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SUMMARY

This study develops a car-following model in which heavy vehicle behaviour is predicted separately from
passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger
cars. These differences could create problems in freeway operations and safety under congested traffic con-
ditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increas-
ing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades
because existing car-following models do not differentiate between these vehicles and passenger cars. This
study highlighted some of the differences in car-following behaviour of heavy vehicle and passenger drivers
and developed a model considering heavy vehicles. In this model, the local linear model tree approach was
used to incorporate human perceptual imperfections into a car-following model. Three different real world
data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training
and testing of the model, and one of them was used for evaluation purpose. The performance of the model
was compared with a number of existing car-following models. The results showed that the model, which
considers the heavy vehicle type, could predict car-following behaviour of drivers better than the existing
models. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Urban freight movement is a significant and growing proportion of transport movement [1,2]. This
increasing growth is likely to be associated with an increase in the proportion of heavy vehicles
(HVs) in the traffic stream. Knowledge of the impact of this growth on traffic flow is necessary to
ensure correct decisions on the allocation of road space to various road user groups. Microscopic
frameworks that capture individual vehicle movements are well-suited to replicating the complexity
and uncertainty of the interactions of these user groups on traffic streams. Nevertheless, several major
problems including computational performance and the accuracy of models in representing the traffic
flow have been reported [3,4].
Car-following and lane changing models form two important underlying components of the traffic

microscopic simulations models used to update the dynamic behaviour of vehicles at small discrete
intervals. The major limitation of existing microscopic simulation models in representing the
integration between various user groups is that they employ a global car-following and lane chang-
ing model to capture acceleration characteristics of drivers in all driving situations [5]. However,
recent studies have shown the different behaviour of HV drivers during the car-following process
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[6,7] and lane changing manoeuvres [8] from those of passenger car (PC) drivers. The heterogeneous
traffic flow characteristics and varying road conditions were explored at macroscopic level in details
[9–19]. In contrast, the existing microscopic car-following models have not specifically considered the
behaviour of HVs. The study reported in this paper is one step in redressing this oversight, in that it
develops a model of the following behaviour of HV drivers.
The interaction between PCs and HVs and its influence on traffic flow through the following

behaviour of HV drivers is a fundamental component of all network micro-simulation models. This
interaction and following behaviour is particularly related to the capacity of freeways when traffic flow
is congested [20]. The difficulties of modelling freeway flow breakdown during congested conditions
with the existing simulation models are well acknowledged [21]. The traffic flow logic of existing
simulation models does not differentiate between the car-following behaviour of PCs and HVs.
Microscopic simulations may be capable of modelling freeway sections under low to moderate traffic
flows when there are insignificant interactions between vehicles. However, the interactions between
the HVs and the surrounding freeway drivers become even more important when traffic flow is close
to the capacity. The complex acceleration characteristics of HVs drivers and the significant interactions
of the HVs and surrounding vehicles in the adjacent lanes are believed to play an important role in
modelling traffic on freeway sections. To address some of the major limitations of the existing
microscopic simulation models, this study develops a car-following model for HVs in congested traffic
conditions. The model outlined in this paper uses the local linear model tree (LOLIMOT) approach as
a powerful artificial intelligence model [22], and a real world data set [23] was used for model
calibration and evaluation.
This paper is structured as follows. The next section provides the data analysis, which highlights

different following behaviours of HV drivers compared with the PC drivers. This section presents
the analysis of space headways, drivers' reaction times and accelerations applied by vehicles during
car-following behaviour. This is followed by the model development and model evaluation sections.
The paper closes with some conclusions and remarks.

2. DATA ANALYSIS

The Federal Highway Administration (FHWA) has provided trajectory data sets for some of the
freeways and arterial roads in California [23,24]. These data sets were created by Cambridge
Systematic Incorporation for FHWA as a part of Next Generation Simulation (NGSIM) project. The data
analysed in this paper were collected from a segment of Interstate 80 in San Francisco, California on 13
April 2005. Seven video cameras were mounted on the top of a 30-storey building (Pacific Park Plaza)
that was located adjacent to the Interstate freeway (I-80). The cameras covered about 503m of the
northbound direction of the freeway.
Trajectory data sets were derived at the resolution of one 10th of second from image processing of the

digital videos images for three time slots. The time slots were 4:00–4:15 PM (I-1), 5:00–5:15 PM (I-2) and
5:15–5:30 PM (I-3) all on 13 April 2005. Vehicles have been classified using the FHWA vehicle
classification [25] into three different types in the NGSIM data sets: motorcycles, automobiles and
HVs. Exhaustive data processing was conducted, and detailed data sets of the vehicle class, size
(length and width), two-dimension position, velocity, acceleration and deceleration for all vehicles
developed. Each vehicle also has information on the proceeding and following vehicle as well as their
lane identification.
The detailed explanation of the study area is presented in FWHA [23]. This includes the traffic

characteristics of the site compromising the number of vehicles observed and the traffic flow information
during the three time periods. The approach presented in the highway capacity manual [26] was used to
determine the level of service (LOS) of the site. The density of each lane was specified during each time
slot. It was varied from 36 (fast lane in the first time period, I-1) to 96 (slow lane in the third time slot, I-3)
PC per mile. As the Highway CapacityManual [26] suggested that the density range is between 35 and 45
PC per mile for LOS ‘E’ and greater than 45 for LOS ‘F’, it was concluded that the LOS is ‘E’ and ‘F’.
This means that the freeway is operating at capacity or even has more demand than its capacity that can
cause a breakdown in vehicular flow.
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A programme written in Microsoft visual studio was used to find HVs and PCs involving in the car-
following process. It resulted in finding 204 HVs and 327 PCs in total. These vehicle numbers could
generate a considerable number of samples as each car-following process took a few seconds, and
because of the data set resolution (1/10 of second), each second produced 10 samples. Table I presents
the number of vehicles and the number of samples separately for each time slot.
To highlight different car-following behaviour of HV and PC drivers, three variables were analysed.

These variables include headway, acceleration and reaction time, which are discussed in the
succeeding text.

2.1. Headway analysis

This section analyses the space headways in front of HVs and PCs. The space headway was defined as
the space gap between two successive vehicles running in the same direction and was calculated from
front bumper to front bumper (Figure 1). The headways were extracted from the data set separately for
each vehicle type.
The space headways were categorised on the basis of on the speeds of subject vehicles (HVs and PCs)

with 5 km/h intervals. The lead vehicle in these cases was PC. Figure 2 shows the average space
headways of vehicles at the speed of 0 to 60 km/h. The middle point of each speed interval represents
the corresponding speed range. This figure can also show the impacts of the subject vehicle speed on
its headway.
The space headways in front of HVs are larger than the corresponding values in front of PCs.

Indeed, the distances kept by HV drivers are greater than the distance kept by PC drivers. This different
behaviour may be explained by the different braking power-to-mass ratio of HVs and PCs. HVs have a
lower power-to-mass ratio than PCs, [27] which results in less reliability and capability of their brakes,
and thus, they tend to keep larger space headways when compared with PCs.
The two-sample t-test for two independent samples with unknown standard deviation was used to

support the aforementioned hypotheses. The null hypothesis was the space headways in front of heavy
vehicles are equal or less than the space headways in front of passenger cars. The alternative
hypothesis, as an alternate to the null hypothesis, would be the space headways in front of heavy
vehicles are greater than space headways in front of passenger cars. The mean and standard deviation
of each speed interval were determined. The hypotheses were tested with 99% level of confidence for
each corresponding speed interval of the HV and PC following process. The null hypothesis was

Table I. Number of vehicles and sample sizes.

I-1 I-2 I-3 Total

Vehicle
type

No. of
vehicles

Sample
size

No. of
vehicles

Sample
size

No. of
vehicles

Sample
size

No. of
vehicles

Sample
size

Heavy
vehicle

90 45 255 68 50 281 46 42 011 204 137 547

Passenger
car

153 62 465 102 56 840 72 53 322 327 172 627

Figure 1. Sketch of car-following.
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rejected with attention to the calculated and critical values of the t-statistic presented in Table II.
Therefore, the alternative hypothesis was accepted with 99% level of confidence confirming that the
space headways in front of HVs are greater than the corresponding values in front of PCs with 99%
level of confidence.

2.2. Acceleration analysis

Heavy vehicles have a lower power-to-mass ratio than PCs [27]. The drivers also have better sight
distance than PCs because of the height of the cabin. Because of these reasons, it is expected that
HV drivers apply lower acceleration than PC drivers. The results of the acceleration analysis are
presented here.
The acceleration of the subject vehicle was categorised into 0.1m/s2 intervals. The range of the

acceleration of the vehicles was between �2m/s2 and +2m/s2. It is noteworthy to mention that this
range was smaller when an HV was studied, but the range used in this study was kept similar between
HVs and PCs to show the results in the same scale and make the comparison consistent. Further, the
outcomes of this section will show the different dispersion of acceleration between HVs and PCs. The
number of the acceleration in each type was found, and the proportion was determined as a percentage.
Given the central limit theorem, the real world acceleration distribution of the subject vehicles

follows a normal distribution. Figure 3 compares the acceleration distributions of HVs and PCs. The

Figure 2. Comparison of space headways in front of heavy vehicles and passenger cars.

Table II. The t-test results for comparison of space headways.

Heavy vehicles Passenger cars Values of t

Speed rangea
Sample
size Meanb

Standard
deviationb

Sample
size Meanb

Standard
deviationb Calculated Critical

0–5 5197 13.19 7.81 10 137 9.49 4.13 38.41 2.5761
5–10 17 424 15.79 7.62 22 401 11.33 4.84 71.08 2.5760
10–15 19 530 20.13 10.57 23 539 13.26 5.47 86.67 2.5759
15–20 21 642 23.17 13.27 26 223 15.47 7.51 79.74 2.5759
20–25 22 896 25.43 14.94 25 244 17.51 9.69 69.60 2.5759
25–30 18 244 27.69 13.09 22 393 18.63 9.59 80.48 2.5760
30–35 12 135 31.15 16.72 15 882 22.25 12.14 51.60 2.5760
35–40 5965 36.81 23.43 9452 25.73 15.48 35.34 2.5761
40–45 3313 41.23 21.53 4614 27.16 15.86 33.51 2.5764
45–50 2398 45.69 21.95 2756 32.54 16.36 24.57 2.5768
50–55 1708 50.36 19.21 1342 35.05 16.58 23.20 2.5774
55–60 1046 55.46 18.50 470 40.43 17.76 14.82 2.5791

aKilometre per hour.
bMetre.
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mean and standard deviation in the acceleration distribution of HVs are 0 and 0.316m/s2, respectively,
whereas these values are 0 and 0.376m/s2, respectively, for PCs. Figure 3 shows that the HV
distribution is more concentrated than PC distribution. This indicates that HVs apply lower acceleration
and follow the leading vehicle in a more smoothing manner compared with PCs.

2.3. Reaction time analysis

The reaction time describes the period between the occurrence or appearance of a stimuli and the
driver's reaction. This section investigates the drivers' reaction times influenced by their vehicle types
(HV or PC).
The existence of the correlation between the subject vehicle acceleration at time t (an(t)) and the

relative speed between the subject vehicle and its leader at an earlier time, t�T, (Δv(t�T)) was well
acknowledged in the literature [28], where T is the driver's reaction time. Indeed, in the car-following
process, the reaction can be the acceleration/deceleration of the subject vehicle, and the stimuli can be
define as the speed difference between the subject vehicle and its leader. In other words, the
subject vehicle driver's reaction can be observed T seconds after the occurrence of a change in
the relative speed. This relationship was considered to determine the reaction time of drivers
by using Equation (1):

an tð Þ ∝ Δv t � Tð Þ (1)

Values of T between 0.5 and 3 seconds were tested. The scatter plots of an(t) versus Δv(t� T) were
derived for various values of T for HVs and PCs. A linear regression was performed for all of the plots,
and the strongest correlation between the subject vehicle acceleration, an(t), and the relative speed, Δv
(t� T), was considered as the reaction time [29]. It was found that the reaction times of HV and PC
drivers are equal to 1.9 and 1.8 seconds, respectively, which are slightly different.

2.4. Summary

The outcomes of this section showed that the car-following behaviour of HVs differs from that of PCs.
Nevertheless, the existing car-following models do not differentiate between PCs and HVs. This points
to the need for developing a car-following model in which these different behaviours of HV drivers
can be considered. The following section will explain the structure of such a model.

3. MODEL DEVELOPMENT

The LOLIMOT approach [22] can be considered as a new approach to modelling the car-following
behaviour of drivers. This model is a locally linear neuro-fuzzy model located in the artificial intelligence

Figure 3. Acceleration distributions of heavy vehicles and passenger cars.
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models category. It offers the opportunity to incorporate human being perceptual imperfections into a
rigorous modelling framework. This study predicts the speed of HVs at time t on the basis of the
magnitudes of three variables at time t� T; where T is the driver's reaction time as determined in
Section 2.3. The prediction function can be formulated as follow.

Vn tð Þ ¼ f Vn t � Tð Þ;Vn�1 t � Tð Þ; S t � Tð Þð Þ (2)

In this equation, Vn is the HV speed, Vn� 1 is its leading vehicle speed and S is the free space
between them. The free space is considered as the distance between the back bumper of the leading
passenger vehicle and front bumper of the HV as shown in Figure 1.
A local linear neuro-fuzzy model is developed and used to solve the car-following problem as a

prediction problem. In this structure, each neuron consists of a local linear model (LLM) and an
associated validity function which determines the zone of validity of the LLM. Figure 4 shows the
structure of such local linear neuro-fuzzy model.
Because each LLM corresponds to a linear model, the outputs of these LLMs can be represented as

follows (Equation (3)):

ŷi ¼ wi0 þ wi1u1 þ wi2u2 þ…þ wipup (3)

Each ŷi is a local estimation of the output. In Equation (3), wij denotes the parameters of the linear
model for neuron i, and uj is the j-th input to the model. In our car-following application, the input
vector consists of three elements: Vn(t�T), Vn� 1(t� T) and S(t�T), which corresponds to u1, u2
and u3, respectively. In this experiment, the size of the input vector p is equal to 3.
Validity functions are defined as normalised Gaussians. Because in this method localities are defined

as axis-parallel hyper-rectangles, the validity functions are axis-orthogonal Gaussians, and they have
diagonal covariance matrices. These validity functions are defined as follows:

ϕi ¯
u
� �

¼
μi ¯

u
� �

∑M
j¼1 μj ¯

u
� � (4)

Figure 4. Structure of local linear neuro-fuzzy model.
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Where:

μi ¯
u
� �

¼ exp � 1
2

u1 � ci1ð Þ2
σ2
i1

þ…þ up � cip
� �2

σ2
ip

 !" #
(5)

Where cij denotes the j-th centre coordinate for i-th Gaussian and σij denotes the standard deviation
in the j-th dimension for the i-th Gaussian. As the validity functions are normalised and they form a

partition of unity. For any model input
¯
u ¼ u1 u2…up

� �T
, it can be derived that∑M

i¼1ϕi ¯
u
� �

¼ 1, which

allows interpreting each ϕi(.) as a validity function, because it ensures that the contributions of all local
linear models sum up to 1.
The final output of a local linear neuro-fuzzy model ŷ, which is our estimation of the real output Vn

(t), can be computed as follows:

ŷ ¼ ∑M
i¼1ŷiϕi ¯

u
� �

(6)

Where ŷi andϕi ¯
u
� �

could be computed through Equations (3) and (4), respectively. Thus, the output

of local linear models are weighted based on their point dependent validity measure, and the final
output is calculated by adding these weighted outputs. It can be said that the network is interpolating
between different LLMs with the validity functions.
The required codes were written in MATLAB to predict the speed of the subject vehicle at time t on

the basis of three inputs obtained from time t� T. Note that, to address the findings of previous section,
two different types of subject vehicles were considered in this model including PCs and HVs. The
inputs of the model were subject vehicle speed, leading vehicle speed and the free space between
the two vehicles all at time t� T, and the output was the subject vehicle speed at time t. The I-1 data
set was used as the training set for training the structure of the model and adjusting the parameters. The
I-3 data set was used as the test set for tuning the model and finding the best structure for the model.
The I-2 data set was used as the validation set for evaluating the performance of the learned model. The
best structure of the model was found by tracing the errors of the developed model on test data (i.e. I-3),
and the model with eight neurons was selected as the best structure, which produces the minimum error.
The results showed that new model (LOLIMOT) could provide a good fitness with a high

adjusted R-squared (R
2
= 0.93).

4. MODEL VALIDATION AND EVALUATION

The new model, which was developed via training and testing in the previous section, showed a good
performance. However, its performance should be evaluated via another data set that was not used for
model development. The basis of this evaluation was to compare the predicted subject vehicle speeds
with the corresponding values obtained from real world. Therefore, for each of the samples, the input
values (i.e. Vn(t - T), Vn - 1(t - T) and S(t - T)) were given to the model in the form of vector

¯
u, and the

model's predicted output ŷ is compared with the real output Vn(t) to calculate the error.
The performance of the new model was compared with the performance of two well-known

car-following models: neural network-based model and Gipps [30]. Similar to the other existing
car-following models, these models do not differentiate between PCs and HVs, and thus, the mixed data
were used for calibration and evaluation of the model. The I-1 and I-3 data sets (Table I) were used for
model calibration, and the I-2 data set was used for validation and evaluation.
The first model, which was used for evaluation of the new model, was developed based on neural

network approach. It used multi-layer perceptron in order to solve the car-following regression
problem. Figure 5 shows a typical structure of the model. The model had three inputs and one output.
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The inputs of the model were the subject vehicle speed, the leading vehicle speed and free space
between the subject vehicle and its leader all at time t� T. These variables were used to predict the
speed of subject vehicle at time t.
The structure of the model consists of several layers, each of which has a number of neurons. Each

neuron generates a nonlinear output on the basis of a sigmoidal transfer function. The input of each
neuron is a linear combination of the previous layer outputs. In this study, the back-propagation
approach as a well-known training algorithm was used for learning of the network parameters.
Several structures were investigated, and the network with minimum average error on test data
was used for comparison.
The Gipps [30] car-following model was the second model, which was used for evaluation purpose.

This model is widely used in micro-simulations such as AIMSUN [31]. Gipps [30] car-following
model considers two constrains to estimate the subject vehicle speed as provided in Equation (7).

vn t þ Tð Þ ¼

Min

vn tð Þ þ 2:5anT 1� vn tð Þ=Vnð Þ 0:025þ vn tð Þ=V d
n

� �1=2
bn þ b2nT

2 � bn 2 xn�1 tð Þ � Ln�1 � dn�1 � xn tð Þð Þ � vn tð ÞT � v2n�1 tð Þ
b
0

� 	0:5
(

8>>><
>>>:

(7)

where: an is the maximum acceleration that the driver of vehicle n wishes to undertake;
bn is the most severe braking that the driver of vehicle n wishes to undertake (bn< 0);
Ln� 1 is the physical length of the vehicle;
dn� 1 is the margin into which the following vehicle is not willing to intrude, even when at rest;
Vn

d is the desired speed or the speed at which the driver of vehicle n wishes to travel;
xn(t) is the location of the front of vehicle n at time t;
vn(t) is the speed of vehicle n at time t;
b ' is the estimation of bn� 1 employed by the driver of vehicle n; and
T is drivers' reaction time

A genetic algorithm was used to calibrate the model findings an, bn, dn - 1 and b '. The objective
function presented in Equation (8) was minimised by the implementation of genetic algorithm
considering the constrain found in Rakha et al., [32] regarding to b/b '.

MSE ¼ ∑N
i¼1 V estimatedð Þ � V realð Þ½ �2

N
(8)

Figure 5. A typical structure of the neural network model.
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Figures 6 and 7 show a typical speed diagram of a PC and an HV, respectively. These vehicles have
been randomly selected amongst the vehicles during car-following process from the I-2 data set. They
show the real world and predicted speeds of the vehicles obtained from the outputs of the LOLIMOT,
neural network and Gipps [30] car-following models to provide a visual comparison of the models. As
it can be seen, the new model can fit the real world data better compared with the existing models.
Table III compares the performance of the two aforementioned car-following models on the

evaluation data set (I-2). The results showed that the new model that can differentiate subject vehicle
type could predict the following process better than the neural network and Gipps [30] car-following

models. The adjusted R-squared R
2

� �
of the LOLIMOT is 0.92, and the corresponding values are 0.84

and 0.63 for neural network and Gipps [30], respectively. The error of new model was also less than

Figure 6. A typical speed diagram of a passenger car.

Figure 7. A typical speed diagram of a heavy vehicle.

Table III. Comparison of model performances.

LOLIMOT

Gipps [30] Neural Network PC HV Total

R2 0.63 0.84 0.91 0.94 0.92
RMSE 7.04 4.53 3.22 2.95 3.10

LOLIMOT, local linear model tree; PC, passenger vehicle; HV, heavy vehicle; RMSE, root mean squared error.
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the existing model. The root mean squared error of the LOLIMOT is 3.10 km/hour. However, the
corresponding values for the neural network and Gipps [30] are 4.53 and 7.04 km/hour, respectively.
Table III also provides the performance results of the new model prediction separately on the basis of
the subject vehicle types. In summary, the new model distinguishes between HVs and PCs and

provides higher R
2
and lower root mean squared error indicating its better fitness compared with the

existing models.
There are some reasons that could explain the better performance of the new model. The most

important one is considering different vehicle types and then using local approach rather than applying
a global method. Modelling the behaviour of a driver depends on a variety of factors, and this
modelling differs from one situation to another. Therefore, a local approach that divides the global
space into some regions could achieve a better performance compared with the models that use the
whole space for modelling. The neural network and Gipps [30] car-following models use a global
method to predict driver's behaviour. In fact, the parameters of the models have a global effect and
are used to predict all situations and cases. However, the new model not only differentiates between
PCs and HVs for parameter adjustments but also uses several local models to consider different
situations. More precisely, by hierarchical division of the space, this model is able to increase the
resolution in regions. This leads to the construction of an adaptive model that can model dissimilar
situations differently, and consequently, it can precisely fit to the data. Adaptive resolution partitioning
is a robust idea when dealing with problems where distribution of samples varies in different regions.
For example, the method can keep the resolution low where the samples are sparse. Further, it can
increase the resolution in denser areas and regions that is hard to predict because of nonlinearity or
uncertainty. The main concern in training such as a machine learning method is to avoid over-fitting,
which has been overwhelmed by using the test data for assessment of the learned model in this study.
Another reason for the good performance of the new model is the consideration of uncertainty of

human's perceptions while following another vehicle. The new model uses fuzzy approach to
aggregate the linear models, which makes it capable to handle uncertainties.
In fact, the new model could predict the car-following behaviour of HV and PC drivers separately

with high precision by differentiating between the subject vehicle types and using the fuzziness
property and the local approach.

5. CONCLUSION

This paper highlighted some of the different behaviour of HV drivers while following another vehicle
and compares with that of PC drivers. It was shown that HV drivers tend to keep larger headway to the
front vehicles, apply a lower acceleration and follows a preceding vehicle with less speed changes
(smoother) than PC drivers. Further, the reaction time of drivers varies slightly according to their
vehicle types.
This study developed a new car-following model that specifically considered HV. The model used

the LOLIMOT approach to predict the following (subject) vehicle speed with consideration of the
vehicle type. Three different time slots of a data set obtained from a stretch of a freeway in USA were
used in this study; two of them for training and testing purpose and another one for evaluating the
proposed model.
The performance of the new model was evaluated by comparison of the results obtained from the

model with the outcomes of two existing car-following models. Gipps [30] car-following model and
a neural network-based car-following model were used for this purpose. Note that these models similar
the other existing models do not differentiate between HV and PCs. The results showed that the new
model can fit the real world driver's car-following behaviour better compared with the existing models.

It was shown that the adjusted R-squared R
2

� �
of the proposed model was considerably higher than the

corresponding values of the existing models. Further, the comparison between the real world and
predicted data showed that the error of the LOLIMOT model was much less than the existing models.
The error of the Gipps [30] car-following model was 2.3 times greater than the proposed model error.
This ratio was about 1.5 for the neural network model.
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The new model could incorporate the different car-following behaviour of HVs and PCs. The next
step of this work includes implementation of the developed model to a micro-simulation to quantify
the effect of the developed model using variety of traffic scenarios. This work could be of notable
interest for researchers attempting to replicate HV behaviour in micro-simulation models.

6. LIST OF ABBREVIATIONS AND SYMBOLS

LOLIMOT Local Linear Model Tree
BTRE Bureau of Transport and Regional Economics
FHWA The Federal Highway Administration
NGSIM Next Generation Simulation project
HCM Highway Capacity Manual
LOS Level of Service
HV Heavy Vehicle
PC Passenger Car
No. Number
km/h kilometre per hour
m metre
R2 the coefficient of determination denoted R2 and pronounced R squared
R
2

adjusted R squared
m/s2 metre per second squared (the unit of acceleration in the International System of Units)
t an index denoting a time step
an(t) the acceleration/deceleration of the subject vehicle n at time t
T the driver's reaction time (seconds)
Δv(t�T) the relative speed between the subject vehicle and its leader at an earlier time, t-T
∝ the symbol represents “is proportional to”
f prediction function
Vn(t) the speed of the subject vehicle n at time t
Vn(t� T) the speed of the subject vehicle n at an earlier time, t-T
Vn� 1(t�T) the leading vehicle speed at an earlier time, t-T
S(t�T) the free space between the subject vehicle and the leading vehicle at an earlier

time, t-T
LLM Local Linear Model
ŷi the output of the i-th LLM in the LOLIMOT which is a local estimation of

the real output
wij the parameters of the linear model for neuron i

¯
u transpose of vector u which is the input vector to the proposed model
uj the j -th element of the input vector to the proposed model
p the number of elements in the input vector of the proposed model
u1 the element of the input vector to the model which represents Vn(t� T)
u2 the element of the input vector to the model which represents Vn� 1(t�T)
u3 the element of the input vector to the model which represents S(t�T)
ϕi the validity function of the i-th locality in the LOLIMOT which is a normalized

Gaussian
μi The Gaussain function of the i-th validity function
cij the j -th center coordinate for i -th Gaussian (validity function) of the LOLIMOT
σij the standard deviation in the j -th dimension for the i -th validity function of the

LOLIMOT
ŷ the final output of the model which is the estimation of the real output, subject

vehicle speed at time t Vn(t)
M the number of localities in the LOLIMOT
exp() exponential function
MLP Multi-Layer Perceptron neural network
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an the maximum acceleration which the driver of vehicle n wishes to undertake
(Gipps model parameter)

bn the most sever braking that the driver of vehicle n wishes to undertake
(bn< 0 , Gipps model parameter)

Ln� 1 the physical length of the leading vehicle in the Gipps model
dn� 1 the margin into which the following vehicle is not willing to intrude, even when

at rest (Gipps model parameter)
Vn
d the desired speed or the speed at which the driver of vehicle n wishes to travel

in the Gipps model
xn(t) the location of the front of vehicle n at time t in the Gipps model
vn(t) the speed of vehicle n at time t in the Gipps model
b ' the estimation of bn� 1 employed by the driver of vehicle n (Gipps model parameter)
MSE Mean Squared Error
RMSE Root Mean Squared Error
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