles of subnetworks)
depend on the traffic states of the previous time step, the one-step transition probabilities, the network
demand flows, and the subnetwork transferring flows.
The network traffic flow in subnetwork i can be obtained through the MFD function of the subnet-

work, which provides the mapping relation between the network accumulation ni(k) and the network
flow Mi(k); that is,

Mi kð Þ ¼ Gi ni kð Þð Þ i∈N : (7)

By multiplying the one-step transition probability, the transferring traffic flows can be obtained from
the network traffic flow of subnetwork i as

Mii kð Þ ¼ pii kð Þ�Mi kð Þ i∈N ; (8)

Mil kð Þ ¼ pil kð Þ�Mi kð Þ i∈N ; l∈Ni; (9)

which means that the network traffic flow of subnetwork i is divided into the traffic flow intending to
stay in the subnetwork and the traffic flows intending to leave for neighboring subnetworks.
The number of vehicles in subnetwork i, that is, the traffic accumulation of the subnetwork, can be

updated by

ni kð Þ ¼ nii kð Þ þ ∑
l∈Ni

nil kð Þ i∈N ; (10)

which is the sum of the number of vehicles intending to stay in subnetwork i and the number of
vehicles intending to leave subnetwork i for the neighboring subnetworks.
The one-step transition probabilities can be estimated by

pii kð Þ ¼ nii kð Þ
ni kð Þ ; pil kð Þ ¼ nil kð Þ

ni kð Þ i∈N ; l∈Ni (11)

They can also be obtained through other methods, for example, O-D information analysis. In the
previous definition, the transition probabilities are time dependent because of the variation of network
traffic states (the number of vehicles in subnetworks). The transition probabilities will not become
static, until the traffic flows in subnetworks reach their equilibria (i.e., steady states—the traffic flows
and the number of vehicles stay constant).
Similarly, the traffic demand for subnetwork i can be calculated by

di kð Þ ¼ dii kð Þ þ ∑
l∈Ni

dil kð Þ i∈N ; (12)

which is the sum of the traffic demand intending to stay in subnetwork i and the traffic demands
intending to leave subnetwork i for the neighboring subnetworks. In addition, the transferring traffic
flow getting into subnetwork i from neighboring subnetworks is

ti kð Þ ¼ ∑
j∈Ni

Mji kð Þ i∈N : (13)

Then, the input traffic flow for subnetwork i is
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f in;i kð Þ ¼ di kð Þ þ ti kð Þ i∈N (14)

which contains the total traffic demand of subnetwork i and the total transferring traffic flow for
subnetwork i from other subnetworks.

5. DEMAND-BALANCE MODEL PREDICTIVE CONTROL COORDINATING
SUBNETWORKS

The subnetwork model described in Section 4 is adopted as the control model for predicting the future
traffic states. The control time interval of the model predictive controller is defined as Tc, which is an
integer multiple of the simulation time interval Ts of the subnetwork model; that is,

T c ¼ I �T s; (15)

where I is an integer. The control time step is kc, and the simulation time step is ks. Let the prediction
horizon be Np, and then, the online optimization problem of MPC can be expressed as

min
r kcð Þ

J ¼ min
r kcð Þ

J bM ksð Þ; d ksð Þ
� �

¼�∑
NpI

ks¼1
∑
i∈N

Mii ksð Þ

s:t: Subnetwork model;
d ksð Þ ¼ r kcð ÞT˙ HT ˙ ed ksð Þ
nij ksð Þ≥0; i; j∈N ; ks ¼ 1; 2;…;NpI
Mij ksð Þ≥0; i; j∈N ; ks ¼ 1; 2;…;N pI
0≤ri kcð Þ≤1
i∈N ; ks ¼ kc; kc þ 1;…; kc þ N p � 1

(16)

where the control objective corresponds to the accumulated traffic flows that leave all the subnetworks
and is subject to the model constraint, the control action constraint, the lower and upper bounds for the
control variables, traffic accumulation in the subnetworks, and the output traffic flows. The optimiza-
tion tends to minimize the objective function so as to maximize the accumulated traffic flows that leave
all the subnetworks in the prediction horizon.
The objective function is calculated via the subnetwork model in Section 4. For the given prediction

horizon Np, the estimated traffic flows leaving all the subnetworks at time step ks are expressed by the
following vector:

bM�
ks þ k ks

��� ¼ ½ bM 11
�
ks þ k ksj � bM 22

�
ks þ k ks

��� ⋯bMNN ks þ k ksj Þð �T; k ¼ 1; 2;…;NpI
(17)

where bM ks þ k ksj Þð represents the traffic flow leaving all subnetworks at the kth simulation step in the

future counted from the current simulation time step ks and bM ii ks þ k ksj Þð refers to the traffic flow leav-
ing subnetwork i. The leaving traffic flows of all the subnetworks for the prediction horizon are then
expressed by

bM ksð Þ ¼ ½ bM�
ks þ 1 ksj Þ bM�

ks þ 2 ksj �
⋯bM ks þ N pI ksj Þ� 	

T
(18)

Because the control variables are the proportion of input traffic demands that can enter the
subnetworks, the input traffic demand d(ks) in the subnetwork model (Section 4) is substituted

by the supplied traffic demand ed ksð Þ multiplied with the metering control action r(kc), that is, d ksð Þ ¼
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r kcð ÞT�HT�ed ksð Þ, where HT is a coefficient matrix to make up the dimension difference between r(kc)
anded ksð Þ. It is to say that the original supplied traffic demands for the subnetworks are regulated by the
metering control actions on boundaries of the subnetworks. The input traffic demand of all the subnet-
works for the prediction horizon at step ks is defined as

d
�
ks þ k ksj � ¼ ½d1

�
ks þ k ksj �

d2
�
ks þ k ksj �

⋯

dN ks þ k ksj Þð �T; k ¼ 0; 1;…;N pI � 1
(19)

d ksð Þ ¼ ½d�ks þ 0 ksj Þ d�ks þ 1 ksj �
⋯

d ks þ N pI � 1 ksj Þ� 	
T

(20)

Similarly, the supplied traffic demand of all the subnetworks for the future at step ks is

ed�ks þ k ksj Þ ¼ ½ed1�ks þ k ksj Þ ed2�ks þ k ksj Þ⋯edN ks þ k ksj Þð �T; k ¼ 0; 1;…;NpI � 1
(21)

ed ksð Þ ¼ ½ed�ks þ 0 ksj Þ ed�ks þ 1 ksj Þ⋯ed ks þ N pI � 1 ksj Þ� 	
T;

(22)

and the future traffic control action of all the subnetworks at control step kc is

r
�
kc þ k kcj ¼ ½r1

�
kc þ k kcj �

r2
�
kc þ k kcj �

⋯rN kc þ k kcj Þð �T; k ¼ 0; 1;…;Np � 1
(23)

r kcð Þ ¼ ½r�kc þ 0 kcj �
r
�
kc þ 1 kcj �

⋯

r kc þ N p � 1 kcj Þ� 	
T

(24)

where r(kc + k|kc) denotes the control actions for all the subnetworks at the kth control step in the future
counted from the current control time step kc and ri(kc + k|kc) is the control action for subnetwork i.
By deriving the optimal control input r*(kc) from the aforementioned online optimization, the first

sample of the optimal control sequence, that is,

r� kcð Þ ¼ ½r��kc þ 0 kcj �
r�
�
kc þ 1 kcj �

⋯

r� kc þ N p � 1 kcj Þ� 	
T

(25)

where

r�
�
kc þ k kcj � ¼ ½r�1

�
kc þ k kcj �

r�2
�
kc þ k kcj �

⋯r�N kc þ k kcj Þð �T k ¼ 0; 1;…;N p � 1
(26)

is given back to the traffic network and is implemented. When arriving to the next control step kc + 1,
the whole time horizon is shifted one step forward, and the optimization over the new prediction
horizon starts over again, based on the prediction model that is fed with the measured traffic states, that
is, the traffic accumulation of the subnetworks, obtained from the real traffic field. This rolling horizon
scheme closes the control loop, enables the system to obtain feedback from the real traffic network, and
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makes the model predictive controller adaptive to the uncertainties and disturbances of the traffic
environment [50, 51].
The objective function in (16) can be also substituted by

min
r kcð Þ

J ¼ �α ∑
N pI

ks¼1
∑
i∈N

Mii ksð Þþ

β ∑
Np�1

kc¼1
∑
i∈N

ri kcð Þ � ri kc � 1ð Þ½ �
(27)

which means maximizing the total network output flow and minimizing the accumulative variations
between the successive control actions. In the objective function, α and β are the coefficients, which
represent the proportion between the total network output and the total control variation. Thus, we
define α+ β =1 with 0≤α≤ 1 and 0≤ β ≤ 1.

6. CASE STUDIES

The demand-balancing model predictive controller is designed to regulate the input traffic flows to an
urban region with two subnetworks, so as to maintain the maximum throughput flow of the entire
traffic network. The simulations are run for different scenarios to evaluate the control effect of the
designed controller.
The traffic network has two subnetworks, S1 and S2, and they both have the same MFD. The MFD

can be fitted by Gi(ni(t)) = 1.4877 · 10
�7 ·ni

3� 2.9815 · 10�3 ·ni
2 + 15.0912 · ni, i=1, 2, n1,cr = n2,

cr = 3400 [veh], G1(n1,cr) =G2(n2,cr) = 2.268· 104 [veh/hour], n1,jam = n2,jam = 10 000 [veh]. The parame-
ters for the designed demand-balancing model predictive controller are as follows: the simulation time
interval is Ts = 1 [second], the control time interval is Tc = 120 [second], the prediction horizon is
Np = 10, and the control time horizon is Nc = 2. The objective function is first selected the same as in
(16), that is, maximizing the total network output flows.
As Figure 3 shows, the results are provided for scenario A1, in which the initial accumulations for S1

and S2 are n1(0) = 1000 [veh] and n2(0) = 500 [veh], and the variations of the supplied traffic demands
for the subnetworks are shown in Figure 3(a). The initial accumulations of two subnetworks are both
on the left-hand side of the MFD curve, which means that the two subnetworks are initially
uncongested. In Figure 3(f), the input traffic demands change with the supplied traffic demands, and

Figure 3. The demand-balancing model predictive control results for scenario A1. (a) The supplied traffic de-
mands, (b) the evolution for network accumulations, (c) the evolution for network flows, (d) the subnetwork

macroscopic fundamental diagrams (MFDs), (e) the accumulative trip completion, (f) the input subnetwork traffic
flows, and (g) the control actions of the subnetworks.
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the input traffic flows for the subnetworks vary accordingly. To adapt to the input traffic flows, the
network accumulations and the network average flows change accordingly and reach their equilibria in
Figure 3(b and c), which is a validation for the conclusion in [49]. As Figure 3(g) shows, because the
subnetworks are initially uncongested, the demand-balancing model predictive controller uses very
little control effort to stabilize the two-subnetwork traffic system.
As Figure 4 shows, the results are provided for scenario A2, in which the supplied traffic demands

for the subnetworks are the same as in scenario A1, as in Figure 3(a), but the initial accumulations for
S1 and S2 are changed into n1(0) = 7000 [veh] and n2(0) = 6000 [veh]. The initial accumulations of two
subnetworks are both on the right-hand side of the MFD curve, which means that the two subnetworks
are initially congested. The evolution for network accumulations is shown in Figure 4(a), for subnet-
works 1 and 2. It shows that the number of vehicles in the subnetworks drops rapidly from the
congested region to the uncongested region and then increases and decreases because of the increment
of the input subnetwork flows. This can be also seen in Figure 4(c); the traffic state trajectories of the
subnetworks move from the congested part (right-hand side) of the MFDs to the uncongested part (left-
hand side) of the MFDs. Similarly, in Figure 4(b), under the control of the demand-balancing model
predictive controller, the network traffic flows of the two subnetworks first increase and then decrease,
getting from the congested region to the uncongested region, and then they fluctuate in the
uncongested region (i.e., the left-hand side of the MFDs) because of the variation of the input subnet-
work flows. The control actions (i.e., the metering for the input traffic demands) are shown in Figure 4
(f), which illustrates that the input traffic demands for subnetworks are restricted at the beginning of the
simulation, so as to allow the subnetworks to recover from the congested status. Although the subnet-
works are initially congested, the demand-balancing model predictive controller is able to stabilize the
subnetworks to their equilibria by regulating the proportion of the input network demands.
As Figure 5 shows, the results are provided for scenario B1, in which the initial accumulations for S1

and S2 are n1(0) = 7000 [veh] and n2(0) = 8000 [veh], and the supplied traffic demands for the subnet-
works are constant as shown in Figure 5(a). The initial accumulations of the two subnetworks are both
on the right-hand side of the MFD curve; that is, the two subnetworks are initially congested. In
Figure 5(b), the network accumulation of subnetwork 1 reduces to the uncongested region, but the

Figure 4. The demand-balancing model predictive control results for scenario A2. (a) The evolution for network
accumulations, (b) the evolution for network flows, (c) the subnetwork macroscopic fundamental diagrams

(MFDs), (d) the accumulative trip completion, (e) the input subnetwork traffic flows, and (f) the control actions of
the subnetworks.
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network accumulation of subnetwork 2 deteriorates until it becomes totally congested. It means that
the network controller sacrifices the performance of the more congested subnetwork S2, to guarantee
the performance of S1 and thus to achieve a higher overall performance of the entire system. The same
conclusion can also be drawn from Figure 5(c, d, and f); the demand-balancing model predictive con-
troller can only take control actions to stabilize subnetwork 1 (adjusting the traffic states of subnetwork
1 to uncongested region and keeping its equilibrium) but cannot stabilize subnetwork 2 (the traffic in
subnetwork 2 falls into complete congestion). To prevent subnetwork 2 from getting into congestion,
we should satisfy fin,2< fout,2. According to (14), we have M12<F2 =M2. Thus, we change the initial
accumulation value to n2(0) = 6000 [veh], so as to satisfy this condition and make the system
sterilizable.
Therefore, for scenarios B2 and B3, the supplied traffic demands for the two subnetworks are the

same as shown in Figure 5(a), but the initial accumulations for S1 and S2 are adapted to n1(0) = 7000
[veh] and n2(0) = 6000 [veh]. For the two scenarios, we adopt different control objectives for the
demand-balancing model predictive controller, (16) for scenario B2 and (27) for scenario B3. In
scenario B2, the controller tends to maximize the total network output flow. As Figure 6 shows, the
two subnetworks can return to the uncongested region under the controller and stabilize on their
equilibria. In scenario B3, the controller not only considers maximizing the total network output flow
but also requires minimizing the variations of the control actions. As Figure 7 shows, the two subnet-
works are also successfully stabilized by the controller. But it is obvious that the control actions
become smoother as in Figure 7(f), which results in a smoother network input flows in Figure 7(e).
By comparing the accumulative trip completion for scenarios B2 and B3 in Figure 7(d), the two
controllers obtain almost the same results.
In Figure 8, the simulation setup is the same as in scenario A1, but with added disturbances in the

supplied traffic demands. We add random errors in the supplied traffic demands in Figure 3 to simulate
the disturbances in traffic demand estimation. The results show that the controller can adjust the
control inputs to adapt to the uncertainties in supplied traffic demands, and the control actions for
the two subnetworks can cooperate with each other to maintain the performance of the whole system.
By regulating the input traffic flows, the demand-balancing model predictive controller overcomes

the drawback of the model predictive controller taking the subnetwork exchanging traffic flows as
control measures, which is aroused by the manually created queues on the edges among subnetworks.
It can utilize the capacity of the subnetworks to the maximum extent and keep the optimality of the
derived control schemes. The demand-balancing controller implicitly regulates the transfer of traffic
flows among subnetworks through the global optimization of the whole network, which enables it to
adopt dynamic methods to divide the traffic network into subnetworks. A large network can be divided

Figure 5. The demand-balancing model predictive control results for scenario B1. (a) The supplied traffic
demands, (b) the evolution for network accumulations, (c) the evolution for network flows, (d) the subnetwork
macroscopic fundamental diagrams (MFDs), (e) the accumulative trip completion, (f) the input subnetwork traffic

flows, and (g) the control actions of the subnetworks.
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into smaller subnetworks according to the physical structure of the network and the congestion degree
of the roads as in [52].

Figure 6. The demand-balancing model predictive control results for scenario B2. (a) The evolution for network
accumulations, (b) the evolution for network flows, (c) the subnetwork macroscopic fundamental diagrams

(MFDs), (d) the input subnetwork traffic flows, and (e) the control actions of the subnetworks.

Figure 7. The demand-balancing model predictive control results for scenario B3. (a) The evolution for network
accumulations, (b) the evolution for network flows, (c) the subnetwork macroscopic fundamental diagrams

(MFDs), (d) the comparison for the accumulative trip completion, (e) the input subnetwork traffic flows, and (f)
the control actions of the subnetworks.
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7. CONCLUSIONS

On the basis of the MFD-based multi-subnetwork model, a high-level MPC strategy is proposed
for adjusting the network input traffic demands, so as to balance the traffic densities of subnet-
works and to maximize the network traffic throughput. The proposed demand-balancing model
predictive controller can be adopted as a high-level controller for a hierarchical urban traffic
control strategy.
The proposed demand-balancing model predictive controller is simulated on a traffic network with

two subnetworks for different traffic scenarios. The simulation results show that the demand-balancing
model predictive controller is able to stabilize the network traffic states of the subnetworks to their
analytical equilibria. If the condition is satisfied, the demand-balancing model predictive controller
can draw the subnetworks from the congested region to the uncongested region and can maintain
the subnetwork traffic states around the maximum value of the network flow by regulating the network
input flows. In addition, the demand-balancing model predictive controller indirectly controls the
exchanging traffic flows among subnetworks; does not create queues on the boundary between subnet-
works, which allows dynamic network division according to real-time varied traffic states; and main-
tains the global optimality for the entire traffic network.
In the future, multi-level MPC algorithms will be further investigated with the application of the

demand-balancing MPC as the high-level controller, and experiments will be carried out in micro-
scopic urban traffic simulation environments.
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fundamental diagrams (MFDs), (d) the comparison for the accumulative trip completion, (e) the input subnetwork

traffic flows, and (f) the control actions of the subnetworks.
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