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SUMMARY

The computation of route travel times is a fundamental work in solving dynamic traffic assignment
problems, and hence, it is important to develop accurate and efficient methods. In this paper, both the step
function (SF) and linear interpolation (LI) are used to approximate cumulative flows over time and develop
formulations of route travel time models. We propose two categories of discretised route travel time models:
(i) models based on route cumulative flow curves, and (ii) models based on link cumulative flow curves. We
prove that all route travel time models proposed in this paper satisfy some desirable properties such as route
first-in-first-out and continuity, and all discretised route travel times converge to the continuous-time
route travel times. Finally, numerical methods are developed to evaluate the accuracy and computational
efficiency of each type of route travel time models. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditionally, analytical dynamic traffic assignment (DTA) models can be formulated either in discrete
time space or continuous time space. But most of them are finally solved by numerical methods that
involve discretising time. The reason for discretising time is that there have not been satisfying ready-
made methods for solving the complex continuous time network models analytically. The DTA problems
can be analytically formulated as path-based models [1–5] or link-based models [6–11]. Computation of
route travel times is required for most of DTA problems. In general, the path-based models should
calculate the travel times of all routes in the path set, and the link-based models should calculate the
shortest route travel times. Although some DTA models [9–11] do not need to explicitly calculate route
travel times or the shortest route travel times in the solution procedure, the calculation of route travel times
is still very useful to evaluate the obtained DTA solutions. Therefore, developing discretised route travel
time models is a basic and important work on the path of developing DTA models.
As one of the fundamental DTA issues, dynamic network loading (DNL) model depicts how traffic

propagates inside a traffic network along assigned routes and hence governs the network performance
in terms of travel times. In general, the DNL model does not directly output travel times but link
cumulative flows and/or route cumulative flows. We can retrieve the travel times either from the link
cumulative curves or route cumulative curves if they have been obtained. As a result, there are two
methods to obtain route travel times: one is to directly formulate the route travel times by route cumulative
flow curves [2,12,13], the other is to derive route travel times by link travel times, which can be computed
by link cumulative flow curves [3,4,14,15]. It is important to develop accurate and efficient method to
derive travel times from cumulative flow curves, because the calculation of route travel times is a
fundamental step in the algorithms of many DTA models.
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Many DNL models can be used to simulate the propagation of traffic through the network along the
assigned routes and generate the cumulative flows. Peeta and Ziliaskopoulos [16] distinguished three
main existing approaches to capture flow propagation on the links and nodes: exit functions [3,17–20],
link performance functions [7,8,21–23] and the cell transmission models (CTM) [2,12–14,24–27]. The
first two approaches are usually governed by analytical link-model-based loading procedures and output
link cumulative flows or link travel times directly, whereas the third approach is governed by simulation-
based loading procedures and output link cumulative flows and/or route cumulative flows. The third
approach is also referred to advanced exit flow functions, which are developed on the basis of either
Daganzo’s [28,29] solution scheme (i.e., CTM) or Newell’s [30] solution scheme to the Lighthill and
Whitham [31] and Richards [32] (LWR) hydrodynamic model of traffic flow. The analytical link-
model-based loading procedures are comparatively simple to implement and efficient to compute even
for large road networks, but are often believed to be less accurate than simulation-based loading
procedures in capturing complex traffic phenomena [33].
In the literature, route travel times based on cumulative flows are calculated according to the proposed

methods, and there are no formulations of travel times provided for analysis of the properties of route
travel time. Recently, Long et al. [15] formulated three types of discretised link travel time models by
using the link cumulative flow curves, which are approximated by both the step functions (SF) and linear
interpolations (LI). Following Long et al. [15], this paper uses the same method to approximate the route
cumulative flows over time and develops formulations of the SF-type and the LI-type route travel time
models. Because the travel time of a specified route consists of the travel times of links on the route, which
is referred to as the additivity property of route travel times, a nested function can be used to formulate
route travel times by link travel times [3]. Embedding the disretised link travel times into the nested
function, we can formulate alternative route travel time models.
The proposed formulations for route travel times can simplify the calculation and allow us to analyze

the properties of the corresponding travel time functions. The properties of each type of route travel time
functions concerned in this paper include route first-in-first-out (FIFO), continuity, and monotonicity.
FIFO is an actual traffic behavior. A dynamic route travel time model is necessary to satisfy FIFO in
order to obtain the solutions of DTA that are consistent with actual traffic behavior. Continuity and
monotonicity of travel times are two important properties of DTA. Route travel times must be continuous
with respect to route flows for solution existence, and must be strictly monotone with respect to route
flows for solution uniqueness. Moreover, we use numerical methods to investigate the accuracy and
computational efficiency of all the route travel time models on the basis of cumulative flows.
This paper is an extension of Long et al. [15]. The main differences between the current work and

the previous work are as follows: (i) We propose two categories of discretised route travel time models,
that is, the models based on route cumulative flow curves and the models based on link cumulative
flow curves. (ii) The properties of the first category of models directly follow the previous work, but
the properties of the second category of models are newly proved in details. (iii) The discretised route
travel times are proved to converge to the continuous-time route travel times. (iv) Besides the model
accuracy, the computational efficiency of each type of route travel time models is also evaluated.
In the next section, the general concept of route travel times based on cumulative flows is presented

in both continuous and discretised time settings. Section 3 formulates route travel time models based
on both route cumulative flows and link cumulative flows, and discusses their properties. In Section 4,
calculation error estimation methods are proposed to evaluate the accuracy of each travel time model.
Numerical experiments are given in Section 4 to illustrate the accuracy and computational efficiency of
all route travel time models and how the results are affected by the fineness of the discretisation.
Finally, Section 6 concludes the paper.

2. CUMULATIVE FLOWS AND ROUTE TRAVEL TIME

2.1. Continuous route travel time model

Route travel times can be directly calculated by using the route cumulative flow curves. LetMp(t) (Np(t))
denote the cumulative departure (arrival) flow along route p by time t, and tp(t) the travel time of route p
with respect to departure time t. As shown in Figure 1, route travel times can be used to connect the
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cumulative departure and arrival flows along each route by the relationship Mp(t) =Np(t+ tp(t)). If Mp(t)
and Np(t) are strictly increasing with respect to time t, the route travel times can be mathematically
expressed as follows:

tp tð Þ ¼ N�1
p Mp tð Þ� �� t (1)

where N�1
p �ð Þ is the inversed function of Np(�).

The additivity property of route travel times can be used to derive the route travel times from link travel
times. Let ta(t) denote the travel time of link a with respect to time t. We consider vehicles departing at
time t and traveling through path p= {a1, a2,⋯, am}. The travel time for their traveling through link a1
is ta1 tð Þ, and the time instant for their leaving link a1 and entering link a2 is t þ ta1 tð Þ. Then, the travel
time for their traveling through link a2 is ta2 t þ ta1 tð Þð Þ, and the time instant for their leaving link a2
and entering link a3 is t þ ta1 tð Þ þ ta2 t þ ta1 tð Þð Þ. Similarly, we can obtain their travel times through
other links. The travel time required to traverse path p for vehicles using this path at time t is equal to
the sum of travel times of traveling through each link on the path and can be computed by the following
nested function [3]:

tp tð Þ ¼ ta1 tð Þ þ ta2 t þ ta1 tð Þð Þ þ⋯þ tam t þ ta1 þ⋯þ tam�1ð Þ (2)

where ta1 ¼ ta1 tð Þ, ta2 ¼ ta2 t þ ta1 tð Þð Þ,⋯, for short. The link travel times can be calculated by using the
link cumulative inflows and outflows. Let Ua(t) (Va(t)) be the cumulative number of vehicles that enter
(exit) link a by time t. We have the relationship Ua(t) =Va(t+ ta(t)). If Ua(t) and Va(t) are strictly
increasing with respect to time t, the link travel times can be mathematically expressed as follows:

ta tð Þ ¼ V�1
a Ua tð Þð Þ � t (3)

where V�1
a �ð Þ is the inversed function of Va(�).

However, the link/route cumulative flow curves cannot always be strictly increasing. Nie [34]
developed a generic approach to retrieve link travel times from the DNL results, in which the curves
are only required to be non-decreasing, and the method of linear interpolation is used to deal with
the special case that the curves have flat portions for some time. Long et al. [15] conducted pretreat-
ments of link inflow rates and outflow capacities for the DNL to ensure that the link cumulative flow
curves are strictly increasing. This method can be extended to the calculation of route travel times: set-
ting the route flow rate and link outflow rate as max{ fp(t), e} and max{qa(t), z} during the DNL imple-
mentation, respectively, where e and z are two very small positive numbers that satisfy e! 0+ and
z≪ e. These pretreatments can ensure fp(t)> 0 and qa(t)> 0. Therefore, both cumulative route flows
and cumulative link flows will be strictly increasing with respect to time t.
The route-based DTA models output route flows, which can be used as input of DNL models and

generate both the cumulative route flows and cumulative link flows whereas the link-based DTA
models output link flows, which can also be used as input of link-based DNL models and generate

Figure 1. Cumulative vehicle numbers as a function of time.
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the cumulative link flows. Therefore, throughout this paper, we assume that the cumulative route
departure flows and arrival flows are given for the route travel time models on the basis of route
cumulative flow curves, and the cumulative inflows and outflows are given for the route travel time
models on the basis of link cumulative flow curves. In the DTA models, travelers are assumed to make
their dynamic route choice according to either the instantaneous travel time or experienced travel time.
The route travel times calculated by both Equations (1) and (2) are the experienced travel times.
However, only Equation (2) can be modified to formulate the instantaneous travel times, by replacing
the experienced link travel times as the instantaneous link travel times in Equation (2). In this paper,
we only consider to model the experienced route travel time.

2.2. Discretised route travel time model

In the discrete time DTA models, time is usually discretised into small time intervals. We use Δt to
denote the length of each interval. The average travel time of vehicles that depart the origin of route
p during interval (t, t+Δt] can be calculated by

tp tð Þ ¼
R tþΔt
t tp vð Þfp vð ÞdvR tþΔt

t fp vð Þdv
(4)

where fp(v) is the flow rate of route p at time v, the denominator and numerator on the right hand side of
Equation (4) are the number of departure vehicles along route p during interval (t, t+Δt] and total
travel time of those vehicles (i.e., the shade area in Figure 1), respectively. It follows immediately that
tp(t) = tp(t) if Δt= 0.
Both Equations (1) and (2) can be substituted into Equation (4) to calculate the discretised route travel

time exactly. However, the continuous route travel times cannot be generally expressed as explicit
functions of time and the computational burden is too high to compute tp(t) for all time instant t.
With the use the route cumulative flow curves, Equation (4) can be equivalently reformulated as

follows:

tp tð Þ ¼
RMp tþΔtð Þ
Mp tð Þ N�1

p vð Þ �M�1
p vð Þ

� �
dv

Mp t þ Δtð Þ �Mp tð Þ (5)

where, M�1
p �ð Þ is the inversed function of Mp(�), the numerator on the right hand side of Equation (5)

equals the shade area in Figure 1.
Similar with the calculation of the continuous route travel times, the additivity property of route

travel times enables the discretised link travel times to be used to estimate the discretised route travel
times. For a given link a, the discretised travel time ta(t) is also defined as the average travel time of
vehicles that enter link a during interval (t, t+Δt]. The discretised link travel times based on link
cumulative flows can be formulated as follows:

ta tð Þ ¼
RUa tþΔtð Þ
Ua tð Þ V�1

a vð Þ � U�1
a vð Þ� �

dv

Ua t þ Δtð Þ � Ua tð Þ (6)

where U�1
a �ð Þ is the inversed function of Ua(�). The discretised route travel times can be estimated as

follows:

tp tð Þ ¼ ta1 tð Þ þ ta2 t þ ta1 tð Þð Þ þ⋯þ tam t þ ta1 þ⋯þ tam�1ð Þ (7)

Following Long et al. [15], we use piecewise functions, such as the SFs and LIs, to approximate
the profiles of cumulative flows and develop solution schemes to solve Equations (5) and (7) in the
next section.
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3. ROUTE TRAVEL TIME FORMULATIONS BASED ON CUMULATIVE FLOWS

3.1. Notations

In a traffic network G(N,A), N denotes the set of nodes, whereas A denotes the set of arcs (links). The time
period T of interest is discretised into a finite set of time intervals,K ¼ fk ¼ 1; 2;⋯;

�
Kg, where the length

of each interval is d and satisfiesd
�
K ¼ T.We assume that the network is empty at the beginning of the period

and the set of intervals with traffic demand is denoted by Kd ¼ fk ¼ 1; 2;⋯;
�
Kdg, where

�
Kd <

�
K. The

following notations will be adopted throughout this paper:

Ua(k) the cumulative arrivals at link a by the end of interval k.
Va(k) the cumulative departures from link a by the end of interval k.
ya(k) the number of vehicles entering link a during interval k.
yak(l) the number of vehicles entering link a during interval k and exiting the link during interval l.
Yak(l) the cumulative number of vehicles entering link a during interval k and exiting the link by the

end of interval l.
t0a the free-flow travel time of link a.
ta(k) the average travel time for vehicles entering link a during interval k.
nk the critical link outflow interval with respect to interval k.
Mp(k) the cumulative departures of route p by the end of interval k.
Np(k) the cumulative arrivals of route p by the end of interval k.
xp(k) the number of vehicles entering the network and selecting route p during interval k.
x the vector of (xp(k), 8 p, k).
xpk(l) the number of vehicles entering the network and selecting route p during interval k, and arriving

the destination during interval l.
Xpk(l) the cumulative number of vehicles entering the network and selecting route p during interval

k, and arriving the destination by the end of interval l.
t0p the free-flow travel time of route p.
tp(k) the average travel time for vehicles entering the network and selecting route p during interval k.
mk the critical route arrival interval with respect to interval k.

3.2. Overview of link travel time models based on link cumulative flows

The profiles of link cumulative flows can be approximated by both the SFs and LIs, which can be
employed to develop two types of link travel time models, namely, SF-type and LI-type models
[15]. Using link outflow capacity, we can further develop a modified LI-type (MLI-type) link travel
time model. In this subsection, we briefly introduce the formulations of the three types of link travel
time functions, which will also be extended to the route travel time pattern.

3.2.1. The SF-type link travel time
The actual link travel time of vehicles entering link a at time t is the horizontal distance between the
two cumulative flow curves (Figure 1). However, if time is discretised, taking a particular interval k
for example, there is no guarantee that the entire packet ya(k) will exit link a during the same discre-
tised time tick. The following definition will be used to determine each sub-packet that exits the link
during each time interval.

Definition 1. (Critical link outflow interval). A critical outflow interval of a link with respect to interval
k is defined as follows:

nk ¼ min l Ua kð Þ⩽Va lð Þ; l > k þ t0a=d; l 2 1; 2;⋯f g�� ��
(8)

Using the critical link outflow interval, we can determine the cumulative number of vehicles
entering link a during a particular interval k and leaving the link by the end of each interval:
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Yak lð Þ ¼
0 if l < nk�1

Va lð Þ � Ua k � 1ð Þ if nk�1⩽l < nk
Ua kð Þ � Ua k � 1ð Þ otherwise

8<
: (9)

By definition, we have

yak lð Þ ¼ Yak lð Þ � Yak l� 1ð Þand (10)

ya kð Þ ¼
X
l

yak lð Þ ¼ Ua kð Þ � Ua k � 1ð Þ (11)

If the cumulative flow curves are approximated by SFs, the actual travel time for sub-packet yak(l)
traveling through the link is (l� k)d and with a sum of travel time yak(l)(l� k)d. According to the
definition of discretised link travel time, we can mathematically formulate the SF-type link travel time
as follows (see Long et al. [15] for details):

ta kð Þ ¼
X
l¼1

K
�

yak lð Þ l� kð Þd=ya kð Þ ¼ nk � kð Þd�
Xnk�1

l¼nk�1

d Va lð Þ � Ua k � 1ð Þð Þ=ya kð Þ (12)

3.2.2. The LI-type link travel time
If the cumulative flow curves are linear interpolated, there exists a time instant (nk� 1 + mk)d, where mk
[0, 1] is a cumulative outflow parameter associated with interval k, such that the flows entering link a
before the beginning of interval k + 1 have completely exited the link, and inflows belonging to interval
k+ 1 start leaving away from the link. The cumulative outflow parameter can be calculated by

mk ¼
Ua kð Þ � Va nk � 1ð Þ
Va nkð Þ � Va nk � 1ð Þ (13)

The LI-type link travel time can be stated as follows (see Long et al.[15] for details):

t̂ a kð Þ ¼ ta kð Þ þ 1
2
d yak nk�1ð Þmk�1 þ yak nkð Þ mk � 1ð Þð Þ=ya kð Þ (14)

where ta(k) is the SF-type link travel time with respect to interval k.

3.2.3. The modified LI-type link travel time
Because the LI-type link travel time does not satisfy causality property [15], an improved cumulative
outflow parameter can be defined as follows:

�mk ¼
Ua kð Þ � Va nk � 1ð Þ

Ca nkð Þ (15)

where Ca(nk) is positive and denotes the outflow capacity of link a within interval nk.
With the redefined cumulative outflow parameter in Equation (15), we can formulate the MLI-type

link travel time function as follows:

�ta kð Þ ¼ ta kð Þ þ 1
2
d yak nk�1ð Þ�mk�1 þ yak nkð Þ �mk � 1ð Þð Þ=ya kð Þ (16)

3.3. Route travel time models based on route cumulative flows

Similar with the link pattern, we also can use the SFs and the linear interpolations to approximate
the profiles of route cumulative flows and obtain the SF-type and the LI-type route travel times,
respectively. Because the calculation of the MLI-type link travel times relies on link outflow capacity
and we cannot easily obtain route outflow capacity, therefore the MLI-type link travel time model
cannot be directly extended for route travel times. This subsection only considers the extensions of
the SF-type and LI-type link travel time models.
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3.3.1. The SF-type route travel time
When time is discretised, there is also no guarantee that the entire packet xp(k) will arrive at the destination
during the same discretised time tick. The following definition will be used to determine each sub-packet
that arrives at the destination during each time interval.

Definition 2. (Critical route arrival interval). A critical arrival interval of a route with respect to interval k
is defined as follows:

mk ¼ min l Mp kð Þ⩽Np lð Þ; l > k þ t0p=d; l 2 1; 2;⋯f g
���

on
(17)

Using the critical route arrival interval, we can determine the cumulative number of vehicles
entering the network and selecting route p during the same interval, but arriving at the destination
by the end of each interval:

Xpk lð Þ ¼
0 if l < mk�1

Np lð Þ �Mp k � 1ð Þ if mk�1⩽l < mk

Mp kð Þ �Mp k � 1ð Þ otherwise

8<
: (18)

By definition, we have

xpk lð Þ ¼ Xpk lð Þ � Xpk l� 1ð Þand (19)

xp kð Þ ¼
X
l

xpk lð Þ ¼ Mp kð Þ �Mp k � 1ð Þ (20)

If the cumulative flow curves are approximated by SFs, the actual travel time for sub-packet xak(l)
traveling through the route is (l� k)d and with a sum of travel time xak(l)(l� k)d. Similar to the SF-type
link travel time model, we can mathematically formulate the SF-type route travel time as follows:

tp kð Þ ¼
X
l

K
�

xpk lð Þ l� kð Þd=xp kð Þ ¼ mk � kð Þd�
Xmk�1

l¼mk�1

d Np lð Þ �Mp k � 1ð Þ� �
=xp kð Þ (21)

3.3.2. The LI-type route travel time
If the cumulative flow curves are linear interpolated, there exists a time instant (mk� 1 +ok)d, where
ok2 [0, 1] is a cumulative arrival parameter associated with interval k, such that the flows departing the
origin before the beginning of interval k + 1 have completely arrived at the destination. The cumulative
arrival parameter can be calculated by

ok ¼ Mp kð Þ � Np mk � 1ð Þ
Np mkð Þ � Np mk � 1ð Þ (22)

Similar to the LI-type link travel time model, the LI-type route travel time can be formulated
as follows:

t̂ p kð Þ ¼ tp kð Þ þ 1
2
d xpk mk�1ð Þok�1 þ xpk mkð Þ ok � 1ð Þ� �

=xp kð Þ (23)

3.4. Route travel time models based on link cumulative flows

The discretised link travel time models can be used to calculate link travel times by using the link
cumulative flows. The additivity property of route travel times enables route travel times to be
formulated as a nested function of link travel times. To simplify the formulation of the nested function,
we use LIs to approximate the link travel times. For a given time instant (k +o)d, where 0⩽o⩽ 1, the
link travel time of this time instant can be calculated as follows:

ta k þ oð Þ ¼ 1� oð Þta kð Þ þ ota k þ 1ð Þ (24)

111DISCRETISED ROUTE TRAVEL TIME MODELS BASED ON CUMULATIVE FLOWS

Copyright © 2012 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:105–125
DOI: 10.1002/atr



Proposition 1. If the discretised link travel times satisfy link FIFO, then the linear interpolated link
travel time ta(k +o) also satisfies link FIFO. Equivalently, we have

k
0þ o

0
> k

00þo
00
⇒ k

0 þ o
0� �
dþ ta k

0 þ o
0� �
⩾ k

00 þ o
00� �
dþ ta k

00 þ o
00� �
; 8k0

; k
00
;o

0 2 0; 1½ �;o00 2 0; 1½ �

Proof. Because the discretised link travel times satisfy link FIFO, we have d+ ta(k + 1)� ta(k)⩾ 0
for all k= 1, 2, 3,⋯. Because k0 +o0 > k00 +o00 and o0,o00 2 [0, 1], we have k0 ⩾ k00. If k0 = k00, we have
o0 �o00 > 0, and Equation (24) implies

k
0 þ o

0
� �

dþ ta k
0 þ o

0
� �

� k
00 þ o

00
� �

dþ ta k
00 þ o

00
� �h i

¼ o
0 � o

00
� �

dþ ta k
0 þ 1

� �
� ta k

0
� �h i

⩾0

Therefore, we have (k0 +o0)d + ta(k0 +o0)⩾ (k00 +o00)d+ ta(k00 +o00). If k0 > k00, we have (k0 +o0)d +
ta(k0 +o0)⩾ k0d+ ta(k0)⩾ (k00 + 1)d+ ta(k00 + 1)⩾ (k00 +o00)d + ta(k00 +o00). This completes the proof. □

Proposition 2. If the discretised link travel times satisfy link strong FIFO (SFIFO), then the linear
interpolated link travel time ta(k +o) also satisfies link SFIFO. Equivalently, we have

k
0 þ o

0
> k

00 þ o
00
⇒ k

0 þ o
0� �
dþ ta k

0 þ o
0� �
> k

00 þ o
00� �
dþ ta k

00 þ o
00� �
; 8k0

; k
00
;o

0 2 0; 1½ �;o00 2 0; 1½ �

The proof is similar to that of Proposition 1.
The travel time required to traverse a path p= {a1, a2,⋯, am} for vehicles using this path during

time interval k can be estimated by the following nested function:

tp kð Þ ¼ ta1 kð Þ þ ta2 k þ ta1 kð Þ=dð Þ þ⋯þ tam k þ ta1=dþ⋯þ tam�1=dð Þ (25)

If the SF-type link travel times are substituted in Equation (25) to calculate the route travel times,
then the corresponding route travel time model is named by NSF-type route travel time model for
short. Similarly, the LI-type (MLI-type) link travel times can be used to develop the NLI-type
(NMLI-type) route travel time model by using Equation (25).

3.5. Properties of route travel time models

Definition 3. (Route FIFO). The route FIFO condition is satisfied if and only if

k
0
> k

00
⇒k

0
dþ tp k

0
� �

⩾k
00
dþ tp k

00
� �

; 8k0
; k

00 2 Kd

Definition 4. (Route SFIFO). The route SFIFO condition is satisfied if and only if

k
0
> k

00
⇒k

0
dþ tp k

0
� �

> k
00
dþ tp k

00
� �

; 8k0
; k

00 2 Kd

Proposition 3. The SF-type route travel times calculated by Equation (21) satisfy route FIFO.The
proof is the same as that of Proposition 5 in Long et al. [15].

Proposition 4. The LI-type route travel times calculated by Equation (23) satisfy route SFIFO.The
proof is the same as that of Proposition 11 in Long et al. [15].

Proposition 5. The NSF-type route travel times calculated by Equation (25) satisfy route FIFO.

Proof. Considering two time intervals k 0 and k 00, we assume k 0 > k 00. Because the LI-type link
travel times satisfy link FIFO, we have k

0
dþ ta1 k

0� �
⩾k

00
dþ ta1 k

00� �
. Equivalently, we have

k
0 þ ta1 k

0� �
d�1⩾k

00 þ ta1 k
00� �
d�1. According to Proposition 1, we have
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k
0 þ ta1 k

0
� �

d�1 þ ta2 k
0 þ ta1 k

0
� �

d�1
� �

=d⩾k
00 þ ta1 k

00
� �

d�1 þ ta2 k
00 þ ta1 k

00
� �

d�1
� �

=d

Similarly, we have k 0d+ tp(k 0)⩾ k 00d+ tp(k 00). This completes the proof. □

Proposition 6. The NLI-type and NMLI-type route travel times calculated by Equation (25) satisfy
route SFIFO.
The proof is similar to that of Proposition 5.
Propositions 3–6 show that all of the five route travel time models satisfy route FIFO or route SFIFO. It

is also important to investigate continuity and monotonicity of the route travel time functions, because the
existence and uniqueness of the solutions of DTA models depend on these properties. The following
assumption is used to discuss the continuity of each route travel time models.

Assumption 1. The route cumulative outflows and link cumulative outflows are continuous with respect
to route flows.

Proposition 7. Under Assumption 1, the traffic flow xpk(l) is continuous with respect to the route flow x.
The proof is the same as that of Proposition 7 in Long et al. [15].

Proposition 8. Under Assumption 1, the SF-type and the LI-type route travel times calculated by
Equations (23) and (25) are continuous functions of route flow x.

Proof. Substituting Equation (20) into Equation (21), we have tp(k) =
P

lxpk(l)(l� k)d/
P

lxpk(l).
According to Proposition 7, xpk(l) is continuous with respect to the route flow x, and the SF-type route
travel times calculated by Equation (23) are also continuous functions of route flow x. According to
Equations (18) and (19), we have Mp(k)�Np(mk� 1) = xpk(mk) and Np(mk)�Np(mk� 1) = xpk+1(mk) +
xpk(mk). Hence, ok= xpk(mk)/(xpk+1(mk) + xpk(mk)). According to Proposition 7, the second term on the
right hand side of Equation (23) is continuous with respect to x. We have proved that tp(k) is continuous
with respect to x. Therefore, the LI-type route travel times calculated by Equation (25) are also continuous
functions of route flow x. This completes the proof. □

Proposition 9. Under Assumption 1, the NSF-type, the NLI-type and the NMLI-type route travel times
calculated by Equation (25) are continuous functions of route flow x.

Proof. Under Assumption 1, the SF-type, the LI-type, and the MLI-type link travel times are continuous
of route flow x[15]. The nested function tp(k) in Equation (25) is continuous with respect to link travel
times [3,13]. Therefore the NSF-type, the NLI-type, and the NMLI-type route travel times are continuous
functions of route flow x. □
Continuity and strict monotonicity are certainly desirable properties of route travel times,

which determine the solution existence and uniqueness of DTA models. Propositions 8 and 9
have proved that the presented route travel time functions are continuous with respect to rout
flows under Assumption 1. However, continuity of route travel times may not hold when a
physical-queue traffic flow model is adopted [15]. In this case, weak solutions are usually
defined, which do not require continuity to hold at each time instant [12,13]. Nevertheless, our
experience and that of many authors worked with many DTA models and algorithms are that
strict monotonicity of route travel times does not hold even for static user equilibrium problems.
This implies that DTA models using discretised route travel time functions may not guarantee the
uniqueness of the solutions.
Reference [11] stated that the continuity of route travel time with respect to time cannot always be

guaranteed in practice. We here prove that the discretised route travel time will converge to the
continuous-time route travel time if the latter is continuous with respect to time.

Assumption 2. The continuous-time route travel time is continuous with respect to time instant t.
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Proposition 10. Under Assumption 2, the SF-type and LI-type route travel times converge to the
continuous-time route travel times calculated by Equation (1).
The proof is presented in Appendix.

Assumption 3. The continuous-time link travel time is continuous with respect to time instant t.

Proposition 11. Under Assumption 3, the NSF-type, the NLI-type, and the NMLI-type route travel times
calculated by Equation (25) converge to the continuous-time route travel times calculated by Equation (2).

Proof. Similar to the proof of Proposition 10, we can prove that the SF-type, the LI-type, and the MLI-
type link travel time functions converge to the same function if d! 0, and the SF-type link travel times
converge to the continuous-time link travel times under Assumption 3. Hence, the LI-type and the
MLI-type link travel times also converge to the continuous-time link travel times under Assumption 3.
The NSF-type, the NLI-type, and the NMLI-type route travel times calculated by Equation (25) are nested
function of the SF-type, the LI-type, and the MLI-type link travel times, respectively and, therefore
converge to the continuous-time route travel times calculated by Equation (2).

4. MODEL ACCURACY ESTIMATION

4.1. Route travel time calculation error

To evaluate the accuracy of each type of route travel time model, the theoretical value of route travel time
should be computed firstly. However, it is difficult to directly calculate the theoretical value of route travel
time because of the irregularity of cumulative flow curves. Long et al. [15] developed an efficient method
to estimate the theoretical value of link travel time. The method can be extended to estimate the theoretical
value of route travel time. The DNLmodel is implemented with a very short interval length to generate the
cumulative flow curves and obtain the route travel time (denoted by ~tp ið Þ) and route flow (denoted by
~wp ið Þ), where i is the index of a particular short interval. The theoretical value of route travel time during
a particular interval k can be estimated as follows:

ttp kð Þ ¼

P
i2Kd kð Þ

~wp ið Þ~tp ið Þ

wp kð Þ (26)

where ttp(k) is the theoretical value of route travel time at interval k, Kd(k) is the set of short intervals that
belong to time interval ((k� 1)d, kd].
The calculation error of a route travel time model for a particular interval is defined as the difference

between the estimated travel time obtained from the model and the theoretical value of route travel
time at that interval. This definition of route travel time calculation error is used to evaluate the model
accuracy. With the use of the SF-type route travel time as an example, the calculation error of the route
travel time at a given interval k can be mathematically expressed as follows:

ep kð Þ ¼ tp kð Þ � ttp kð Þ (27)

4.2. Model accuracy measures

There are two measures to evaluate the maximum error of the whole study period for a particular
model: maximum absolute error (MaxAE) and maximum percentage error (MaxPE). The MaxAE
and MaxPE can be mathematically expressed as follows:

MaxAE ¼ maxk2Kdfjep kð Þjgand (28)

MaxPE ¼ maxk2Kdfjep kð Þj=ttp kð Þg � 100 (29)
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|ep(k)| is the absolute calculation error (in seconds) of a particular interval k, and therefore Equation (28)
gives MaxAE (in seconds). |ep(k)|/ttp(k) is the relative calculation error of a particular interval k, and
therefore Equation (29) gives MaxPE, which is expressed in terms of per 100.
There are also two measures to evaluate the average error of the whole study period for a particular

model: mean absolute error (MAE) and mean percentage error (MPE). The MAE and MPE can be
formulated as follows:

MAE ¼

P
k2Kd

ep kð Þ�� ��

Kd�
and (30)

MPE ¼

P
k2Kd

ep kð Þ�� ��=ttp kð Þ

Kd�
� 100 (31)

The numerator and the denominator of the right hand side of Equation (30) are the total absolute
calculation error (in seconds) and the number of intervals with traffic demand. Therefore, Equation
(30) gives MAE (in seconds). In Equation (31), MPE is defined as the average of the relative absolute
error of each discretised interval and expressed in terms of per 100.

5. NUMERICAL EXAMPLES

The presented route travel time models use the cumulative flows to compute route travel times. The
DNL model used in this paper is the point-queue (PQ) model [3,33]. The underlying reasons for
choosing the PQ model are as follows [33]: (i) The PQ model is easy to calibrate because its para-
meters, including free-flow travel time and bottleneck capacity, are all well-defined physical quantities
that are relatively easy to measure; and (ii) The PQ model takes advantage of the computational effi-
ciency and behaves identically as the CTM model if queue spillback does not occur. Three examples
are developed to demonstrate the model accuracy and the computational efficiency of the proposed
travel time models. All the experiments were coded in Visual C# and run on a personal computer with
a Pentium IV processor having 2.83GHz CPU and 3.50GB of RAM memory.

5.1. Example 1: a linear network

In this example, we use a linear network presented in Figure 2 to illustrate the accuracy of each type of
route travel time model. The linear network consists of n nodes, n� 1 links and n OD pairs, where n is
greater than 2. All links have uniform free-flow travel time and outflow capacity, 2minute and
36 vehicles/minute, respectively. Each two adjacent nodes (i, i + 1) form the ith OD pair and nodes
(1, n) form the nth OD pair. The interval length used to estimate the theoretical value of route travel time
is 0.1 second. The network is empty initially, and only the first 30minutes has traffic demand. The traffic
demands of each OD pairs are set as follows:

qi tð Þ ¼ qimax sin
2 pt=10þ pi=nð Þ (32)

where qimax is the maximum traffic demand of the ith OD pair.
Firstly, we set n = 10 andqimax ¼ 120vehicles/minute for all i⩽ n. Using the PQ model to implement

the DNL, we obtain both link and route cumulative flows and use the presented route travel time
models to compute the route travel times. The maximum errors and the mean errors corresponding
to each type of route travel time models are presented in Table I. We can observe that both the

21 n

Figure 2. A linear network.
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maximum errors and the mean errors have an increase tendency when we increase the value of d. This
result indicates that a small interval length will improve the model accuracy. Table I also shows that
the route travel time models based on route cumulative flows (i.e., the SF-type and the LI-type route

Table I. Route travel time calculation errors of the last long route in Example 1.

Measure Model type
d= 1
second

d= 5
seconds

d= 10
seconds

d= 20
seconds

d= 30
seconds

d= 40
seconds

d= 60
seconds

MaxAE (seconds) SF-type 0.748 4.490 11.097 41.196 67.133 60.085 105.773
LI-type 0.513 4.120 11.374 40.674 66.587 67.546 108.820
NSF-type 5.030 10.376 27.416 32.043 31.207 54.637 43.054
NLI-type 4.552 10.097 23.477 25.047 37.074 35.656 33.533
NMLI-type 4.693 10.097 23.743 25.047 37.074 46.451 33.577

MaxPE (%) SF-type 0.027 0.217 0.523 1.961 3.118 2.869 4.941
LI-type 0.025 0.199 0.536 1.936 3.093 3.225 5.084
NSF-type 0.236 0.436 1.056 1.219 1.406 2.608 2.011
NLI-type 0.213 0.385 0.904 0.953 1.671 1.702 1.567
NMLI-type 0.220 0.453 0.914 0.953 1.671 2.218 1.569

MAE (seconds) SF-type 0.086 0.524 1.186 3.038 5.092 7.514 12.985
LI-type 0.010 0.176 0.578 1.894 3.633 4.843 8.567
NSF-type 0.143 0.828 2.084 4.046 6.624 10.213 10.998
NLI-type 0.019 0.257 0.921 2.286 3.888 5.414 8.263
NMLI-type 0.016 0.252 0.916 2.380 4.310 6.171 8.316

MPE (%) SF-type 0.003 0.020 0.045 0.118 0.198 0.292 0.502
LI-type 0.000 0.007 0.023 0.078 0.148 0.202 0.344
NSF-type 0.005 0.032 0.081 0.156 0.254 0.391 0.412
NLI-type 0.001 0.010 0.037 0.089 0.152 0.214 0.316
NMLI-type 0.001 0.010 0.037 0.092 0.169 0.244 0.312

MaxAE, maximum absolute error; MaxPE, maximum percentage error; MAE, mean absolute error; MPE, mean percentage error.

Figure 3. The effect of route flow on the route travel time calculation errors of the last route: (a) the MaxAE,
(b) the maximum percentage error, (c) the mean absolute error, and (d) the mean percentage error.
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travel time models) outperform those based on link cumulative flows in terms of the maximum
calculation errors when we use a small value of d, but an opposite result occurs when we use a large
value of d. If the mean calculation errors are considered, we find that the LI-type, the NLI-type and the
NMLI-type route travel time models outperform the SF-type and the NSF-type models. In this
example, the NLI-type and the NMLI-type route travel time model have a very close accuracy.
It is also interesting to discuss the effect of route flows on the route travel time calculation errors. We

change the maximum route flow of the last route from 1.0 to 240 and set d = 30 seconds. Other input
parameters are the same as previous experiments. The maximum calculation errors and the mean
calculation errors with respect to each route flow pattern are graphically displayed in Figure 3. We
can observe that the MaxAE and the MaxPE of the route travel time models based on route cumulative
flows are decreasing when we increase the route flow of the last route, but the MaxAE and the MaxPE
of the route travel time models based on link cumulative flows do not have a decrease tendency but
with a great fluctuation (Figure 3(a and b)). This implies the maximum errors of the route travel time
models based on link cumulative flows may be independent with network congestion. We also can
observe that the MAE of the route travel time models based on route cumulative flows are decreasing
when we increase the route flow of the last route, and the MAE of the route travel time models based
on link cumulative flows does not have a clear decrease tendency but with a slight fluctuation (Figure 3
(c)). Because the route travel times are increasing when the route flow grows up, the MPE of all types
of route times is decreasing when we increase the route flow of the last route (Figure 3(d)). The
results presented in Figure 3(c and d) also show that the LI-type route travel time models outperform
the SF-type route travel time models, and the NLI-type and the NMLI-type route travel time models
outperform the NSF-type models in general. Another interesting result is that route travel time models
based on route cumulative flows outperform those based on link cumulative flows when route flows
are great enough. This example also confirms that the NLI-type and the NMLI-type route travel time
model have a very close accuracy.

Figure 4. The effect of network size on the route travel time calculation errors of the last route: (a) the maximum
absolute error, (b) the maximum percentage error, (c) the mean absolute error, and (d) the mean percentage error.
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Furthermore, we concern the effect of network size on the route travel time calculation errors. In this
example, we reset qimax ¼ 120vehicles/minute for all i⩽ n, but with the number of nodes varying from
3 to 32. The maximum calculation errors and the mean calculation errors with respect to each network
size pattern are graphically displayed in Figure 4. We can observe that the route travel time models
based on link cumulative flows outperform those based on route cumulative flows in average in terms
of the MaxAE and the MaxPE, but an opposite result occurs when we consider the MAE and the MPE.
The results presented in Figure 4(c and d) confirm that the LI-type route travel time models outperform
the SF-type route travel time models, and the NLI-type and the NMLI-type route travel time models
outperform the NSF-type models in general.

5.2. Example 2: the Nguyen and Dupius network

In this example, the Nguyen and Dupius network is adopted (Figure 5), which consists of 13 nodes, 19
links, 4 OD pairs and 25 routes [35]. The free-flow travel time of each link is listed in Table II [2,14].
The number of lanes is as follows: 1 for links 8–2, 12–8 and 13–3, 2 for link 9–13, and 3 for other 15
links. The outflow capacity is: 0.3 vehicles/second/lane for links leading to nodes 2, 3, 5, 6, 8, 9, 10,
11, and 0.5 vehicles/second/lane for other links. The traffic demand lasts for the first 30minutes.

1

5 6 7 84

9 10 2

3

12

11

13

Origin

Origin

Destination

Destination

Figure 5. The Nguyen and Dupius network.

Table II. The free-flow travel time of each link in the Nguyen and Dupius network.

Free-flow travel time (seconds) 30 40 40 50

1–12 1–5 4–5
7–8 4–9 5–6

Link 7–11 5–9 6–7 12–8
9–13 6–10 9–10
8–2 11–2 11–3
10–11 12–6 13–3

Table III. Basic OD demand of the Nguyen and Dupius network (103 vehicles/hour).

From To

2 3
1 7.2 4.8
4 4.8 7.2
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The interval length used to estimate the theoretical value of route travel time is also 0.1 s. The basic
OD demand of each OD pair is given in Table III, and we use a function with plateau shaped profile
to represent the time-dependent demand level, given by:

c tð Þ ¼
sin pt=10ð Þ if 0⩽t⩽5
1 if 5 < t < 20
0:6þ 0:4 sin5 p t � 10ð Þ=20ð Þ if 20⩽t⩽30

8<
: (33)

where the unit for the time t is minute. Multiplying the time-dependent demand level with the basic OD
demand, we obtain the time-dependent OD demand.
To investigate the performance of the proposed route travel time models, we should predetermine

the route flows, which are used to implement the DNL and generate both cumulative route flows
and cumulative link flows. In this example, a logit-based dynamic stochastic user equilibrium (DSUE)
model [36,37] is used to assign the OD demand to each route. The SF-type route travel time model is
adopted to calculate the route travel times, and the method of successive averages is employed to solve
the DSUE model. The other parameters for the logit-based DSUE model are as follows: the dispersion
parameter equals to 0.1, the interval length is 10 seconds, the total iteration number is 400, and all the
25 routes are used. By solving the DSUE model, we can obtain the time-dependent route choice
probability, which is used to determine the time-dependent path flows.
The route travel time calculation errors under various interval lengths are given in Table IV. We can

observe that the LI-type route travel time model performs better than the SF-type route travel time
model in terms of the average calculation error, and the NLI-type and NMLI-type route travel time
models outperform the NSF-type route travel time model in terms of both the maximum relative
calculation error and the average calculation error. This result is consistent with that in Example 1.
In this example, the SF-type route travel time model has higher accuracy than the NSF-type route
travel time model, whereas the NLI-type and NMLI-type route travel time models have higher
accuracy than the LI-type route travel time model. Therefore, we also cannot determine whether the
route travel time models based on link cumulative flows or that based on route cumulative flows are
better in terms of model accuracy. The results presented in Table IV also confirm that the proposed
route travel time models have higher accuracy if a smaller interval length is adopted.
The CPU times required for implementing the DNL and the route travel time models are listed in

Table V. We can observe that the CPU time required for implementing the DNL is about ten times
of that for calculating route travel times by the proposed methods. This result implies that the proposed
formulations of the route travel time models have good performance in terms of computational
efficiency. From Table V, we can also observe that the CPU time increases approximately linearly
as the interval length decreases. This result implies that selection of interval length will be limited

Table IV. Route travel time calculation errors of Example 2.

Interval length Model type MaxAE (seconds) MaxPE (%) MAE (seconds) MPE (%)

d= 1 second SF-type 0.4973 0.0728 0.0266 0.0029
LI-type 0.7357 0.0949 0.0035 0.0003
NSF-type 0.4500 0.1007 0.0670 0.0077
NLI-type 0.5474 0.0205 0.0015 0.0001
NMLI-type 0.2753 0.0137 0.0015 0.0001

d= 5 seconds SF-type 3.0244 0.3340 0.1344 0.0146
LI-type 4.5917 0.2016 0.0435 0.0033
NSF-type 1.9270 0.5490 0.3311 0.0385
NLI-type 1.8208 0.0661 0.0205 0.0020
NMLI-type 1.4292 0.0657 0.0208 0.0020

d= 10 seconds SF-type 7.5507 0.7653 0.3144 0.0342
LI-type 9.3507 0.3984 0.1964 0.0179
NSF-type 4.4557 0.7767 0.6763 0.0765
NLI-type 5.0369 0.2882 0.1431 0.0148
NMLI-type 2.3714 0.2882 0.1409 0.0147

MaxAE, maximum absolute error; MaxPE, maximum percentage error; MAE, mean absolute error; MPE, mean percentage error.
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by the computational burden. The results presented in Table V also show that The CPU time required
for computing the SF-type (NSF-type) route travel times is less than that for computing the LI-type
(NLI-type or NMLI-type) route travel times. This is because the formulation of SF-type (NSF-type)
route travel time model has a simpler form than that of the LI-type (NLI-type and MLI-type) model.
Comparing Equation (21) with Equation (23), we can find that the calculation of SF-type route travel
times is a sub-process to calculate the LI-type route travel times, and therefore, the latter one needs
more computational time.

5.3. Example 3: the Sioux Falls network

To further illustrate the performance of the proposed route travel time models, we tested them in the
Sioux Falls network as shown in Figure 6, which is larger than the Nguyen and Dupius network.
The Sioux Falls network consists of 24 nodes, 76 links, and 528 OD pairs. The basic OD demand
and the capacity of each link are the same as that in Leblanc et al. [38], but only the link free-flow
travel times are slightly changed (Table VI). The same as Example 2, the traffic demand lasts for
the first 30minutes, and the time-dependent demand level also follows Equation (33). Following Long
et al. [39], we used a combination of the link elimination method (see Bekhor et al. [40] for details)
and Dial’s [41] STOCH method to generate the path choice set, where the STOCH method can be used
to generate the basic path set, and the link elimination method can generate some shorter paths omitted
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Figure 6. The Sioux Falls network.

Table V. The CPU times required to implement the dynamic network loading (DNL) and the route travel time
models in Example 2 (seconds).

Interval length DNL SF-type LI-type NSF-type NLI-type NMLI-type

d= 0.1 second 1.5300 0.0745 0.1130 0.1820 0.2050 0.1977
d= 1 second 0.1425 0.0078 0.0114 0.0184 0.0206 0.0202
d= 5 seconds 0.0261 0.0016 0.0023 0.0036 0.0041 0.0041
d= 10 seconds 0.0127 0.0006 0.0011 0.0019 0.0020 0.0020
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by the STOCH method. There are totally 1875 paths generated, the average number of paths per OD
pair is 3.6, and the maximum number of routes between an OD pair is 15. The path flow generation
method is the same as that in Example 2. Because there is not enough RAM memory to implement
the DNL when the length of interval is 0.1 second, the interval length used to estimate the theoretical
value of route travel time is 0.5 second in this example.
We repeated the experiments under various interval lengths in the Sioux Falls network and reported

the route travel time calculation errors and the CPU times required for implementing the DNL and the
route travel time models in Tables VII and VIII, respectively. Very similar results with that in Exam-
ple 2 can be observed: (i) Using a small interval length can improve the accuracy of all route travel
time models, but will also increase the computational burden; (ii) The LI-type (NLI-type or NMLI-
type) route travel time model outperforms the SF-type (NSF-type) route travel time model in terms

Table VI. The free-flow travel time of each link in the Sioux Falls network.

Link order t0a (seconds) Link order t0a (seconds) Link order t0a (seconds) Link order t0a (seconds)

1 and 3 140 17 and 20 80 34 and 40 100 53 and 58 60
2 and 5 100 18 and 54 60 37 and 38 80 56 and 60 100
4 and 14 120 21 and 24 240 39 and 74 100 59 and 61 100
6 and 8 100 22 and 47 120 41 and 44 120 62 and 64 140
7 and 35 100 25 and 26 80 42 and 71 100 63 and 68 120
9 and 11 60 27 and 32 120 45 and 57 100 65 and 69 60
10 and 31 140 28 and 43 140 46 and 67 100 66 and 75 80
12 and 15 100 29 and 48 120 49 and 52 60 70 and 72 100
13 and 23 120 30 and 51 200 50 and 55 80 73 and 76 60
16 and 19 60 33 and 36 140

Table VII. Route travel time calculation errors of Example 3.

Interval length Model type MaxAE (seconds) MaxPE (%) MAE (seconds) MPE (%)

d= 5 seconds SF-type 46.1910 1.4952 0.4073 0.0153
LI-type 46.2058 1.5069 0.2554 0.0092
NSF-type 32.1256 1.1106 0.5320 0.0218
NLI-type 32.3895 1.0469 0.1815 0.0064
NMLI-type 32.3895 1.0469 0.1116 0.0048

d= 10 seconds SF-type 78.9225 3.4859 0.9387 0.0370
LI-type 78.9348 3.5242 0.6585 0.0263
NSF-type 49.6618 1.9211 1.1454 0.0469
NLI-type 58.7199 1.9023 0.4042 0.0165
NMLI-type 58.7199 1.9023 0.2390 0.0126

d= 20 seconds SF-type 290.9873 12.3036 4.5690 0.2158
LI-type 292.3109 12.3342 4.4461 0.2090
NSF-type 226.2913 7.5367 4.5814 0.2137
NLI-type 183.6029 6.9464 3.9910 0.1801
NMLI-type 183.6029 6.9464 3.4164 0.1667

MaxAE, maximum absolute error; MaxPE, maximum percentage error; MAE, mean absolute error; MPE, mean percentage error.

Table VIII. The CPU times required to implement the dynamic network loading (DNL) and the route travel time
models in Example 3 (seconds).

Interval length DNL SF-type LI-type NSF-type NLI-type NMLI-type

d= 0.5 second 11.0609 1.2219 1.7797 0.9875 1.0477 1.0422
d= 5 seconds 0.9677 0.1227 0.1789 0.1016 0.1039 0.1031
d= 10 seconds 0.4805 0.0617 0.0898 0.0506 0.0534 0.0530
d= 20 seconds 0.2366 0.0313 0.0455 0.0252 0.0267 0.0264
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of higher average calculation errors, but the former is inferior to the latter in terms of requiring more
CUP time; (iii) The NMLI-type route travel time model slightly outperforms the NLI-type route travel
time model in terms of both accuracy and computational efficiency; (iv) The CPU time required to im-
plement the proposed route travel time models are far less than that required to implement the DNL;
and (v) The CPU times required to implement both the DNL and the route travel time models have
an approximately linearly increase tendency when we shorten the interval length. Comparing these
with the results presented in Example 2, we found that the accuracy of the proposed models may de-
crease, whereas the corresponding CPU time will increase a lot if the network size is enlarged. We also
found that the route travel time models based on link cumulative flows outperform the models based on
route cumulative flows in terms of the computational efficiency. This implies that the route travel time
models based on link cumulative flows should be recommended for applications in medium-scale and
large-scale networks.

6. CONCLUSIONS

This paper develops discretised route travel time models based on both route cumulative flow curves
and link cumulative flow curves, which can be generated by DNL models. By using SFs and LIs to
approximate the profile of route cumulative flows, we obtain the SF-type and LI-type route travel time
models, respectively. We also develop route travel time models by using a nested function of link
travel times based on link cumulative flows. The profiles of link cumulative flows are approximated
by SFs and LIs, and we can obtain the SF-type, the LI-type, and the modified LI-type link travel times.
Substituting the three types of link travel times into the nested function, we obtain the NSF-type, the
NLI-type, and the NMLI-type route travel time models.
On the basis of the analysis, we found that all the five models satisfy route FIFO and continuity, no

matter how large is the time step used for discretisation. Numerical methods are developed to evaluate
the accuracy and computational efficiency of the route travel time models presented in this paper. Both
maximum errors and mean errors are formulated to measure the calculation error of each type of route
travel time models. Three networks are used to demonstrate the performance of each type of route
travel time models. The numerical results show that the LI-type route travel time models outperform
the SF-type route travel time models, and the NLI-type and the NMLI-type route travel time models
outperform the NSF-type models. Furthermore, it is demonstrated that the CPU time required to
implement the proposed route travel time models are far less than that required to implement the DNL.
In the future, we will discuss other properties of the presented route travel time models and apply them

into DTA models. Most of DTA models assume that only the deterministic component of traffic flow is
taken into account and the corresponding DNL results in deterministic route travel times. However, traffic
uncertainties, such as stochastic speed–density relationship [27,42], stochastic traffic demand [43], sto-
chastic road capacity [44] and so on, exist extensively in real life, which lead to stochastic route travel
times. In the future, we are also interested in developing route travel time models that can address traffic
uncertainties.
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APPENDIX

Below is the proof of Proposition 10.

Proof. Firstly, we prove that the SF-type route travel time function and the LI-type route travel time
function converges to the same function if d! 0. Equation (23) can be applied to calculate the gap
of the two types of travel times, which is denoted by Δt̂ p kð Þ and can be expressed as follows

Δt̂ p kð Þ ¼ 1
2
d xpk mk�1ð Þok�1 þ xpk mkð Þ ok � 1ð Þ� �

=xp kð Þ (A1)

Because 0⩽ok⩽ 1 and 0⩽ xpk(l)/xp(k)⩽ 1, for all k2Kd, l2K, we have

Δt̂ p kð Þ⩽ 1
2
dxpk mk�1ð Þok�1=xp kð Þ⩽ 1

2
d and (A2)

Δt̂ p kð Þ⩾� 1
2
dxpk mkð Þ 1� okð Þ=xp kð Þ⩾� 1

2
d (A3)

Equations (A2) and (A3) indicate that the difference of the LI-type route travel time from the
SF-type route travel time will approach to zero if d! 0.

According to the definition of mk in Equation (17), we have

Np mk � 1ð Þ⩽Mp kð Þ⩽Np mkð Þ (A4)

Using the relationship between the cumulative departure flows and arrival flows of path p, we have

mk � k � 1ð Þd⩽tp kdð Þ⩽ mk � kð Þd (A5)

where tp(kd) is the route travel time for vehicles entering the network and selecting route p at time
instant kd.

The first inequality and the second inequality of Equation (A5), respectively, imply that

mk � kð Þd⩽tp kdð Þ þ d and (A6)

tp k � 1ð Þdð Þ � d⩽ mk�1 � kð Þd (A7)

According to Equation (18), we have

tp kð Þ ¼
X
l¼1

K
�

xpk lð Þ l� kð Þd=xp kð Þ ¼
Xmk

l¼mk�1

xpk lð Þ l� kð Þd=xp kð Þ (A8)
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Therefore, we have

tp kð Þ ¼
Xmk

l¼mk�1

xpk lð Þ l� kð Þd=xp kð Þ⩾
Xmk

l¼mk�1

xpk lð Þ mk�1 � kð Þd=xp kð Þ ¼ mk�1 � kð Þd and (A9)

tp kð Þ ¼
Xmk

l¼mk�1

xpk lð Þ l� kð Þd=xp kð Þ⩽
Xmk

l¼mk�1

xpk lð Þ mk � kð Þd=xp kð Þ ¼ mk � kð Þd (A10)

Substituting Equations (A6) and (A7) into Equations (A9) and (A10), respectively, we have

tp k � 1ð Þdð Þ � d⩽ mk�1 � kð Þd⩽tp kð Þ⩽ mk � kð Þd⩽tp kdð Þ þ d (A11)

Let Δt= d, t = kd, and tp(t,Δt) = tp(k), where tp(t,Δt) is a function of Δt. Equation (A11) can be
equivalently rewritten as follows:

tp t � Δtð Þ � Δt⩽tp t;Δtð Þ⩽tp tð Þ þ Δt (A12)

According to Assumption 2, the continuous-time route travel time is continuous with respect to time
instant t, we have

lim
Δt!0

tp t � Δtð Þ � Δt
	 
 ¼ lim

Δt!0
tp t � Δtð Þ ¼ tp tð Þ ¼ lim

Δt!0
tp tð Þ þ Δt
	 


(A13)

Combining Equations (A12) and (A13), we have

lim
Δt!0

tp t;Δtð Þ ¼ tp tð Þ (A14)

This implies that the SF-type route travel times converge to the continuous-time route travel times.
Because the SF-type route travel time function and the LI-type route travel time function converge to
the same function if d! 0, the LI-type route travel times also converge to the continuous-time route
travel times. □
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