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In a recent review of research on gendered performance 
disparities in undergraduate science, technology, engineering, 
and mathematics (STEM) courses, Eddy and Brownell 
(2016) describe a confused research landscape: Some 
courses favor men, some favor women, and some show little 
bias. Their review calls specifically for systematic measure-
ment of performance gaps across an array of disciplines and 
institutions, all accounting for prior academic performance, 
in the hope that emergent patterns might inform our under-
standing of “the relative contributions of different factors to 
performance and/or persistence in STEM.” In this study, we 

answer this call, analyzing data on more than a million 
student enrollments in hundreds of courses drawn from five 
research-intensive public universities in the Big Ten 
Academic Alliance.

We find evidence of statistically significant, persistent 
gendered performance differences (GPDs) in some large, 
introductory courses, differences that are also materially 
significant. In particular, men earned relatively higher grades 
than women in biology, chemistry, physics, accounting, and 
economics lecture courses, even after accounting for the 
influence of some measures of prior academic achievements 
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on performance. These results are remarkably consistent 
across all five universities, which together enroll more than 
150,000 undergraduate students in any given year. These 
patterns confirm the importance of conducting systematic 
studies of performance equity, provide the impetus for 
extending this work to other sectors of higher education, and 
focus research attention on the structure and evaluative 
schemes of these lecture courses.

Background

Women have achieved parity with men on many indicators 
of educational outcomes; indeed, women now outpace men 
in terms of college enrollment and overall attainment of 
bachelor’s and higher-level degrees (Snyder & Dillow, 
2015). Still, significant gaps in enrollment and degree attain-
ment remain in engineering, mathematics, computer science, 
and physical science disciplines (DiPrete & Buchmann, 
2013). Even in the life sciences, where women now domi-
nate numerically in terms of awarded bachelor’s degrees 
(Mann & DiPrete, 2013), gendered differences that favor 
men have been identified in exam performance, participation 
in whole-class discussions, and who is viewed as most 
knowledgeable about course content (Eddy, Brownell, & 
Wenderoth, 2014; Grunspan et al., 2016). These gaps under-
mine the national priority that all students have the opportu-
nity to fully participate in STEM fields (President’s Council 
of Advisors on Science and Technology, 2012). Because sex 
is a legally protected class, disparate educational outcomes 
for male and female students also raise important questions 
of equity.

Girls and boys pursue science and mathematics courses 
in primary and secondary school in roughly equal proportion, 
but by the time they are freshmen in college, men are more 
likely to choose a science or mathematics major (Hill, 
Corbett, & St. Rose, 2010), and the underrepresentation of 
women in these disciplines carries all the way through to the 
professoriate (Urry, 2015). Research from diverse academic 
disciplines shows that a variety of factors affect gendered 
differences in STEM major selection, degree attainment, and 
careers (Blickenstaff, 2005). When considering performance 
in undergraduate STEM courses (the level of interest in this 
study), prior academic performance, engagement, and affec-
tive variables are all considered relevant constructs for 
investigating and explaining gendered differences (Eddy & 
Brownell, 2016). Here, we briefly review a range of impor-
tant factors that influence the decisions of women and men 
about pursuing undergraduate STEM courses and degree 
programs.

Psychological and environmental factors have been 
shown to contribute to observed gendered gaps (Murphy, 
Steele, & Gross, 2007), such as the perpetuation of a “fixed 
mind-set” model that tends to favor men (Good, Rattan, & 
Dweck, 2012) as well as stereotype threat, which has been 

shown to reduce the performance of female students in 
mathematics when gendered stereotypes are invoked (H. 
Johnson, Barnard-Brak, Saxon, & Johnson, 2012). 
Microaggressions, brief and often subtle messages based on 
membership in a group (Sue, 2010), have been shown to act 
as a barrier to participation in STEM (Grossman & Porche, 
2014). Unconscious bias plays a role as well. For example, 
biology, chemistry, and physics faculty members, regardless 
of their own gender, have been shown to view a male under-
graduate job candidate as more competent and employable 
than an identical (excepting the name) female candidate 
(Moss-Racusin, Dovidio, Brescoll, Graham, & Handelsman, 
2012). The affective dimensions of confidence and interest 
have also been linked to gendered differences that can 
impact course performance; women have reported feeling 
less confident than men in their calculus and engineering 
abilities (Ellis, Fosdick, & Rasmussen, 2016; Micari, Pazor, 
& Hartmann, 2007) and have provided more pessimistic 
self-reports of performance on a science assessment and 
reported subsequent diminished interest in scientific activi-
ties (Ehrlinger & Dunning, 2003). Hazari, Sonnert, Sadler, 
and Shanahan (2010) demonstrated that explicitly discuss-
ing gendered gaps in science positively impacted physics 
identity for women, which in turn strongly predicted deci-
sions about pursuing a physics career.

The culture in undergraduate STEM courses—broadly 
including pedagogy, curriculum, assessment, instruction, 
and interaction between students and faculty—has been a 
major point of study with respect to gendered differences. 
Women in engineering programs have been shown to more 
frequently perceive gendered discrimination than men (Vogt, 
Hocevar, & Hagedorn, 2007), and some women in science 
courses have described being discouraged in attending large 
introductory classes where they felt anonymous, responding 
to and posing questions in class, and engaging with faculty 
in research (A. Johnson, 2007). Regular interaction with 
faculty, which is certainly easier to facilitate in smaller 
courses, has been shown to positively influence STEM 
degree completion rates for all students but especially so for 
women (Gayles & Ampaw, 2014).

Although experiences in college classrooms are no doubt 
meaningful for students, Ceci, Ginther, Kahn, and Williams 
(2014) argue that the roots of gendered differences in math-
ematically intensive fields are solely in precollege experi-
ences that, among other outcomes, influence the likelihood 
of men and women pursuing different degree programs. 
Other studies find that showing an initial interest in STEM 
fields at the middle or high school level is indeed predictive 
of STEM degree completion but that demonstrating interest 
in college is still a significant factor on the pathway to a 
STEM degree (Maltese, Melki, & Wiebke, 2014; Maltese & 
Tai, 2011).

In this work, we focus on one important part of the 
pathway to STEM degree completion: large, foundational 
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university courses from a range of disciplines. The gatekeep-
ing nature of these courses is widely acknowledged—indeed, 
they are often collectively described as “gateway courses.” 
To measure GPDs, we use data likely to be available on 
every college campus: grades in each course compared to 
expectations formed from an array of prior performance 
information, including grades in other courses and standard-
ized admissions test scores.

Grades have been widely criticized as poor measures of 
learning. Nevertheless, grades remain the only measure of 
academic achievement that all institutions reliably record 
and value. They are taken seriously by institutions, used as a 
threshold for passage of courses, to select students for aca-
demic awards and honors, and even to dismiss students from 
campus. As a result, good grades are aggressively pursued 
by students, sometimes to the detriment of learning (Pulfrey, 
Buchs, & Butera, 2011). Inflation in average grades over 
time has been widely reported (D. Freeman, 1999; Jewell & 
McPherson, 2012; Kostal, Kuncel, & Sackett, 2016; 
Rojstaczer & Healy, 2012). Although in some contexts this 
might raise concerns about their utility for comparing stu-
dent performance, it is worth noting that grade inflation has 
been relatively small in the foundational courses we study 
here (Achen & Courant, 2009).

Grades constitute the only universally accessible perfor-
mance feedback provided to students. Student performance 
in a course, particularly performance relative to that in other 
courses, plays an important role in shaping major and career 
choices (Ost, 2010). For all these reasons, understanding and 
ultimately addressing the GPDs we report here is essential 
for ensuring equitable access to participation in STEM 
careers.

Method

This cross-institutional study is based on administrative 
data, so we restricted ourselves to covariates that are readily 
available, complete, and similarly defined from campus to 
campus. Following a method described by Huberth, Chen, 
Tritz, and McKay (2015), we used a measure called grade 
point average in other courses (GPAO) because it is a power-
ful predictor of students’ final course grades. GPAO is the 
cumulative GPA for a student calculated across all semes-
ters, including the current semester, excluding only the 
course enrollment being analyzed. As such, GPAO is a prop-
erty of a given course enrollment but does not exist when a 
student has taken only a single course.

In a population largely similar to the students represented 
in these data, and across a similar range of STEM, social sci-
ence, and humanities courses, prior research (Huberth et al., 
2015; Koester, Grom, & McKay, 2016) has shown GPAO to 
exhibit the strongest correlation with course grades out of 
measures regularly collected in administrative databases 
(e.g., high school GPA and standardized test scores). As the 

most important predictor of course performance in these 
studies, GPAO was shown to independently account for 32% 
of the variance in final physics course grades. Further, tradi-
tional cumulative GPAs are known to be good predictors of 
college outcomes (Creech & Sweeder, 2012; S. Freeman 
et  al., 2007; Gershenfeld, Hood, & Zhan, 2016). Koester 
et  al. (2016) found that additional covariates recorded in 
administrative data, such as estimated gross income and col-
lege of admission, correlate with course grades but explain 
negligible additional variation in grades.

As such, GPAO helps account for many potential con-
founding variables that influence student achievement, 
reducing both systematic and random sources of error. 
Because each grade is considered relative only to other 
courses from that institution, the GPAO measure facilitates 
cross-institutional comparisons even when courses at differ-
ent institutions may be subject to different grading practices 
or degrees of grade inflation. Although GPAO is clearly sen-
sitive to the mix of courses each student takes, when com-
paring all students in a given course of interest, we find 
empirically that enrolled women and men have taken other 
courses with similar levels of difficulty (see online 
Supplementary Materials Section 2.6). Differences in GPAO 
for female and male students emerge from differences in 
performance in their other courses rather than from differ-
ence in overall grading patterns in those courses.

Six years of student record data for introductory courses 
were collected at each of five large, public research universi-
ties. These student-level data were locally maintained and 
analyzed separately at each institution using common code 
written in R (detailed methods are available in the online 
Supplementary Materials). The overall data set includes 
1,122,586 course enrollments across 249 courses in 13 disci-
plines. The courses are primarily from STEM (i.e., biology, 
chemistry, engineering, mathematics, physics, and statistics) 
and social science (i.e., communication, economics, politi-
cal science, psychology, and sociology) disciplines; account-
ing and writing courses are included from the business and 
humanities disciplines, respectively. Selection criteria for 
both the disciplines and comparable courses are provided in 
the online Supplementary Materials Section 2.4. In addition 
to disciplines and generalized course names, we provide 
classifications related to course structure by labeling each 
course as either lecture, lab, or mixed. Mixed courses are 
usually worth four or five credits and contain elements of 
both a lecture and a lab.

For each course, we focus on two measures: the average 
grade anomaly (AGA) and the GPD. AGA compares stu-
dents’ performance in this course to their other courses; it is 
simply the difference between final course grade and GPAO 
averaged across all student enrollments in the course. A pos-
itive AGA for a course indicates that, overall, students’ final 
grades in the selected course tended to be higher than their 
GPAO. We call a positive AGA a grade bonus. In contrast, a 
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negative course AGA indicates that, overall, students’ final 
grades in the selected course tended to be lower than their 
GPAO. We call a negative AGA like this a grade penalty. In 
general, AGA measures average student performance rela-
tive to expectation.

GPD compares the AGA between women and men, that 
is, it measures the gendered difference in performance rela-
tive to expectation. A GPD can result from differences 
between men and women in final course grade, GPAO, or 
both. For example, a GPD that favors men could result from 
either (a) men and women having similar GPAOs, with men 
earning higher grades in the targeted course; (b) women hav-
ing a higher GPAO than men, with women and men earning 
similar course grades; or (c) a combination of these two sce-
narios. Our convention in this work is that a positive GPD 
favors women and a negative GPD favors men.

Although GPAO is by far the strongest predictor of stu-
dent performance (Huberth et al., 2015), it is possible that 
other factors might account for observed GPDs. To test this 
possibility, the GPD in each course is additionally calculated 
while accounting for a combination of GPAO, SAT, or ACT 
Mathematics and English subscores (converting when nec-
essary) and individual course/term factors. Two methods 
were used: multiple linear regression and optimal matching. 
Each analysis offers a strength. The regression method is a 
familiar way to correct for confounding factors and in com-
parison to the matching method is more precise (i.e., has a 
smaller standard error) but is also less accurate because of 
founding assumptions (e.g., that all predictors are linearly 
independent). The matching method is often noisy and less 
precise than the regression method, but it is more accurate.

With course grade as the dependent variable, the follow-
ing covariates for the regression model were selected based 
on the LASSO (least absolute shrinkage and selection opera-
tor) method (Hastie, Tibshirani, & Friedman, 2009) as well 
as the restrictions inherent in comparing multiple institu-
tions: gender, GPAO, ACT Mathematics and English sub-
scores, and term. Term was included as a categorical variable 
to account for term-to-term variation in instructors and the 
time of year that the course was offered, as differences 
between “on-” and “off-semester” student populations are 
common.

The matching model included the same factors as the 
regression model and relies on propensity scores for match-
ing cases and controls (Hansen, 2004, 2007). Matching was 
performed on a term-by-term basis so long as in each term 
the course contained more than 50 students; nine courses 
would otherwise have been included in the data but did not 
meet this criterion. The differences in GPDs obtained by the 
matching and regression methods are marginal at best (see 
online Supplementary Figure S4 and Supplementary Table 
S6), with the regression and matching methods resulting in 
the highest and lowest GPD, respectively. Over multiple 
iterations of this work, we found similar results even with 

small changes to the baseline predictive model (i.e., to the 
covariates) using both methods. Analyses were performed 
using a custom R code (see online Supplementary Materials 
Section 2.4), and figures were developed using Excel and 
Tableau, an interactive data visualization program.

In what follows, we report results using GPDs measured 
by the optimal matching method. On average, this method 
returns the most conservative measures of GPD of the three 
approaches, accounting as thoroughly as possible for each 
student’s prior academic performance.

Results

Comparison across STEM disciplines reveals two trends 
when each course is characterized as a lecture, lab, or mixed 
(Figure 1). First, the majority of lecture (74%) and mixed 
(93%) courses yield a grade penalty (negative AGA), and the 
majority of lab courses (64%) yield a grade bonus (positive 
AGA) for students (chi-square p < .001, Cramer’s V = .33). 
Second, the lecture and mixed courses that yield grade pen-
alties tend to favor men (negative GPD), meaning men have 
smaller grade penalties in these courses than women. The 
average GPDs across lecture and mixed courses are –.07 and 
–.10 grade points, respectively. The lab courses that yield 
grade bonuses tend to be more equitable, with an average 
GPD across all lab courses of .01 grade points.

Separating these data by discipline shows that both trends 
are apparent across biology, chemistry, engineering, and 
physics courses (Figure 2). It is worth noting that both AGAs 
and GPDs are especially large and negative for large general 
chemistry courses—the first STEM courses encountered by 
many college students. Mathematics and statistics courses 
exhibit somewhat different patterns. Although the majority 
of these courses yield a grade penalty, overall they appear to 
favor neither men nor women, with an average GPD across 
all courses of –.03 grade points. This result is not unexpected 
as the ACT Mathematics score covariate, although still sec-
ond to GPAO, may reasonably explain more of the grade 
variation in mathematics and statistics courses than it does in 
biology, chemistry, and physics.

Comparison among non-STEM courses in these data 
(Figure 3) shows that the majority of introductory account-
ing and economics courses produce grade penalties that 
favor men (average GPD = –.14), exhibiting a pattern simi-
lar to STEM lecture and mixed courses. Conversely, writing 
courses yield grade bonuses that slightly but significantly 
favor women (average GPD = .06). Overall, social science 
courses exhibit little to no GPDs (average GPD = .01). We 
note again that women tend to slightly outperform men over-
all in college (Keiser, Sackett, Kuncel, & Brothen, 2016); 
the lecture courses with significant GPDs favoring men are 
unusual within the college landscape.

At the individual course level, the final course grade and 
GPAO contribute differently to the observed GPDs. In some 

http://journals.sagepub.com/doi/suppl/10.1177/2332858417743754
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cases, the GPDs that favor men tend to result from women 
having higher GPAOs than men yet earning similar or slightly 
lower grades. In other cases, we find small GPAO differences 
but substantial final grade differences such that most of the 
GPD can be attributed to the difference in grades. Regardless, 
we find that these differences are stable over time at the indi-
vidual course level, robust to changes in instructors and the 
time of year the course was taken (Figure 4).

Discussion

In these data, we find evidence that GPDs in many 
courses, although modest in size, are statistically significant 
and reliably present from term to term; that GPDs in biology, 
chemistry, and physics lecture courses tend to favor men, 
whereas those in corresponding lab courses tend to be more 
equitable; that writing and social science courses (with the 
exception of economics) do not tend to yield substantial 
GPDs; and that these results are consistent across five rela-
tively similar universities and six academic years. These pat-
terns mirror those observed in a precursor study local to 
University of Michigan even though that study accounted 
for high school GPA, which has a small but unique amount 
of power in predicting grades (Koester et al., 2016).

We do not focus on precise measurement of the magnitudes 
of these GPDs. Rather, we stress that, for some courses (e.g., 
biology, chemistry, physics, accounting, and economics 
lectures), they are materially significant. Scholarships, 

university honors, and even employment decisions rely 
heavily on GPA, often turning on tenth-of-a-point distinc-
tions. Students respond individually to grade signals they 
receive as well, and prior research suggests that response to 
these signals may be gendered, compounding the potential 
impact of modest performance differences (Rask & 
Teifenthaler, 2008).

Further empirical research is required to ascertain what 
magnitude of GPD is meaningful to students in which con-
texts and to what extent the differences might accumulate 
throughout a student’s degree program. Nevertheless, the 
presence of statistically and materially significant GPDs in 
an array of courses creates significant equity concerns for 
these institutions. It is also important to use parallel mea-
sures of performance equity to explore other aspects of iden-
tity and background that might intersect with gender, 
including race and ethnicity, first-generation status, and 
socioeconomic status. Although the data available for this 
study do not enable this analysis, we encourage others to 
pursue this work and provide some first insights from analy-
ses at two institutions (see online Supplementary Materials 
Section 3).

AGAs themselves raise a different set of questions. That 
some courses are graded more harshly than others, and that 
these courses cluster by discipline, is well known and has 
been true since the adoption of letter grades (Goldman, 
Schmidt, Hewitt, & Fisher, 1974; King, 2015; Meyer, 1908). 
Still, this practice perpetuates a system in which it is normal 

Figure 1.  Gendered performance differences in science, technology, engineering, and mathematics (STEM) courses. Gendered 
performance differences based on a matching method versus average grade anomaly for 172 introductory STEM courses across five 
universities, representing 677,949 course enrollments, including lectures (gray), labs (orange), and mixed courses (blue). Crosshairs 
indicate the average standard error on the mean.

http://journals.sagepub.com/doi/suppl/10.1177/2332858417743754
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to earn low grades in introductory STEM lecture courses, the 
starting point for most students who will eventually pursue a 
STEM major. The comparatively low grades received by 
students in these courses result from decisions about grading 
practices made by instructors rather than student ability. 
Indeed, there is clear evidence that students who take these 
low-graded courses are, by other measures, especially strong 
students (Koester, Fogel, Murdock, Grom, & McKay, 2017).

The GPDs we identify here in introductory biology, 
chemistry, physics, accounting, and economics lecture 
courses are surprising and clearly not predicted by students’ 
prior performance. Although previous studies have identi-
fied GPDs in particular disciplines at particular institutions 
(Creech & Sweeder, 2012; Eddy et al., 2014; Kost, Pollock, 
& Finkelstein, 2009; Lauer et al., 2013; Rauschenberger & 
Sweeder, 2010), the results presented here provide the first 
comprehensive, cross-disciplinary picture of how consistent 
these trends are across an array of similar institutions.

Conflated characteristics of the courses studied here may 
contribute to patterns in the results. For example, large 

lecture courses most typically employ high-stakes, timed, 
and often multiple-choice exams to assess students, whereas 
lab courses are more often graded through written reports, 
projects, and lower-stakes quizzes. Although some conflict-
ing evidence exists (Federer, Nehm, & Pearl, 2016; C. 
Wright et al., 2016), men tend to outperform women on mul-
tiple-choice items, and women tend to outperform men on 
constructed-response exercises (Garner & Engelhard, 1999; 
Madsen, McKagan, & Sayre, 2013; Weaver & Raptis, 2001). 
Particular cases in the data appear to support this claim. For 
instance, a reformed introductory biology course at 
Institution D that makes use only of constructed-response 
assessments shows a GPD half that of the prerequisite course 
in the introductory sequence, although it is also true that the 
reformed course draws from a subset of the student popula-
tion in the traditional, prerequisite course.

Another characteristic that may be related to the patterns 
in GPDs is whether course work tends to be more competi-
tive or collaborative and, relatedly, whether class sizes are 
large or small, respectively. Especially at large universities 

Figure 2.  Gendered performance differences in science, technology, engineering, and mathematics courses by discipline. Gendered 
performance differences based on matching versus average grade anomaly parsed by discipline for 28 (n = 115,066), 41 (n = 192,487), 
53 (n = 222,498), and 47 (n = 130,908) introductory courses across five universities in (a) biology, (b) chemistry, (c) mathematics and 
statistics, and (d) physics, respectively, including enrollments in lectures (gray), labs (orange), and mixed courses (blue). Crosshairs 
indicate the average standard error on the mean. Engineering courses are not pictured due to a small sample size; these data are 
included in the online Supplementary Materials.

http://journals.sagepub.com/doi/suppl/10.1177/2332858417743754
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like those studied here, lecture courses usually enroll hun-
dreds of students per section, and lab courses usually enroll 
a few dozen students per section, making collaborative work 
easier to implement. Although, again, some conflicting evi-
dence exists (Hazari et al., 2010; Micari et al., 2007; Pollock, 
Finkelstein, & Kost, 2007), women have often been shown 
to benefit from small-group work and small course sizes 
more than men (A. Johnson, 2007; Kokkelenberg, Dillon, & 
Christy, 2008; Lorenzo, Crouch, & Mazur, 2006; Rodger, 
Murray, & Cummings, 2007; Stump, Hilpert, Husman, 
Chung, & Kim, 2011), particularly in terms of student atti-
tudes (Springer, Donovan, & Stanne, 1999).

Additionally, women have been shown to prefer collabo-
rator as compared to leader/explainer roles (Eddy, Brownell, 
Thummaphan, Lan, & Wenderoth, 2015). Again, particular 
cases in the data appear to support this notion. For example, 
although each of the introductory engineering design courses 
included here is labeled as a lecture course in its respective 
course catalog, design courses usually center on conceiving 
and building a product with a group. It is unsurprising, then, 
that these engineering courses cluster with science labs in 
terms of yielding a grade bonus and generally favoring 
women. Further, with one exception, all writing courses, 
which are usually taught in small sections, in these data 
exhibit GPDs that favor women, and the two accounting 
courses that favor women have structural characteristics 
similar to lab courses. Patterns of GPD related to course 
structure call for research into equitable course design, rais-
ing questions of whether evaluative schemes in large lecture 

classes might disadvantage women as well as how best to 
support men in writing courses and group work situations.

The repetition of the observed performance differences 
on all five of these campuses reinforces the need for broader 
investigation of these patterns across the landscape of 
higher education. Are GPDs present at private research 
institutions; public, primarily undergraduate institutions; 
and community colleges? Although we reasonably expect 
these results would generalize to other, similar universities, 
we make no claims about the findings generalizing to other 
types of universities. These measurements of GPDs are 
relatively simple to make, relying on administrative data 
regularly gathered by every institution of higher education, 
and we encourage faculty, staff, and administrators 
involved in postsecondary STEM education to examine 
their own data. We hope that these results will provide the 
impetus for widespread equity analyses of this kind. When 
significant GPDs are found, steps should be taken to inves-
tigate and address them.

Social psychological interventions designed to improve 
student performance provide a potential solution, which is 
being widely explored. Because they do not require chang-
ing the structure or mode of instruction of courses, these 
relatively simple interventions (e.g., values affirmation or 
sense-of-belonging writing exercises) are attractive 
approaches to reducing GPDs. Although they have been 
found effective in some contexts (Miyake et  al., 2010; 
Unkovic, Sen, & Quinn, 2016; Walton, Logel, Peach, 
Spencer, & Zanna, 2015), replication has not always been 

Figure 3.  Gendered performance differences in non–science, technology, engineering, and mathematics courses by discipline. 
Gendered performance differences based on matching versus average grade anomaly parsed by discipline for 22 (n = 160,828), 39 (n = 
172,345), and 16 (n = 111,464) introductory lecture courses across five universities in accounting and economics (gray); communication, 
political science, psychology, and sociology (blue); and writing (orange). Crosshairs indicate the average standard error on the mean.
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possible (Madsen et al., 2013), and there is much to learn 
about how to apply these interventions at scale (Paunesku 
et al., 2015; Yeager & Walton, 2011). Large-scale random-
ized trials of the impact of values affirmation on GPDs are 
now in progress at one of our institutions.

These results suggest connections between GPDs and the 
structure of evaluation in courses. It is possible that modest 
changes to evaluative schemes might reduce GPDs, for 
example, reducing the time pressure in exams. It is also 
important to recognize differences among individual STEM 
disciplines (Cheryan, Ziegler, Montoya, & Jiang, 2017). The 
solution, then, is not to broadly prescribe a formulaic ratio of 
multiple-choice to constructed-response assessment items, 
suggest strict changes in class size, or ask faculty to send 
encouraging e-mails to particular groups of male or female 
students. Indeed, we agree with the assessment of Halpern 
et al. (2007) that “there are no single or simple answers to 
the complex questions about sex differences in science and 
mathematics” (p. 1).

This work should compel those at institutions of higher 
education to ask, as many are already doing (Elliott, 2016), 
how we can learn from this information to change practices 
in whatever ways are appropriate in our local contexts. 
Understanding student performance in context is an impor-
tant step in pursuing equity (M. Wright, McKay, Hershock, 
Miller, & Tritz, 2014). Systems capable of personalizing at 
scale and responding to differences among students rather 
than prescribing a single solution for all hold some promise. 
Huberth et al. (2015), for example, describe a digital mentor-
ing tool that is now being tested for its ability to reduce ste-
reotype threat for women in high-enrollment undergraduate 
science courses.

Grades are consequential performance measures and 
clearly impact persistence (King, 2015). It is unclear 
whether men or women are more sensitive to their STEM 
grades in persistence decisions (Ost, 2010; Rask, 2010), and 
these differences may be field dependent. Regardless, grade 
penalties that are worse for female students than for male 
students create yet another headwind impeding gender 
equity in STEM. There is widespread evidence that faculty, 
especially male STEM faculty, are reluctant to accept evi-
dence of gendered biases in STEM (Handley, Brown, Moss-
Racusin, & Smith, 2015; Moss-Racusin, Molenda, & 
Cramer, 2015). In this light, continued investigation of 
GPDs, coupled with efforts to understand their correlates 
and causes, is imperative.

Unexplained GPDs of the kind reported here cannot be 
ignored or simply allowed to persist.
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