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Article

Repeated measures ANOVA is a popular statistical technique 
widely used by a variety of research scientists. In most appli-
cations, the goal of the researcher is to examine changes over 
time on a single variable. For instance, a clinical psycholo-
gist may examine the long-term effectiveness of a therapeu-
tic intervention by acquiring scores from a depression 
inventory on three different occasions: (a) 1 hr prior to the 
intervention, (b) 1 month post intervention, and (c) 1 year 
post intervention. By using repeated measures ANOVA, the 
researcher can assess the equivalence of mean levels of 
depression across the three measurement occasions. Of 
course, repeated measures ANOVA can also be used to 
address a much wider and more complex array of questions, 
especially when additional variables are assessed over time 
or when grouping variables are also examined. Researchers 
understand, nonetheless, that even for a simple study design, 
conducting a repeated measures ANOVA can be tricky busi-
ness. One must worry about outliers, missing data, and a 
variety of assumptions (e.g., continuity, normality, homoge-
neity, and particularly sphericity). A choice must also be 
made between the traditional univariate, multivariate, and 
mixed-model approaches toward the analysis (Misangyi, 
LePine, Algina, & Goeddeke, 2006), and with this choice 
come additional concerns regarding corrections for Type I 
error inflation and the potential loss of statistical power (see 
Maxwell & Delaney, 2004).1

In this article, we introduce a simple alternative to 
repeated measures ANOVA that requires fewer assumptions, 
is immune to outliers, and allows researchers to focus on the 

observations in hand rather than on the estimation of abstract 
population parameters. Researchers can also focus on assess-
ing the accuracy of predicted patterns within the data rather 
than on the computation and interpretation of means and 
variances. Consequently, the issues underlying the choice 
between the univariate, multivariate, and mixed-model 
approaches to repeated measures ANOVA are completely 
eschewed. This novel and parsimonious alternative is 
referred to as an Ordinal Pattern Analysis in the context of 
Observation Oriented Modeling (Grice, 2011, 2014). Below, 
we demonstrate its features using a published data set that 
presented numerous problems for repeated measures ANOVA 
but that in contrast was easily analyzed using an Ordinal 
Pattern Analysis.

Repeated Measures ANOVA

In a study on social reinforcement learning, Craig et  al. 
(2012) captured and tagged honeybees to track their visits to 
an “artificial flower” in which the bees could consume a 
rewarding sucrose-rich solution. For the first six recorded 
visits, the bees were permitted to consume the sucrose solu-
tion and freely fly from the flower to return to the hive. Based 
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on simple laws of learning, the bees were expected to return 
to the mechanical flower (an excellent source of food) at 
shorter and shorter intervals from the first visit to the sixth. 
The intervals between visits were referred to as Inter-Visit-
Intervals, or IVIs. The bees were then “frustrated” for six 
consecutive visits by trapping them for several minutes in the 
mechanical flower after they had consumed the sucrose solu-
tion, thus delaying their return to the hive. For these trials, 
the bees were expected to return to the flower at longer and 
longer intervals as the “frustration” of being trapped in the 
flower affected their behavior.

IVI measurements, reported in seconds, for 10 bees across 
the 12 trials are presented in Table 1. The maximum interval 
for a bee to return to the mechanical flower was set at 60 min 
(3,600 s), and all subsequent trials were treated as missing data 
if the bee returned several hours later, failed to return at all, or 
was observed foraging at a nearby open feeder with a less 
attractive source of sucrose (note Bees 7, 8, and 10 in Table 1). 
The recorded IVIs are considered independent between bees 
but dependent across trials and are thus suitable for analysis 
using a repeated measures ANOVA. As can be seen in Table 1, 
however, several features of the data are alarming. First, the 
3,600 values are problematic because, although they fulfill a 
useful data management function, they represent extreme 
cases that could unduly affect the means for any given trial. 
Second, a single missing value on any one of the 12 trials 
could result in that bee being omitted depending on the type of 
analysis chosen. Finally, extreme times other than the 3,600 
values may unduly influence the mean for any particular trial 
and consequently affect the ANOVA results as well. Indeed, 
the means and standard errors plotted in Figure 1 show the 
impact of the extreme times (>1,000 s) for Trials 8 through 12.

As might be expected, the results from the omnibus 
ANOVA with all of the extreme values included yielded a 
highly significant univariate omnibus F value, F(11, 88) = 
4.61, p < .001, η2 = .37. However, a number of questions 
raise concerns about this result. Because the data were ana-
lyzed in SPSS using the General Linear Model option (i.e., 
the traditional univariate approach to repeated measures 

ANOVA), all of the data for the seventh honeybee were 
excluded automatically from the analysis. Should the miss-
ing data be replaced with estimated IVI times? Replacing 
missing data routinely rests on the Missing at Random or 
more restrictive Missing Completely at Random assumptions 
(see Fox-Wasylyshyn & El-Masri, 2005, for a pithy review), 
which may not be the case for these data. However, no matter 
how the missing data are finally handled, the extreme 3,600 
values and other outliers are still present. Perhaps these val-
ues should be deleted and replaced as well, or perhaps some 
type of transformation should be applied to the data.

Matters are made more difficult by the small number of 
honeybees relative to the number of trials. Even with a com-
plete set of observations, the data could not be analyzed with 
the mixed-models approach (e.g., using the Mixed Model 

Table 1.  Intervals (in Seconds) Between Visits to the Mechanical Flower.

Trials

  1 2 3 4 5 6 7 8 9 10 11 12

Bee 1 219 225 277 237 355 265 233 503 287 668 772 1,219
Bee 2 161 225 106 121 144 165 225 225 297 424 231 510
Bee 3 181 177 157 189 162 180 321 165 285 270 480 330
Bee 4 133 115 164 113 130 331 240 280 255 270 210 260
Bee 5 224 206 279 286 265 276 185 192 180 274 195 340
Bee 6 128 131 103 102 137 106 149 155 170 1,769 138 308
Bee 7 168 271 160 201 140 199 415 1,450 3,600  
Bee 8 168 211 307 202 177 224 810 545 1,380 1,155 1,035 3,600
Bee 9 188 129 156 296 267 227 183 248 460 699 135 925
Bee 10 343 250 224 343 286 303 414 179 339 210 720 3,600

Figure 1.  Inter-Visit-Interval means and standard errors for the 
12 trials with and without extreme cases.
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option in SPSS on restructured data; see Little, Milliken, 
Stroup, Wolfinger, & Schabenberger, 2006; Pinheiro & 
Bates, 2000, for discussions of mixed-model ANOVA), and 
the multivariate F value using the General Linear Model 
option in SPSS could not be computed due to insufficient 
degrees of freedom. The traditional univariate approach to 
repeated measures ANOVA was therefore the only option for 
testing the omnibus null hypothesis (as stated below), and 
this approach routinely requires an adjustment for violation 
of the sphericity assumption. When the Greenhouse–Geisser 
correction is applied, the degrees of freedom decrease to 1.46 
and 11.68, yielding a p value of .042. The Huynh–Feldt cor-
rection reduces the degrees of freedom to 1.70 and 13.62, 
yielding a p value of .034. Finally, the lower-bound correc-
tion reduces the degrees of freedom to 1 and 8, yielding a 
non-significant p value of .064. It is widely recommended 
that researchers use one of these corrections to the univariate 
F value due to its sensitivity to violations of the sphericity 
assumption (Maxwell & Delaney, 2004). Which correction 
should be chosen here, and what of the other assumptions 
underlying the accuracy of the p value? Are additional trans-
formations to the data or statistical adjustments necessary? 
With this question for these troublesome data, and without 
even arriving at more interesting specific mean comparisons, 
it should be clear that Frankenstein’s monster is potentially at 
hand . . . and he will be all too willing to lead his creator into 
misguided interpretations and conclusions.

Observation Oriented Modeling

What is needed for these types of “difficult” data is an 
Ordinal Pattern Analysis (OPA), which is simple, relatively 
free of assumptions, and yields results that are transparent 
and easily interpretable (Thorngate & Edmonds, 2013). 
Conducted within the wider context of Observation Oriented 
Modeling (Grice, 2011), this analysis also prompts an overall 
shift in perspective. Traditional statistics, such as the ANOVA 
example above, represent what Breiman (2001) refers to as 
the modeling approach to data. This approach regards data to 
be the result of stochastic processes, and analyses are cen-
tered on model fitting and parameter estimation. Binary deci-
sions are also often made with regard to the fitted models 
(e.g., “the linear model was statistically significant”) and 
estimated parameters (“the null hypothesis, µ = 0, was 
rejected”).

In contrast, the observation oriented modeler regards data 
to be the result of a generative causal mechanism. In the ideal 
case, the researcher will in fact construct an iconic model 
describing the structures and processes underlying the data 
(e.g., Grice, 2015; Grice, Barrett, Schlimgen, & Abramson, 
2012). The goal of the analysis is therefore to identify theo-
retically meaningful and robust patterns with the given obser-
vations (data), which is more akin to what Breiman (2001) 
referred to as algorithmic modeling. Because patterns are 
sought, the computation of means, variances, covariances, 

and so on, is unnecessary, nor is it necessary to use a particu-
lar statistical model (e.g., the General Linear Model). The 
entire null hypothesis significance testing paradigm, which 
underlies the binary decisions in traditional statistics, is also 
replaced by analyses that (a) involve careful visual examina-
tion of data using the “eye test” (or “interocular traumatic 
test,” Edwards, Lindman, & Savage, 1963) and (b) provide 
the tools necessary for determining which observations are 
consistent with the theoretically meaningful pattern. 
Determining the overall accuracy of the explanatory model is 
therefore tantamount, leading to an increase or decrease of 
confidence in the model.

To demonstrate the shift in perspective from data model-
ing and repeated measures ANOVA to Observation Oriented 
Modeling and OPA, we reanalyzed portions of Craig et al.’s 
(2012) original data. The complete design of Craig et al.’s 
study was quite complex, including 23 IVIs and 3 experi-
mental and 1 control group of honeybees (total N = 50). For 
the purposes of demonstrating OPA and comparing it with 
ANOVA, we examined only the first 12 IVIs and only 2 
groups of honeybees. This subset of the original data was 
sufficient to demonstrate the occurrence of learning in the 
honeybees (OPA results for the complete design can be found 
in Craig et al.), and it facilitated the presentation of various 
predicted patterns (via simpler graphs) as well as the explo-
ration of novel analyses not reported by Craig et  al. (viz., 
analyses involving predicted stability of IVIs).

Testing Patterns

As demonstrated in Craig et al.’s article, the shift in perspec-
tive from data modeling to Observation Oriented Modeling 
starts at the beginning, that is, with the hypotheses. With a 
repeated measures ANOVA, the goal is to estimate popula-
tion parameters from the observed data, and in the frame-
work of null hypothesis significance testing the null 
hypothesis is stated as follows:

H
0
: µ

1
 = µ

2
 = µ

3
 = µ

4
 = µ

5
 = µ

6
 = µ

7
 = µ

8
  

= µ
9
 = µ

10
 = µ

11
 = µ

12

In other words, all 12 population means are hypothesized 
to be equal. The omnibus alternative hypothesis is that 2 or 
more of these 12 population means are not equal. More spe-
cific alternative hypotheses could be advanced contrasting 
pairs or groups of population means.

Given these hypotheses, however, it is important to real-
ize that Craig et al. (2012) had no interest in estimating popu-
lation parameters. Indeed, it is not clear what honeybees 
would constitute the imaginary population. Would the popu-
lation only include forager honeybees (Apis mellifera ligus-
tica) of approximately 3 to 6 weeks of age from the two hives 
that were sampled in the study, or would the population 
include nurse bees, drones, and the queens of the two hives? 
Should the population instead equal the global population of 
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Apis mellifera ligustica, or should it include all subspecies of 
Apis mellifera in the world? How far, exactly, should the 
sample be generalized? Unfortunately, there is simply no 
way to answer these questions in a non-arbitrary manner, 
which is not to suggest that populations are always defined 
arbitrarily or that estimating population parameters is never 
worthwhile. In political polling, games of chance, and 
research in which a random or representative sample can be 
drawn from a clearly specified population, for example, 
parameter estimation can prove fruitful; but none of these 
instances covers Craig et al.’s study, nor are they representa-
tive of the authors’ scientific goals.

Like the majority of behavioral researchers, Craig et al. 
(2012) were instead attempting to explain the behavior of 
honeybees. In other words, they were interested in making an 
abductive inference (Douven, 2011) to the causes underlying 
honeybee behavior rather than making a statistical inference 
to population parameters (Grice, 2015; Haig, 2005, 2014). 
Abductive inference

involves reasoning from claims about phenomena, understood 
as presumed effects, to their theoretical explanation in terms of 
underlying causal mechanisms. Upon positive judgments of the 
initial plausibility of these explanatory theories, attempts are 
made to elaborate on the nature of the causal mechanisms in 
question. (Haig, 2008, pp. 1019-1020)

Abduction is also consistent with the philosophical real-
ism underlying Observation Oriented Modeling, which 
encourages scientists to develop integrated, causal models 
that explain the observations made in a given study (see 
Grice, 2011, 2014, 2015; Grice et al., 2012, for examples). 
Turning one’s focus to abduction rather than statistical infer-
ence leads to a number of startling and liberating realiza-
tions. First, because population parameters are not necessarily 
being estimated, issues such as inferential errors (Type I, II, 
or III; Harris, 1997), statistical power, and parameter bias 
can fall by the wayside. As will be made explicit below, the 
goal in Observation Oriented Modeling is to identify mean-
ingful and improbable patterns of observations (i.e., behav-
iors) of individual honeybees. Second, aggregate statistics 
such as means, variances, and covariances can be avoided 
not only as population parameters, but avoided in the analy-
ses altogether. Causes operate at the level of the individuals 
and serve as the necessary conditions for each bee’s behav-
ior. Causes do not affect means or other aggregate statistics 
directly, and hence the traditional, Galtonian/Fisherian/
Pearsonian ways of thinking about data are not required. The 
Observation Oriented Modeler is thus not restricted to the 
use of inferential statistical methods and traditional mean- 
and variance-based analyses, and is instead ready to approach 
the order of nature in novel ways.

As mentioned above, in Observation Oriented Modeling, 
the focus is placed on patterns of observations. Craig et al. 
(2012) clearly expected a particular pattern in the recorded 

IVIs based on their understanding of the laws of learning. 
The pattern they expected and tested is ordinal, and it is a 
pattern that should match the observed values for every hon-
eybee in their sample; hence, the proper level of analysis (see 
Trafimow, 2014) is the recorded IVI times for each bee. With 
this in mind, the expected pattern of ordinal relations can be 
defined in the OOM software as shown in Figure 2. As can 
be seen, the matrix in the figure is comprised of 12 rows, 
with the top and bottom rows labeled as “Highest” and 
“Lowest,” respectively. The columns are comprised of the 12 
trials, and the shaded cells indicate the expected pattern of 
ordinal relations among the observed IVI times. As described 
above, each bee was expected to return to the mechanical 
flower faster and faster from Trials 1 through 6 (i.e., the IVIs 
were expected to decrease). After being “frustrated” by being 
trapped in the flower, each bee was then expected to take 
increasingly longer times to return to the flower (i.e., the 
IVIs were expected to increase). Moreover, the longest time 
for Trials 1 through 6 was expected to be shorter than the 
shortest time for Trials 7 through 12; in other words, every 
IVI for Trials 1 to 6 was expected to be shorter than every 
IVI for Trials 7 to 12.

With the expected pattern determined based on the research-
ers’ understanding of the causes behind the data, the observa-
tions for each honeybee can be examined. Figure 3 shows the 
results for the sixth bee in Table 1. As can be seen, her recorded 
IVI times matched the ordinal pattern closely. In OOM, there 
are two ways to quantify the fit between the observations and 
the expected ordinal pattern. First, only adjacent trials (i.e., the 
columns in Figure 3) can be considered, namely, 1 versus 2, 3 
versus 4, 5 versus 6, and so on. With 12 trials, there are 11 
pairs of adjacent trials. If the ordinal relation for a bee’s 

Figure 2.  Expected ordinal pattern for IVI times for each 
honeybee across the 12 trials.
Note. IVI = Inter-Visit-Interval.
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observations matches the expected ordinal relation for any 
pair of adjacent trials, then the pair of observations is consid-
ered as “correctly classified.” Using this adjacent counting 
method, the honeybee in Figure 3 produced eight correctly 
classified pairs of observations. Converting this result to a per-
centage yields the Percent Correct Classification (PCC) index 
for this honeybee, which is the primary numerical value to be 
obtained from analyses in OOM. For this bee, the PCC index 
is 72.73% (8/11) and is fairly impressive.

Second, all possible pairs of observations can be consid-
ered, namely, 1 versus 2, 1 versus 3, . . . 1 versus 12, 2 
versus 3, 2 versus 4, . . . 2 versus 12, and so on. With 12 
trials, there are 66 (

12
C

2
 = 66) pairs of observations that can 

be classified as correctly matching the ordinal pattern. The 
number of correct classifications for the honeybee in Figure 
3 using this more stringent criterion is 54, yielding a PCC 
index equal to 81.82%, an impressive result. This second 
approach for classifying pairs of observations is said to be 
more stringent because it takes into account the entire pat-
tern rather than only adjacent pairs of observations. The 
hypothetical data in Figure 4, for instance, fit the expected 
pattern perfectly (PCC = 100%) when considering only 
adjacent observations, but only 36 of the 66 pairs of obser-
vations (PCC = 54.55%) are correctly classified if the entire 
pattern is considered. The decision to use either method 
would ideally be driven by a causal, integrated model 
(Grice, 2011), but as will be shown below, using both meth-
ods for computing the PCC values for the same data may be 
pragmatically beneficial.

Using the option to match the entire pattern, the results for 
each honeybee are summarized in Table 2. As can be seen, the 
number of correctly classified pairs of observations is tallied 
and converted to the PCC index. Obviously, the PCC index 
ranges from 0 to 100, and the expectation here is that each 
value will equal 100, indicating perfect accuracy for the ordi-
nal pattern. Not a single honeybee matched the pattern per-
fectly, all but one yielded PCC indices of at least 60%, whereas 
four bees’ PCC indices were at least 80%, which is fairly 
impressive given the strict method of attempting to match the 
entire pattern.

A probability statistic, referred to as a c-value (or chance 
value), is also reported in Table 2 for each honeybee. It was 
computed by first randomizing the data within trials for each 
bee. Consider, for example, values for a single bee from three 
consecutive trials: 140, 200, and 100. A randomized version 
of these data could be 200, 100, and 140. The PCC index is 
next computed for the randomized data on the basis of the 
expected ordinal pattern, and the process is repeated for a set 
number of times (1,000 randomized trials for the current anal-
ysis). The PCC indices are recorded, and the number of times 
the actual observed PCC index is equaled or exceeded for 
each honeybee is tallied and converted to a proportion. A high 
c-value near one therefore indicates that randomized versions 
of the same data routinely yielded PCC values as high or 
higher than the actual PCC value. In other words, the observed 
PCC index was not unusual. A low c-value near zero, on the 
other hand, indicates that the observed PCC index was rather 
unusual because it was not readily equaled or exceeded by 
PCC indices from randomized versions of the actual data. The 
chance value is therefore a randomization test, and it is 
reported as a “c-value” rather than a “p value” to remind 
researchers that it is an assumption-free probability derived 
from repeated randomizations of the actual data (e.g., no 
assumptions of normality, homogeneity, and so on, are made; 

Figure 3.  Expected (shaded cells) and observed (1s) ordinal 
relations for the sixth frustrated honeybee’s IVI times across the 
12 trials.
Note. Although the 1s are not plotted within the shaded cells, their 
relative pattern closely matches the pattern of shaded cells, thus indicating 
high agreement between the expected and observed patterns.

Figure 4.  Hypothetical data for which the PCC index equals 
100% when considering only adjacent observations, but equals 
only 54.55% when considering all pairs of observations.
Note. PCC = Percent Correct Classification.
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see Winch & Campbell, 1969, for an early discussion of ran-
domization tests; see Edgington & Onghena, 2007; Manly, 
1997, for more recent treatments).

Examination of the c-values in Table 2 reveals that the 
observed results were highly improbable for all but the fifth 
honeybee. The PCC index for this bee was only 39.39, and 
her results in Figure 5 show that, for some unknown reason, 
her IVIs were often shorter (indicating faster returns to the 
flower) after being trapped in the flower. No other informa-
tion about this particular bee helped to explain her unex-
pected behavior, but it is clear OOM provides the tools 
necessary for focusing on the individual honeybees rather 
than on means or the estimation of abstract population 
parameters.

Table 2 also shows that missing data can be handled at the 
level of the individual bees. IVI times were not recorded for 

Trials 10 to 12 for the seventh bee. The number of possible 
pairs of observations was thus reduced from 66 to 36, and the 
PCC index was computed on the basis of the 36 possible cor-
rect classifications. The result was impressive (83.33%) for 
the seventh honeybee, and the c-value (.01) again indicated 
that the result was improbable. As another option for han-
dling missing data, the PCC index can be computed on the 
basis of the original possible pairs of observations, 66 in this 
case. Using this option for the seventh honeybee, the PCC 
index drops to 45.45% (30/66) with a c-value equal to .61, 
thus indicating the impact of the missing data. In addition to 
the missing data, the extreme values in the data set (see Table 1) 
posed no problems for the analysis because it is based on 
ordinal relations much like other non-parametric statistical 
procedures (see Cliff, 1996). No adjustments were necessary 
to the data themselves nor to the analysis itself.

The results for all of the bees considered together can also 
be examined. These results are printed in the OOM software 
as follows:

Classification Results : All Observations

  Ordinal Relations between Pairs of
 � Observations Classified According to the 
Defined Pattern(s)

      Classifiable Pairs of Observations : 630
                 Correct Classifications : 438
        Percent Correct Classifications : 69.52
           Classifiable Complete Cases : 9
     Correctly Classified Complete Cases : 0
        Percent Correct Classified Cases : 0.00

Randomization Results : All Observations

Observed Percent Correct Classifications : 69.52
             Number of Randomized Trials : 1000
            Minimum Random Percent Correct : 38.10
           Maximum Random Percent Correct : 60.16
      Values >= Observed Percent Correct : 0
                           Model c-value : less 

than ( 1 / 1000); that is, < 0.001
Observed Percent Correct Classified Cases : 0.00

Table 2.  Individual Classification Results for All 10 Bees.

Observations Missing cases
Classifiable pairs of 

observations
Correct 

classifications PCC value c-value

Bee 1 12 0 66 48 72.73 .02
Bee 2 12 0 66 53 80.30 <.01
Bee 3 12 0 66 50 75.76 .01
Bee 4 12 0 66 43 65.15 .10
Bee 5 12 0 66 26 39.39 .84
Bee 6 12 0 66 54 81.82 <.01
Bee 7   9 3 36 30 83.33 .01
Bee 8 12 0 66 53 80.30 <.01
Bee 9 12 0 66 41 62.12 .16
Bee 10 12 0 66 40 60.61 .16

Note. PCC = Percent Correct Classification.

Figure 5.  Data for the fifth frustrated honeybee.
Note. Her observations did not match the expected ordinal pattern very 
well, PCC = 39.39. PCC = Percent Correct Classification.
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             Number of Randomized Trials : 1000
    Minimum Random Percent Correct Cases : 0.00
    Maximum Random Percent Correct Cases : 0.00
Values >= Observed Percent Correct Cases : 1000

                           Model c-value : 1.00

The Classifiable Pairs of Observations represents the total 
number of pairs of observations that can be classified correctly 
in the analysis. The value here, 630, equals the sum of the 
Classifiable Pairs of Observations reported in Table 2, and it 
can be seen that the missing pairs of observations for the sev-
enth bee have been excluded. Of the 630 non-missing pairs 
across all of the bees and all of the trials, 438 were consistent 
with the ordinal pattern in Figure 2 and reported as Correct 
Classifications, yielding a fairly impressive PCC index of 
almost 70% (PCC = 69.52). The results from a randomization 
test show that not a single PCC index from 1,000 randomized 
versions of the data equaled or exceeded 69.52 (min = 38.10, 
max = 60.16) the observed PCC index. The c-value is thus less 
than 1 in 1,000, or c-value < .001. With additional randomiza-
tions of the data, a PCC value of at least 69.52 could still be 
observed. Finally, the Correctly Classified Complete Cases in 
the output above shows that not one of the nine honeybees (or 
cases) with non-missing data fit the entire pattern perfectly; 
PCC = 0, with a c-value necessarily equal to 1.

The results for all 10 honeybees are arguably good with 
the overall PCC index equal to 69.52% and most of the indi-
vidual bee PCC indices greater than 60%. Still, as with an 
omnibus ANOVA, a question to ask of the current analysis is 
whether or not most of the correct classifications are a result 
of comparing the trials prior to and after trapping the bees in 
the artificial flower. It may be the case, for instance, that the 
observations (recorded IVI times) do not fit the pattern in 
Figure 2 very well for Trials 1 to 6 nor for Trials 7 to 12, but 
that the first 6 IVIs are generally lower than the 6 IVIs after 
the bees were trapped in the flower. To address this possibil-
ity, the IVIs were analyzed for only the first six trials and 
using the expected decreasing ordinal pattern for only those 
trials. The overall PCC index was low (PCC = 42.67%, 
c-value = .90), and the PCC indices for 8 of the 10 bees were 
less than 50%. The remaining two PCC indices were 53.33% 
and 60.00%. Next, the last six trials were analyzed, again 
using the expected increasing ordinal pattern for those trials. 
The overall PCC index was higher (PCC = 73.19%, c-value 
< .001), and the PCC indices for all but one of the bees (the 
fourth bee) were greater than 65%, with four values equal to 
or greater than 80%. These results, considered with those for 
the complete pattern above, indicate that the IVIs did not 
generally decrease from the first to sixth trials, but the times 

Table 3.  PCC Indices and c-Values for Predicted Ordinal Pairwise Comparisons of IVI Times.

PCC 1 2 3 4 5 6 7 8 9 10 11

  1  
  2 50.00  
  3 60.00 50.00  
  4 30.00 50.00 40.00  
  5 50.00 40.00 40.00 60.00  
  6 30.00 70.00 30.00 50.00 30.00  
  7 80.00 80.00 80.00 70.00 70.00 60.00  
  8 70.00 60.00 80.00 60.00 70.00 60.00 60.00  
  9 80.00 90.00 90.00 80.00 80.00 80.00 70.00 70.00  
10 88.89 88.89 77.78 77.78 88.89 66.67 88.89 88.89 77.78  
11 77.78 88.89 77.78 77.78 77.78 66.67 66.67 66.67 44.44 22.22  
12 100 100 100 100 100 88.89 100 88.89 100 66.67 88.89

c-values 1 2 3 4 5 6 7 8 9 10 11

  1  
  2 0.62  
  3 0.35 0.62  
  4 0.91 0.61 0.79  
  5 0.61 0.84 0.83 0.38  
  6 0.95 0.15 0.95 0.64 0.94  
  7 0.05 0.01 0.05 0.18 0.18 0.38  
  8 0.17 0.26 0.04 0.35 0.19 0.36 0.25  
  9 0.07 0.01 0.01 0.05 0.05 0.05 0.17 0.17  
10 0.02 0.01 0.1 0.08 0.02 0.26 0.01 0.02 0.1  
11 0.09 0.01 0.09 0.08 0.07 0.28 0.25 0.26 0.74 0.98  
12 0.001 0.001 0.003 0.001 0.002 0.02 0.001 0.02 0.001 0.27 0.02

Note. IVI = Inter-Visit-Interval; PCC = Percent Correct Classification.
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were greater for Trials 7 through 12 while also increasing in 
a monotonic rate for all but one bee.

Last, much like pairwise comparisons following an omni-
bus repeated measures ANOVA, all pairs of IVI values across 
all 12 trials can be examined in a manner consistent with the 
expected ordinal relations shown in Figure 2. Table 3 reports 
the results from these analyses, which clearly show the ordi-
nal predictions for the first 6 trials do not fit the observations 
very well. Most PCC indices for these pairwise comparisons 
were 50% or lower, again indicating that the IVI times did 
not decrease in a monotonic fashion. When comparing IVI 
values from Trials 1 to 6 with Trials 7 to 12 in pairwise fash-
ion, the PCC indices were all quite high. Most percentages 
were 80% or higher, and five values were 100%. Consistent 
with the conclusions above, trapping the honeybees in the 
mechanical flower led to higher IVI values. Last, pairwise 
comparisons for the last six trials showed the IVI values to be 
increasing in a somewhat monotonic fashion, with most PCC 
indices equal to or greater than 66%.

Testing Equivalence

Craig et al. (2012) also examined a group of 10 honeybees 
(see Table 4) who were allowed to fly freely from the 
mechanical flower for all 12 trials. These bees were not 
expected to demonstrate learned “frustration” like the other 
bees. Craig et  al.’s analysis of the observed IVI times for 
these bees indeed revealed remarkably poor fit to the ordinal 
pattern in Figure 5. For the sake of demonstration in this 
article, let us now suppose that the IVI times were not 
expected to change substantially from trial to trial. Indeed, if 
the times for each bee were expected to be exactly equal 
across all trials, then the predicted ordinal pattern would be 
defined as shown in Figure 6. It would of course be unrealis-
tic to expect perfect equality for each bee in this study. 
Numerous other causes are at work influencing the bees’ 
behavior, including activity in the hive, fatigue, weather con-
ditions, and temperature. Consequently, the pattern in Figure 
6 is tested in the OOM software using an imprecision setting. 

Ideally, such a setting would be based on previous observa-
tions, studies, or precise theory, but here it will be set in a 
somewhat arbitrary fashion. Specifically, it is reasonable to 
expect each honeybee to return to the flower within 2 min of 
each trial given the proximity of the hive to the mechanical 
flower and the sorts of delays any given bee might encounter 
when flying, entering the hive, and unloading her social crop. 
The question then is, given a range of ±120 s, will the IVI 
times match the ordinal pattern in Figure 6? In other words, 
will each bee return to the mechanical flower within 2 min 
each time, from the first trial to the last?

The results from the OOM software for the individual 
honeybees are shown in Table 5 and indicate an impressive 
degree of conformity between the observations and the 
expected pattern with the ±120 s imprecision setting. The 
PCC index was equal to 100% for the fourth bee, and the 

Table 4.  Intervals (in Seconds) Between Visits to the Mechanical Flower.

Trials

  1 2 3 4 5 6 7 8 9 10 11 12

Bee 1 154 127 507 342 161 217 93 97 117 107 126 109
Bee 2 166 161 265 120 118 128 141 150 147 182 150 152
Bee 3 152 133 225 228 169 184 259 143 282 404 202 234
Bee 4 111 125 209 93 159   96 209 130 136 201 164 176
Bee 5 151 152   95 280 212 102 278 281 107 111 91 246
Bee 6 225 192 214 126 249 202 120 199 222 133 229 230
Bee 7 129 179 168 183 203 254 203 195 238 184 184 194
Bee 8 129 128 287 136 149 163 143 129 202 119 135 147
Bee 9 858 235   22 253 333 300 335 300 230 545 210 335
Bee 10 741 972 407 1,377 387 1,242 504 686 801 729 950 589

Figure 6.  Predicted pattern of equal IVI times for each honeybee 
across the 12 trials.
Note. The vertical position (i.e., the row) of the shaded line of cells is 
arbitrary. IVI = Inter-Visit-Intervals.
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indices for four other bees were more than 80%. Only the IVI 
times for the 10th bee revealed very poor agreement with the 
expected ordinal pattern. As can be seen in Table 4, her IVIs 
ranged from 387 to 1,377 s and did not reveal any clear pat-
tern across the 12 trials. The magnitudes of her times were 
generally high when compared with the other 9 bees, but no 
explanation could be found for why she was slow and for the 
variable in her IVI times.

When equivalent patterns such as the one shown in Figure 
6 are examined, the c-values will always equal 1 if all pairs 
of observations are being compared and the data are random-
ized as described above. Imagine, for example, IVI times for 
3 trials equal to 100, 125, and 115, and a randomized order of 
these values as 125, 115, and 100. The absolute differences 
between all possible pairs of the original observations will 
equal the differences for the randomized values, namely, 25, 
15, and 10. No matter how many times the IVI observations 
are randomized, this equality will always result, yielding the 
same PCC index in every case and a c-value of 1. 
Consequently, a randomization method that randomizes 
across (not just within) the bees is necessary for these types 
of patterns. For these data, we randomized both within all 12 
IVI trials and across all 10 honeybees to compute the c-val-
ues reported in Table 5. As can be seen, 6 of the 10 values 
were .20 or lower, indicating improbable PCC indices. Not 
surprisingly, the c-value for the 10th bee was high (1.0 for 
1,000 randomized trials).

Finally, as with the original analyses above, OOM permits 
the researcher to focus on the individual bees under investi-
gation as well as allows the researcher to examine the overall 
data, even with this type of pattern. The results for all 10 bees 
yielded an impressive PCC index of 75.45% when compar-
ing all possible pairs of IVI times for the 12 trials. The 
accompanying c-value was also impressively low (<.001).

Comparative ordinal patterns can also be constructed and 
evaluated to support the equality pattern shown in Figure 6. 
For instance, a monotonically decreasing pattern from Trials 
1 through 12, with the imprecision setting of ±120 s, yielded 

an overall PCC index equal to 13.18%, c-value = .35. 
Tellingly, not one randomized PCC value equaled or 
exceeded 75.45%, the result for the equivalence pattern in 
Figure 6. Moreover, the individual PCC indices were below 
50% for each of the 10 bees, and 9 of the 10 values were 
below 30%. Similarly dismal results were obtained when 
examining a monotonically increasing pattern across the 12 
trials (overall PCC = 11.36, c-value = .69). In summary, the 
IVI times for the free-flying (non-frustrated) honeybees con-
formed well to the ordinal pattern of equivalence in Figure 6 
with the imprecision setting of ±120 s. Data for only 1 of the 
10 bees clearly did not fit this pattern. All other individual 
PCC indices were 59% or higher, and five were at least 80% 
(see Table 5).

Comparing Groups

Data from repeated measures and between-participants 
experimental designs can be combined in one analysis com-
monly referred to as a split-plot ANOVA, although it is 
sometimes referred to as a mixed-design ANOVA (Maxwell 
& Delaney, 2004). The data in Tables 1 and 4 are from 2 dif-
ferent groups of honeybees, and when compared across the 
12 trials, constitute a 2 × (12) split-plot, factorial design. The 
primary reason for creating a factorial design is to assess the 
interaction between the two variables. The main effects may 
also be of interest but are often considered secondary and 
must be interpreted in the context of the interaction. With 
ANOVA, a statistically significant interaction is followed by 
either a simple-main-effects breakdown or the construction 
of interaction contrasts to understand the exact nature of the 
effect. Simple-main-effect breakdowns are more prevalent in 
the literature, but they conflate the variance of the interaction 
with the variance from one of the main effects. Interaction 
contrasts, by comparison, are “pure” follow-up tests of the 
interaction and have consequently been endorsed by a num-
ber of prominent methodologists (Harris, 1994; Rosnow & 
Rosenthal, 1995). An interaction contrast essentially 

Table 5.  Individual Classification Results for Pattern of Equality.

Observations Missing cases
Classifiable pairs of 

observations
Correct 

classifications PCC value c-value

Bee 1 12 0 66 44 66.67 0.41
Bee 2 12 0 66 62 93.94 0.03
Bee 3 12 0 66 51 77.27 0.22
Bee 4 12 0 66 66 100.00 0.01
Bee 5 12 0 66 39 59.09 0.62
Bee 6 12 0 66 64 96.97 0.02
Bee 7 12 0 66 65 98.48 0.01
Bee 8 12 0 66 56 84.85 0.09
Bee 9 12 0 66 39 59.09 0.62
Bee 10 12 0 66 12 18.18 1.00

Note. PCC = Percent Correct Classification.
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describes how the pattern of means for one of the indepen-
dent variables differs across levels of the other independent 
variable. For example, for Craig et al.’s data, a positive linear 
trend in the IVI means across all 12 trials for the frustrated 
honeybees could be contrasted with a negative linear trend 
for the free-flying bees.

Analysis of split-plot designs in Observation Oriented 
Modeling and the OOM software is akin to testing an interac-
tion contrast, except the analysis is not based on means and 
variances and does not involve the estimation of population 
parameters. As with the OOM analyses above, ordinal pat-
terns are constructed and then evaluated against the observa-
tions themselves. Beginning with free-flying bees, recall the 
ordinal pattern in Figure 6 (with the ±120 s imprecision set-
ting) was a fairly accurate representation of the IVI times: 
overall PCC = 75.45, c-value < .001. All but 1 of the 10 bees 
conformed to this pattern at least reasonably well. In the spirit 
of an interaction contrast, how well does this pattern fit the 
IVI times for the frustrated honeybees? The results indicated 
overall unimpressive accuracy (PCC = 52.54, c-value = .03), 
although the IVI times for the fifth frustrated honeybee (see 
Table 1) were remarkably stable within ±120 s (PCC = 92.42). 
IVI times from three other frustrated honeybees were also 
somewhat consistent with the pattern (PCCs = 61%-68%), 
but a small majority nonetheless were not consistent with the 
pattern (i.e., six frustrated bees with PCCs < 50%).

Drawing on the original analyses above for the frustrated 
bees, an alternative competing pattern is shown in Figure 7. As 
can be seen, the IVI times are expected to be relatively stable 
across the first six trials and then increase monotonically from 
Trials 7 through 12. Again, the imprecision setting can be 

used, and for this analysis, any increases in IVI times for the 
last 6 trials must therefore exceed 120 s to be considered as 
correct classifications. The overall results for the frustrated 
honeybees using this ordinal pattern were good, but not highly 
impressive (PCC = 63.02%, c-value < .001). The fourth, fifth, 
and sixth bees’ IVI times (see Table 1) did not fit the pattern 
very well (PCCs < 52%), whereas the remaining majority of 
individual IVI times yielded PCC indices that exceeded 60%.

Evaluating the IVI times for the free-flying honeybees on 
the basis of the predicted ordinal pattern in Figure 7 yielded 
a very low overall PCC index (24.55%, c-value = .78). The 
PCC indices for the 10 free-flying bees were all below 50%, 
with seven values below 30%. Comparing the two distribu-
tions of overall PCC indices from the randomization test of 
each analysis furthermore revealed that an absolute differ-
ence of at least 38.47% (63.02 − 24.55) did not occur once in 
1,000 trials (max = 20.35). The c-value for the difference 
between the overall PCC indices for the frustrated and free-
flying bees was thus less than .001.

In summary, the free-flying honeybees returned to the 
mechanical flower at a fairly steady rate (±120 s), as mea-
sured by their IVI times. Only one bee showed a high degree 
of variability in her IVI times, and no discernable pattern was 
noticeable in her observations. A slight majority of the frus-
trated honeybees did not conform to the equivalent ordinal 
pattern (see Figure 6) that captured the free-flying bees so 
well. The ordinal pattern in Figure 7 offered a better explana-
tion of the observations for these bees as it demarcated when 
they were frustrated by being trapped in the flower after the 
sixth trial. The IVI times for a slight majority of the bees (6 
of the 10 bees) conformed to this predicted pattern with an 
imprecision setting of ±120 s. By successfully contrasting 
the patterns of observations for the free-flying and frus-
trated honeybees, results from these analyses support Craig 
et al.’s theoretical goal of demonstrating the occurrence of 
learning.

Discussion

Comparing parametric ANOVA with OPA in the novel analy-
sis of data from Craig et al.’s (2012) study revealed a number 
of distinct advantages for the latter approach. First and fore-
most was the relative ease of conducting the analyses. When 
performing a repeated measures ANOVA, a seemingly 
ambiguous choice must be made between the traditional uni-
variate, multivariate, and mixed-model approaches toward 
analyzing the data. Interestingly, this choice was made aca-
demic for Craig et al.’s data because of insufficient degrees of 
freedom for computing the omnibus test statistics for the mul-
tivariate and mixed-model approaches. Despite its many limi-
tations, the traditional univariate approach therefore had to be 
used and one of the adjustments for Type I error inflation 
(e.g., Greenhouse–Geiger) chosen and applied. The necessity 
of these adjustments in turn points to the sensitivity of the 
univariate F test to violations of assumptions, particularly the 

Figure 7.  Predicted pattern of IVI times for each honeybee 
across the 12 trials.
Note. IVI times are expected to be relatively stable across the first six 
trials and then increase monotonically across the final six trials.  
IVI = Inter-Visit-Intervals.
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sphericity assumption. Moreover, the analysis ignored the 
missing data problem, the 3,600 values, and the numerous 
influential IVI times. Addressing these issues would require 
difficult and sometimes assumption-laden decisions to make 
the data more suitable for analysis, including analyses involv-
ing more specific hypotheses about the 12 means. The con-
clusion is that conducting a repeated measures ANOVA for 
even a straightforward experimental design such as Craig 
et al.’s can be a complicated statistical affair.

By comparison, the analyses in the OOM software were 
simple and unambiguous. The expected pattern of ordinal 
relations was defined for the group of honeybees being ana-
lyzed, and the conformity between the actual observations 
and pattern for each bee was summarized with the PCC 
index. A simple, assumption-free and distribution-free ran-
domization test was used in an entirely secondary role to 
help evaluate each individual and group-level PCC index. 
The homogeneity of treatment-difference population vari-
ances (sphericity) assumption and other assumptions under-
lying repeated measures ANOVA were therefore avoided 
entirely. The PCC index itself is transparent and readily 
interpretable by scientists and lay people alike. The η2 value 
for the first group of honeybees analyzed above (the “frus-
trated” group) was equal to .37, indicating 37% overlap 
between the trials (the independent variable) and the IVI 
times (the dependent variable). It is difficult to interpret 
exactly what this measure of effect size means without the 
aid of arbitrary conventions (e.g., Cohen’s, 1988; Ferguson, 
2009), and it is impossible to apply this effect size to any 
given bee in the sample. The individual PCC indices, how-
ever, are clearly interpretable, ranging from 0% to 100%, and 
indicate how well a bee’s IVI times matched the predicted 
ordinal pattern. All that is needed is the predicted pattern and 
the options chosen to compute the PCC index (i.e., the adja-
cent or complete options, and the imprecision value); other-
wise, it requires no special knowledge or conventions to be 
interpreted and conveyed to a lay person. Its meaning can be 
made even more obvious when presented with a graphic like 
Figure 3. Recent scholarship (Kazdin, 1999; Thompson, 
2002) points to the importance of transparent indices of prac-
tical and clinical “significance” (or relevance), and the PCC 
index and visual features of OPA are well suited for convey-
ing such information.

The capability of examining all of the honeybees’ IVI 
times as a group as well as examining each individual bee is 
another advantage of the Observation Oriented Modeling 
approach. This is particularly important for Craig et  al. 
because their goal, like most scientists, was abduction rather 
than statistical inference. The predicted ordinal patterns were 
based on simple laws of learning derived from other species 
(e.g., decreasing run times for a rat in a maze across trials; 
Greenough, Madden, & Fleischmann, 1972). The laws are 
general in the sense that they should apply to any given hon-
eybee, not because they are descriptions of population 
parameters. In other words, the laws are causal, and the 

causes inhere in the honeybees themselves, not in abstract 
population parameters. Another way to understand the point 
being made here is that in repeated measures ANOVA, the 
goal is to describe patterns of sample and inferred population 
means, and these patterns may not match a single honeybee’s 
pattern of IVI times. For Craig et al., the proper level of anal-
ysis (Trafimow, 2014) is the individual bee, lest in describing 
the average, they end up describing “nobody in particular” 
(Vautier, Lacot, & Veldhuis, 2014, p. 51).

Seeking an inference to best explanation (i.e., abduction), 
it is noteworthy an alternative predicted pattern for the frus-
trated group of bees was constructed. Specifically, the origi-
nal predicted decline in IVI times for the first six trials was 
replaced by an unchanging ordinal pattern (±120 s), and then 
the frustrated and free-flying bees were compared with regard 
to the new pattern. The unchanging part of the pattern can be 
explained sufficiently when considering the study more 
closely. There is a limit to how fast honeybees can fly, and 
each bee must make her way through the active hive to unload 
her crop. Such factors may essentially cancel out any 
decreases in IVI times across the first six trials due to learn-
ing. In addition, prior to data collection, Craig et  al. were 
obliged to shape multiple participants’ responding in the arti-
ficial flower. After participants learned to reliably respond, 
two participants were concurrently run and the remaining 
trained participants were allowed to revisit the artificial 
flower before the next two participants’ data collection com-
menced. In short, the amount of pre-training was not con-
trolled between participants, nor was the number of reinforcers 
and returns to the artificial flower. Consequently, the bees 
may have had sufficient pre-training such that decreases in 
IVI times across the first six trials would be minimal, at best, 
a conjecture supported by the relatively stable IVI times for 
the free-flying bees. Additional experimental work would be 
required to fully support these explanations, but the point is 
clear: In Observation Oriented Modeling, traditional statisti-
cal concerns are minimized, whereas efforts to seek theoreti-
cal explanations are magnified.

Another statistical issue that was eschewed in the OOM 
software was the influence of outliers in Craig et al.’s data. 
The analyses reported above were based on ordinal rela-
tions between trials and could therefore be regarded as a 
type of nonparametric statistical analysis, without the 
necessity of estimating population parameters. When con-
sidering the bees individually or all together in the context 
of the predicted ordinal pattern, it is difficult to relate the 
ordinal analysis to any specific nonparametric technique. 
Friedman’s Test and Kendall’s W (Siegel, 1956), for 
instance, are nonparametric alternatives to repeated mea-
sures ANOVA, but they are based on analysis of ranks and 
do not provide the means for assessing predicted ordinal 
patterns such as those posited by Craig et al. Nonetheless, it 
is well known that nonparametric statistics are generally 
less restricted by assumptions and are relatively immune to 
outliers (Cliff, 1996; Siegel, 1956). The OPA feature in the 
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OOM software shares these advantages as it provides a 
flexible method for testing complex ordinal patterns that 
can be defined and assessed visually (e.g., see Figure 3) and 
numerically (viz., the PCC indices) for each case or for all 
the cases combined. Thorngate and Carroll (1986) long ago 
described and called for such ordinal methods they hoped 
would return the emphasis of theory and analysis to indi-
viduals and away from aggregate statistics and the estima-
tion of abstract population parameters. Thorngate and 
Edmonds (2013) provide more recent examples of how 
their own OPA technique can be used to model crime rates 
and ratings of happiness.

It should be mentioned in closing that OPA can be used 
to test predicted parametric patterns, such as linear or qua-
dratic functions. Describing how this is done is beyond the 
scope of this article, but it entails testing ordinal patterns 
for difference scores (assuming equal intervals between 
observations) using the imprecision option if necessary. 
Specific parametric predictions can moreover be tested. For 
instance, suppose Craig et al. possessed sufficient experi-
mental control and theoretical power to predict the exact 
IVI values for each honeybee. The predicted values could 
be compared with the actual values across all 12 trials either 
exactly or within a set range (e.g., ±10 s) to obtain the PCC 
indices and c-values for each bee and for all of the observa-
tions combined. The techniques demonstrated in this article 
are thus flexible and capable of modeling different types of 
data and a wide array of patterns. These techniques are also 
easy to use and yield results that are transparent and readily 
interpretable.
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Note

1.	 The focus of Misangyi, LePine, Algina, and Goeddeke’s 
(2006) article is repeated measures regression, which is not 
listed here. This approach is also not discussed in this article 
because it is nearly equivalent to the traditional univariate 
approach to repeated measures. Misangyi et  al. also offer a 
general recommendation for the univariate, multivariate, and 
mixed-model approaches over repeated measures regression.
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