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Abstract- In this study, the post-divergence behaviour of nanotubes of conveying 

internal moving fluid with both inner and outer surface layers are analyzed in nonlinear 

theorical model. The governing equation has the cubic nonlinearity. The source of this 

nonlinearity is the surface effect and mid-plane stretching in the nanobeam theory. 

Exact solutions for the post buckling configurations of nanotubes with clamped-hinged 

with torsionally spring and hybrid boundary conditions is found. The critical flow 

velocity at which the nanotube is buckled is shown. The effects of various non-

dimensional system parameters on the post-buckling behaviour are investigated.  
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1. INTRODUCTION 

Nanotubes/nanobeams are of great value in nanotechnology practice. Large modulus of 

elasticity and small specific weight of carbon nanotubes make them materials for 

applications in the nanotechnology. One of the significant properties of such structures 

is the ability of storing and transporting of fluid-like materials (e.g., water, gases and 

nanoparticle). Due to these properties, nanobeams and nanopipettes have multifarious 

applications in nanomechanical systems and nanobiological devices [1], drug delivery 

devices, fluid filtration devices [2], fluid transport, fluid stroge, biosensors [3], atomic-

force microscopes, nano-fibers for composite materials [4], atomic force microscope 

[5]. 

We will study on a classify of nano-fluidic devices that may be characterized as 

nanotubes conveying internal moving fluid, transporting fluid. Buckling problem and 

post-buckling analyses of the nanotubes are of great importance in engineering science. 

The main aim of these studies of buckling problems is to find postbuckling 

configurations of the nanobeams. 

In the paper [6] buckling and post-buckling of long pressurized elastic thin-walled tubes 

under in-plane bending are presented. [7] Exact solutions for the post buckling 

configurations of beams and the dynamic stability of the obtained postbuckling 

configurations are presented. [8] Thermal buckling and post-buckling behavior is 

investigated for functionally graded carbon nanotube reinforced composite plates by 

single-walled carbon nanotubes subjected to in-plane temperature variation. In the essay 

[9] is to present exact and effective expressions for the postbuckling configurations of 

single-walled carbon nanotubes with various conditions. [10] The post-buckling 
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behavior of supported nanobeams is studied. The effects of nanobeam length, bulk 

thickness and several dimensionless parameters on the post-buckling behavior are 

investigated in the paper. [11] Post-buckling bifurcations and stability of high-speed 

axially moving beams are analyzed. [12] Buckling and post-buckling analysis of fluid 

conveying multi-walled carbon nanotubes are analytically examined.  

In this paper, exact solutions for the post buckling configurations of nanobeams are 

exhibited. We present exact solution post buckling configurations of nanobeams with 

clamped-hinged with torsionally spring and hybrid boundary conditions. The equilibria 

of the axially moving beam in the supercritical regime have given analytically [13]. 

When the geometric nonlinearity accounting for midplane stretching is taken into 

consideration, the nonlinear buckling problem can be obtained [7]. The essential aims of 

studies of buckling problems are to find their associated buckled shapes and critical 

flow velocity which is relative to the surface effect. 

 

2. GOVERNING EQUATION 

 

A nanobeam/nanotube with both ends supported for transporting fluid is considered as a 

hollow cylindrical tube. The internal flow is modeled as a continuum flow. The outside 

nanobeam, made up of a bulk part and two additional thin surface layers (inner and 

outer layers). The mechanical features of the bulk part are elasticity modulus E  and 

mass density 
b . It is assumed that the inner and outer diameters of the bulk part are 

id  

and 
od . The thickness of each surface layer is taken as 

0t . The inner and outer surface 

layers are with surface elasticity modulus of 
sE , 

0  denote the surface residual tension. 

In this study, the surface layers in nano-materials essential have two additional apparent 

effects. The first effect relates to the surface residual tension which acts as distributed 

transverse loads. The second effect is relative to the increasing flexural rigidity.  

The linear governing equation of the nanobeam is given by [14] 
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where, ),( txw
  denotes the transverse deflection, x

  and t

 are the axial coordinate and 

time,  EI  is defined as the flexural rigidity of the empty nanobeam without surface 

layers, M  is the mass of fluid per unit length, flowing with a constant flow velocity U , 

m  is the mass of the empty nanobeam per unit length.  

The above mentioned equation, h  exhibits the additional bending rigidity due to two 

surface layers (inner and outer layers)  and the constant 
0Π  is an axial force relative to 

the residual surface stress. 22

0 xwΠ

 in Eq. (1) is a distributed transverse loading. In 

accordance with Ref. [14], the additional bending rigidity on account of surface layers 

may be shown as 

 33

0
8

1
ois ddtEh                                                                                                               (2) 

and the axial force 
0Π  is written by 

 oi00 dd2τΠ                                                                          (3)  

In accordance with [15], for a beam supported between axially immobile supports, the 

non-linearity related to the mean axial extension of the beam may be viewed as the 
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dominating non-linear factor, so the problem governing the buckling of beams 

accounting for midplane stretching is given by 
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The nonlinear term added in Eq. (4) is a uniform additional tensile load. This makes 

owing to analyze the post-instability answers of the flow-conveying nanobeams [10]. 

We use the following non-dimensional variables: 
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where AIr   is the radius of gyration of the cross-section. Where A  is the cross-

sectional area of the bulk wall. 

As a result, we rewrite Eq. (4) of motion in dimensionless form as follows: 
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They have significant effects on vibration and stability of the distributed parameter 

systems. The clamped-hinged with torsionally spring and hybrid boundary conditions 

could be a more suitable description than the fixed or hinged supported ends. For each 

set of boundary conditions, the nanobeam would buckle at a critical flow velocity. 

Setting transverse displacements to zero and balancing bending moment at both ends 

lead to the dimensionless boundary conditions: 

Clamped-hinged with torsionally spring boundary conditions: 

         twtwtwtwtw ,1,1,0,0,0,1,0                                                          (7) 

Hybrid boundary conditions: 

         twtwtwtwtwtw ,1,1),,0(,0,0,1,0 21
                                   (8)                   

when  , Eq. (7-8) yields clamped end supports. On the other hand, simply 

supported ends occur when 0 . 

 

3. NONLINEAR EQUILIBRIUM SOLUTIONS 

 

The equation of a tube containing internal flowing fluid is similar to the equation of a 

beam subjected to a compressive load. The centrifugal force in the equation of pipes 

acts in the same manner as a compressive load [10, 16]. It has been noticed that 

equilibrium solutions of the pipe are analogous to those in a buckled problem [10].  

The buckling problem can be obtained from Eq. (6) by dropping the time dependent, 

and forcing terms and denoting the buckled configuration by  x . The result is 
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where  x  is the buckled configuration related to the velocity u .  
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Actually, above equation is the nonlinear integro-differential equation. We note that the 

integral in the equation is a constant for a given  x : 
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where   is a constant. As a result Eq. (9) becomes  
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Above relevant gives the critical velocity on the nonlinear system. The general solution 

of Eq.(11) can be written as 

  xcxcxccx  sincos 4321                                                                               (13) 

To determine the arbitrary constants nc , the boundary conditions are enforced. This 

application yields four algebraic equations in nc . Applying boundary conditions, we 

obtain four algebraic equations. For non-trivial solution, the determinant of the 

coefficients matrix of these algebraic equations must be equal to zero. That is the 

eigenvalue problem for  . 

The eigenvalues of the coefficients matrix give the divergence fluid velocity known as 

the critic velocity. As a result, for a given buckling velocity, the buckled configuration, 

 x , is obtained in a closed form. 

The substitution of Eq.(13) into (12) gives 
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or the mid-span rise of buckling can be written  
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3.1. Clamped-hinged with torsionally spring   

The supports are modeled by clamped-hinged boundary conditions: 

         11,00,010                                                                    (16)                

The coefficient matrix is given by 
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Demanding that the determinant of the coefficient matrix equals zero, we obtain the 

following characteristic equation for  : 

    0cos22sinsincos                                                                    (18) 

When  clamped end supports. In the case of clamped-clamped  nanobeams then 

the characteristic equation becomes 
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0cos22sin                                                                                            (19) 

Simply supported ends occur when 0 . In the case of clamped-hinged nanobeams 

then the characteristic equation becomes 

0sincos                                                                                                      (20) 

The results are the same as Ref. [7]. 

From the boundary conditions, the buckling configuration  x  can be written as 

    












 1cossin

sin

1cos
xxxcx 




                                                                  (21) 

                                                  

3.2. Hybrid boundary conditions 

The supports are modeled by hybrid boundary conditions: 

         11),0(0,010 21                                                            (22)                                                                            

The coefficient matrix is given by 
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The following characteristic equation for  : 
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When  2,1 , Eq.(9) yields following relation for clamped-clamped support 

condition 
0cos22sin                                                                                            (25) 

Simply supported ends occur when 1
and 02  . In the case of clamped-hinged 

nanobeams then the characteristic equation becomes 
0sincos                                                (26) 

In a similar way, below relation for hinged-hinged support is obtained by using 02,1   

0sin                            (27) 

The results are the same as Ref. [7 ]. 

The buckling configuration  x  then becomes 
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4. NUMERICAL RESULTS 

 

In Fig. 1 and Fig. 2 variation of the static deflection with the axial velocity are 

calculated for the three cases of clamped–clamped, clamped–hinged, and hinged–hinged 

supported pipes and the stability of the buckled configurations are examined. The first 

three buckled configurations for three different well known boundary conditions is 

investigated. Respectively, the ordinate and abscissa are the dimensionless transverse 

displacement of the pipe and the non-dimensional flow velocity. While continuous lines 

represent stable static regions, dotted lines represent unstable equilibrium positions. All 
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the supported pipes are stable at their original static equilibrium position, up to the first 

critical velocity, where they unstable in a supercritical pitchfork bifurcation.   
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Figure 1. Bifurcation diagram of the first three mode for the 5  , (a) clamped–

clamped, (b) clamped–hinged  and (c) hinged-hinged supported pipe conveying fluid  

 

In Fig. 1 as the velocity exceeds the first critical velocity, e.g., 66995.6cu for the 

clamped–clamped pipe 001.0  and 5 , the straight configuration loses stability by a 

supercritical pitchfork bifurcation and the pipe buckles. It can be seen in Fig.1 that the 

effect of  on critical velocity can be disregarded at drawn all modes. 
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Figure 2. Bifurcation diagram of the first three mode for the 005.0 , (a) clamped–

clamped, (b) clamped–hinged and (c) hinged-hinged supported pipe conveying fluid 

 

In Fig. 2 as the velocity exceeds the first critical velocity,e.g., 4442.6cu  for the 

clamped–clamped pipe 2  and 005.0 , the straight configuration loses stability by a 

supercritical pitchfork bifurcation and the pipe buckles. The deflection amplitude of 

buckling increases by increasing the flow velocity beyond the critical velocity. It can be 

seen that in Fig.2. that   has meaningfull effect on critical velocities for the first three 

modes. 
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Figure 3. Bifurcation diagram for the system with different values of tension for hinged-

hinged supported pipe conveying fluid, (a) for the 5 , (b) for the 005.0  

To exhibit the influence of supplemantery stiffness term and the axial tension on the 

stability, Fig.3 is graphed.  In Fig. 3, the influence of tension on the behavior of a 

hinged–hinged pipe is analyzed. Similar case is estimated for clamped–clamped and 

clamped–hinged boundary conditions. The amplitude of deflection of the straight pipe 

can be upwards or downwards, depending on initial conditions. By increasing the 

external tension, the critical flow velocity for divergence increases; also,at a certain 

flow velocity,the amplitude of buckling decreases. The amplitude of buckling can be 

calculated using Eq. (15). In Fig. 3 (a), the effect of  on the amplitude is very small, it 

can not even be seen. In Fig. 3 (b),  as   increases, buckling amplitude decrease too. 

They are depending on each other. 

 

5. CONCLUSIONS 

 

The buckling and post-buckling behavior of a nanobeam with supported ends containing 

flowing fluid is investigated by using a nonlinear model, with the explaination of 

nondimensional term. An exact solution to the nonlinear equilibrium of pipes is 

presented. The nonlinearity of pipes is the geometric nonlinearity result from midplane 

stretching. A closed-form statement is concerned with for the nonlinear equilibrium 

configuration as a function of the fluid velocity. Clamped-hinged with torsionally spring  

pipe ve hybrid boundary conditions of nanobeam/nanotube is analyzed. The critical 

buckling velocity is obtained as a by product. The pipe is stable at its original static 

equilibrium position up to the flow velocity where it loses stability by static divergence 

by means of a supercritical pitchfork bifurcation. The straight equilibrium configuration 

becomes unstable and bifurcate in various equilibrium positions in the supercritical fluid 

velocity regime.  

 

 



 

 

Exact Solution and Buckling Configuration of Nanotubes                   547 
 

6. REFERENCES 

1. W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer,F. Braet, Carbon nanotubes for 

biological and biomedical applications, Nanotechnology 18, 412001-412012, 2007. 

2. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug 

delivery, Current Opinion in Chemical Biology 9, 674–679, 2005. 

3. S. Adhikari, R. Chowdhury, The calibration of carbon nanotube based 

bionanosensors, Journal of Applied Physics 107, 124322-124329, 2010. 

4. E. T. Thostenson, Z. Ren, T. W. Chou, Advances in the science and technology of 

carbon nanotubes and their composites: a review, Composites Science and Technology 

61, 1899-1912, 2001. 

5. S. Deladi, J. W. Berenschot, N. R. Tas, G. J. M. Krijnen, J. H. deBoer, M. J. deBoer, 

M. C. Elwenspoek Fabrication of micromachined fountain pen with in situ 

characterization possibility of nanoscale surface modification. Journal of 

Micromechanics and Microengineering 15, 528–534, 2005 

6. S. Houliara, S. A. Karamanos, Buckling and post-buckling of long pressurized elastic 

thin-walled tubes under in-plane bending, International Journal of Non-Linear 

Mechanics 41(4), 491–511, 2006. 

7. A. H. Nayfeh, S. A. Emam, Exact solutions and stability of the postbuckling 

configurations of beams, Nonlinear Dynamics 54(4), 395–408, 2008  

8. H. S. Shena, C. L. Zhanga, Thermal buckling and postbuckling behavior of 

functionally graded carbon nanotube-reinforced composite plates, Materials & Design 

31(7), 3403–341, 2010. 

9.A. R. Setoodeh, M. Khosrownejad, P. Malekzadeh, Exact nonlocal solution for 

postbuckling of single-walled carbon nanotubes, Physica E: Low-dimensional Systems 

and Nanostructures 43(9),1730–1737, 2011. 

10. L.Wang, Surface effect on buckling configuration of nanobeams containing internal 

flowing fluid:A nonlinear analysis, Physica E, doi:10.1016/j.physe.2011.12.006. 

11. M. H. Ghayesh, M. Amabili, Post-buckling bifurcations and stability of high-speed 

axially moving beams, International Journal of Mechanical Sciences 68, 76–91, 2013. 

12. A. Ghasemi, M. Dardel, Mohammad Hassan Ghasemi, Mohammad Mehdi 

Barzegari, Analytical analysis of buckling and post-buckling of fluid conveying multi-

walled carbon nanotubes, Applied Mathematical Modelling 37(7), 4972–4992, 2013. 

13. J. A.Wickert, Non-linear vibration of a travelling tensioned beam, International 

Journal of Non-Linear Mechanics 27, 503-517, 1992. 

14. L. Wang, Vibration analysis of fluid-conveying nanotubes with consideration of 

surface effects, Physica E 43, 437-439, 2010 

15. M. P. Paidoussis, G. X. Li Pipes conveying fluid: a model dynamical problem, 

Journal of Fluids and Structures 8, 137-204, 1993. 

16. M. P.  Paidoussis,  Fluid-Structure Interactions: Slender Structures and Axial Flow, 

Vol. 1, Academic Press, London 1998. 

 

http://www.sciencedirect.com/science/article/pii/S0020746205001320
http://www.sciencedirect.com/science/journal/00207462
http://www.sciencedirect.com/science/journal/00207462
http://www.sciencedirect.com/science/journal/00207462/41/4
http://www.sciencedirect.com/science/article/pii/S0261306910000622
http://www.sciencedirect.com/science/article/pii/S0261306910000622
http://www.sciencedirect.com/science/article/pii/S0261306910000622
http://www.sciencedirect.com/science/article/pii/S0261306910000622
http://www.sciencedirect.com/science/journal/02613069
http://www.sciencedirect.com/science/journal/02613069/31/7
http://www.sciencedirect.com/science/article/pii/S1386947711002025
http://www.sciencedirect.com/science/article/pii/S1386947711002025
http://www.sciencedirect.com/science/article/pii/S1386947711002025
http://www.sciencedirect.com/science/journal/13869477/43/9
http://www.sciencedirect.com/science/article/pii/S0020740313000064
http://www.sciencedirect.com/science/article/pii/S0020740313000064
http://www.sciencedirect.com/science/journal/00207403/68/supp/C
http://www.sciencedirect.com/science/article/pii/S0307904X12005926
http://www.sciencedirect.com/science/article/pii/S0307904X12005926
http://www.sciencedirect.com/science/article/pii/S0307904X12005926
http://www.sciencedirect.com/science/article/pii/S0307904X12005926
http://www.sciencedirect.com/science/article/pii/S0307904X12005926
http://www.sciencedirect.com/science/journal/0307904X/37/7

