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Article

Introduction

Multilevel growth mixture model (MGMM) is a relatively 
new modeling technique for extracting unknown subpopula-
tions in multilevel longitudinal data. This technique inte-
grates multilevel modeling, finite mixture modeling, and 
structural equation modeling (Asparouhov & Muthén, 2008; 
B. Muthén, 2004). The multilevel aspect of MGMM is attrac-
tive to applied researchers because longitudinal data are 
often collected through cluster sampling, which creates mul-
tilevel data structure with repeated measures nested within 
individuals and individuals further nested within organiza-
tions. Some examples are students nested within classrooms/
schools/neighborhoods (e.g., Dettmers, Trautwein, Lüdtke, 
Kunter, & Baumert, 2010), children/couples nested within 
families (e.g., Jenkins, Dunn, O’Connor, Rasbash, & Behnke, 
2005; Pruchno, Wilson-Genderson, & Cartwright, 2009), 
individuals nested within countries (e.g., Matsumoto, 
Nezlek, & Koopmann, 2007), clients nested within therapists 

(e.g., Marcus, Kashy, & Baldwin, 2009), and individuals 
nested within organizations (e.g., Vancouver, 1997).With 
multilevel longitudinal data, unknown subpopulations can be 
extracted at the individual level as well as the organization 
level (Palardy & Vermunt, 2010). In addition, researchers 
can study the associations between organizational character-
istics and individual growth patterns (note: in this article, the 
terms class and subpopulation are used interchangeably). It 
should be noted that other methods, such as item response 
theory (e.g., Bartolucci, Pennoni, & Vittadini, 2011), can be 
used to account for longitudinal data structure in the analysis 
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of latent traits as well, but the focus of the current article is 
on MGMM. Due to space constraints, interested readers may 
find more detailed technical information on MGMM in 
Chen, Kwok, Luo, and Willson (2010). Also note that the 
current article uses many acronyms throughout; therefore, 
for reference, a list of these acronyms and what they denote 
is provided in the appendix.

To investigate the prevalence of the higher level nesting in 
growth mixture model (GMM), we reviewed 158 substantive 
articles with 196 GMMs found in the PsycInfo database between 
2011 and 2013. Of these, authors described nesting structure in 
85 GMMs (43%), none of which used MGMM to address it. 
Nevertheless, nine articles addressed the clustering by reporting 
a low degree of clustering or using adjusted standard errors.

Our review shows that multilevel longitudinal data are 
common, but when applying GMMs, many empirical 
researchers ignore the highest level of nesting, potentially 
violating the assumption of independence (e.g., Boscardin, 
Muthén, Francis, & Baker, 2008; D’Angiulli, Siegel, & 
Maggi, 2004). Some reasons for ignoring a level of nesting 
are avoidable, such as reducing analytic complexity and 
reducing the difficulty in achieving convergence in model 
estimation, while others are inevitable such as lack of identi-
fiers (IDs) for higher level units.

The literature has demonstrated that if the nonindepen-
dence is not accounted for, parameter estimates and standard 
errors in a multilevel regression model could be biased 
(Moerbeek, 2004). In MGMM, ignoring a higher level of 
nesting structure could result in lower classification accu-
racy, overestimated lower level variance components, and 
biased standard errors, which affect significance tests for 
fixed effects (Chen et al., 2010).

In mixture modeling, one important yet challenging issue 
is extraction of the correct number of latent classes (e.g., 
Bartolucci & Murphy, 2015; McLachlan & Peel, 2000). In 
recent years, many researchers have investigated the perfor-
mance of various model selection indices in identifying the 
correct number of classes in different types of mixture mod-
els with different data structures (i.e., Allua, 2007; Clark & 
Muthén, 2007; Henson, Reise, & Kim, 2007; Nylund, 
Asparouhov, & Muthén, 2007; Peugh & Fan, 2012; Tofighi 
& Enders, 2008; Yang, 2006). Although the types of mixture 
models used in simulation studies vary and the best perform-
ing indices differ, Bayesian information criterion (BIC; 
Schwartz, 1978), sample size–adjusted BIC (SABIC; Sclove, 
1987), and the Vuong–Lo–Mendell–Rubin likelihood ratio 
test (VLMR; Lo, Mendell, & Rubin, 2001) consistently per-
formed well for model selection with single-level data.

However, the influence of ignoring a level of nesting on 
class enumeration for MGMM has not yet been fully investi-
gated. Because ignoring a higher level may be inevitable in 
some circumstances as described above, an understanding of 
fit index performance in those situations is warranted. As 
shown in previous studies on multilevel analysis (e.g., Chen 
et  al., 2010; Meyers & Beretvas, 2006; Moerbeek, 2004), 

ignoring the highest level data structure results in the redistri-
bution of variance from the ignored level (i.e., the organiza-
tion/school level) to the adjacent level (i.e., the individual/
student level). It is unclear if this redistribution of variance 
will affect model selection index performance. It is important 
to determine whether the recommended model selection indi-
ces can extract the correct number of classes when ignoring a 
higher level of nesting structure is inevitable and to provide 
researchers with recommendations on using these indices.

Purpose of the Study

The purpose of this study is to (a) investigate whether the 
correct number of classes can be identified using various 
commonly used model selection indices when the MGMM is 
misspecified to omit the higher level and (b) identify factors 
that affect the index performance for class enumeration when 
the model is misspecified. The current study extends work by 
Chen et al. (2010) in several ways. First, whereas Chen et al. 
focused on the accuracy of classification of individuals and 
the statistical properties of the parameter estimates (i.e., Type 
I error rate and statistical power) for each subpopulation, 
conditional upon the correct number of classes being identi-
fied, the current study addresses whether the correct number 
of classes can be enumerated using various model selection 
indices under both true and misspecified models. This is an 
important advancement for applying the MGMM given that 
individual class solutions and corresponding class models 
can only be further examined and interpreted after the cor-
rect number of classes is identified. To that end, the current 
study examines the efficacy of six commonly used indices 
for class enumeration in GMM.

Compared with Chen et al. (2010), the current study has 
been expanded to examine one additional design factor by 
including a true model with three latent classes. Furthermore, 
we apply some suggested cutoff values for comparing differ-
ent information criteria between competing models (e.g., 
delta-BIC, Raftery, 1996) whereas previous studies examin-
ing the sensitivity of the information criteria did not account 
for the magnitude of that difference.

We begin by reviewing the development and specification 
of MGMM, followed by a brief review of various commonly 
used model selection indices, and a review of recent studies 
examining the model index performance. In the simulation 
study, we first examined a two-subpopulation case (Study 1), 
followed by a three-subpopulation case (Study 2), because 
the number of subpopulations may affect the model selection 
indices’ performance. In addition to the number of subpopu-
lations, we investigated the effect of another type of model 
complexity in Study 3.

Brief Review of MGMMs

The development of MGMMs drew upon several lines of 
research (Palardy & Vermunt, 2010), namely, latent growth 
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curve modeling (LGCM; Bollen & Curran, 2006), latent 
class growth analysis (LCGA; Nagin, 1999), and GMM (B. 
Muthén, 2004). Combining LGCM and LCGA, GMM is a 
more general modeling framework capable of examining 
both the unknown heterogeneous subpopulations and the 
random variation of the latent growth factors within classes. 
However, GMM does not consider the situation of multi-
level data in which individuals are nested within organiza-
tions. Hence, GMM cannot handle nonindependence of 
individuals due to clustering. Existing research has explored 
methods of accounting for nonindependence of observations 
in mixture modeling and GMM (Asparouhov, & Muthén, 
2008; Ng & McLachlan, 2014; Ng, McLachlan, Wang, 
Jones, & Ng, 2006). An extension to GMM, MGMM con-
siders nonindependence of individuals by specifying a 
model for each level of the multilevel data. The model for 
the individual and organizational levels can be different, 
depending on whether heterogeneity is assumed and/or ran-
dom effects at both the individual level and the organiza-
tional level growth trajectories are modeled. This article 
focuses on the more common MGMM with classification at 
the individual level (e.g., students being classified into dif-
ferent subgroups within schools; patients being classified 
into different subtypes within clinics) and no classification 
at the organizational level.

Brief Review of Model Selection Indices

A combination of substantive knowledge and statistical crite-
ria has been recommended for selecting the optimal number 
of classes in GMM (B. Muthén, 2003). Generally, model 
selection statistics can be grouped into four categories: (a) 
information-based criteria, (b) nested model likelihood ratio 
tests (LRTs), (c) goodness-of-fit measures, and (d) classifica-
tion-based statistics (Henson et al., 2007; Tofighi & Enders, 
2008; Vermunt & Magidson, 2002). Among these categories, 
the information-based criteria and the nested model LRTs are 
the most recommended for determining the number of 
classes (Henson et al., 2007; Nylund et al., 2007; Tofighi & 
Enders, 2008). Hence, the model selection indices from these 
two categories are the focus of this study and are briefly 
reviewed below.

Information criterion (IC) indices are based on the log-
likelihood value of a fitted model and typically penalize 
model complexity and/or take sample size into account. IC 
usually takes the form of −2log L  plus a penalty and sample 
size adjustment, where L is the maximized likelihood. The 
most commonly used indices include Akaike information 
criterion (AIC; Akaike, 1987), consistent AIC (CAIC; 
Bozdogan, 1987), Bayesian information criterion (BIC), and 
sample size–adjusted BIC (SABIC). For a particular sample 
and model, the −2log L  is constant. Differences in the pen-
alty terms distinguish the indices and may result in different 
optimal class enumeration solutions. These fit indices are 
defined below, respectively:

	 AIC = − +2 2log ,L p 	 (1a)

	 CAIC = − + ( ) +( )2 1log log ,L p N 	 (1b)

	 BIC = − + ( )2log log ,L p N 	 (1c)

	 SABIC = − +
+






2
2

24
log log ,L p

N
	 (1d)

where p is the number of free parameters in the model and N 
is the number of subjects. Generally, as a model becomes 
more complex (i.e., more parameters and larger p), the likeli-
hood increases and −2log L  decreases. IC indices favor 
models with a relatively higher likelihood value and rela-
tively fewer parameters. Thus, lower IC values indicate a 
better trade-off between model fit and complexity. For a par-
ticular sample and model, the −2log L  is constant. However, 
differences in the penalty functions (e.g., penalizing model 
complexity) of different model selection indices result in 
inconsistent class solutions (i.e., different indices may favor 
different class solutions). Previous research on mixture 
model estimation also suggests sample size plays a role in 
penalty calculations (Leroux, 1992), and that penalties must 
fulfill two criteria for consistent mixture model estimation: 
First, as N approaches infinity, penalty / N should become 
closer to zero. Second, as N approaches infinity, log(N) / pen-
alty should become closer to zero (Keribin, 2000). Note that 
the CAIC, BIC, and SABIC fulfill these two conditions.

The IC statistics take both model fit and complexity into 
consideration. Lower values indicate better trade-off between 
model fit and complexity. Sometimes, the IC difference 
between two models is so small that the evidence to support 
one model over the other becomes very weak. Some guide-
lines for interpreting the absolute IC difference between two 
models have been proposed. Petras and Masyn (2010) rec-
ommended the “elbow criterion” to determine the optimal 
number of classes when using IC indices (i.e., AIC, BIC, 
SABIC). Specifically, they recommended graphing the val-
ues of IC indices against the increasing number of classes, 
and looked for the pronounced angle in the plot where the 
decrease of IC value dropped. As plotting for all replications 
was unrealistic, we used cutoff criteria that mimic looking 
for the “elbow point.”

Besides their statistical differences, the AIC and BIC also 
have different philosophical contexts (Bauer & Curran, 
2003; Burnham & Anderson, 2004; Kuha, 2004; Weakliem, 
2004). AIC aims at finding the model that minimizes the 
Kullback–Leibler (K-L) criterion, selecting an approximate 
model, and providing better predictions of the population 
parameters. On the contrary, BIC targets the “true” underly-
ing model with the highest posterior probability. It depends 
on the purpose of model selection and the nature of reality 
when deciding which model selection index to use. AIC and 
BIC were designed for different applications, and both appli-
cations can arise in multilevel (growth) mixture modeling.
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The nested model LRTs include the VLMR, the adjusted 
Lo–Mendell–Rubin likelihood ratio test (ALMR; Lo et al., 
2001), and the bootstrap likelihood ratio test (BLRT; 
McLachlan & Peel, 2000). All these statistics are developed 
using LRT and test the null hypothesis that the restricted 
model with k − 1 classes fits the data as well as the less 
restricted model with k classes. The test statistic for a likeli-
hood ratio (LR) test is defined by

LR = −








2 0log ,

L

Lu

where L0 and Lu are the maximized likelihood for the more 
and less restricted models, respectively (Agresti, 1996). 
Under the context of mixture model, the LR for (k − 1)-class 
model versus k-class model is not asymptotically distributed 
as a chi-square, so the normal chi-square difference test is 
not applicable. Therefore, Lo et al. (2001) derived an approx-
imate reference distribution for the LR in the mixture context 
by extending Vuong’s (1989) work called the Vuong–Lo–
Mendell–Rubin likelihood ratio test (VLMR). Furthermore, 
Lo et  al. (2001) proposed an ad hoc adjustment to VLMR 
(i.e., ALMR—adjusted Lo–Mendell–Rubin likelihood ratio 
test), which is defined by

LR
LR

adjusted
p q n

=
+ −( ) 

−
1

1
log

,

where p k= −3 11  and q k= −3 10  for k0 -component normal 
mixture and k1 -component normal mixture (with k0  and k1  
both to be known constants and k k0 1< ). A small p value 
(e.g., p < .05) indicates that the (k − 1)-class model should be 
rejected in favor of the k-class model, while a large p value 
(e.g., p ≥ .05) indicates the k − 1 and k-class solutions fit the 
data equally well, and the simpler model (with k − 1 classes) 
is preferable. The testing logic of BLRT is similar to that of 
VLMR and ALMR. BLRT was not considered in this article 
because it is not available under the MGMM model. Readers 
may see Nylund et al. (2007) for more details. It should be 
noted that the conditions for the ALMR theorem are not gen-
erally satisfied in the context of mixture models (Jeffries, 
2003); nevertheless, the ALMR has been shown to be effec-
tive in recovering the number of underlying components 
(Nylund et al., 2007).

Review of Studies on Performance of Model 
Selection Indices

Recently, researchers have studied the performance of these 
model selection indices in nonclustered data in the context of 
latent class analysis (LCA; Nylund et al., 2007; Yang, 2006), 
GMM (Nylund et al., 2007; Peugh & Fan, 2012; Tofighi & 
Enders, 2008), latent profile analysis (Morgan, Hodge, & 
Baggett, 2016), latent variable mixture model (Henson et al., 
2007), factor mixture model (FMM; Nylund et al., 2007), and 
latent Markov model (Bacci, Pandolfi, & Pennoni, 2014). A 

few studies have searched for the optimal model selection 
indices for clustered/multilevel data in LCA (Clark & Muthén, 
2007; Lukociene & Vermunt, 2010) and FMM (Allua, 2007). 
Table 1 summarizes these studies, showing the models and 
indices examined, as well as the best performing or recom-
mended fit indices for class enumeration in each study. As 
shown in the table, although the types of mixture models vary, 
they seem to agree on the use of SABIC, BIC, and VLMR/
ALMR for model selection in single-level data.

A few studies have searched for the optimal model selec-
tion indices for clustered/multilevel data. In LCA, using 
standard error corrections for clustered data, Clark and 
Muthén (2007) found that for simple structure data (i.e., 
latent classes with parallel profiles), none of the studied indi-
ces performed well, whereas for complex data structure (i.e., 
latent classes with crossing profiles), BIC and SABIC per-
formed relatively better. For multilevel FMM, which is a 
multilevel extension of the factor analysis model for cross-
sectional datasets with a hierarchical structure, Allua (2007) 
found that BIC, SABIC, and ALMR performed better in situ-
ations when there was only one class in the population; AIC 
and ALMR performed better in situations when there were 
two classes. However, Allua (2007) did not identify any con-
sistently well-performing model selection index for the mul-
tilevel FMM. Lukociene and Vermunt (2010) compared the 
performance of alternate fit indices in multilevel mixture 
model with focus on determining the true number of mixture 
components at the organization level. They raised the inter-
esting point that the N for BIC and CAIC computations is 
unambiguous for single-level mixture evaluation but ambig-
uous for multilevel mixture evaluation. Their results sup-
ported defining N as the number of groups when picking 
classes that exist at the highest level.

In summary, the literature suggests BIC and SABIC per-
formed best for class enumeration for both single-level and 
multilevel mixture models. However, no study explicitly exam-
ined which indices perform best when the higher level of nest-
ing is ignored in the context of MGMM. In addition, none of 
the current widely used fit indices for class enumeration was 
designed/developed for testing multilevel models. It would be 
interesting to see if using the individual level N would be suf-
ficient for the more common MGMM. To address this short-
coming in the literature, this study tests the performance of six 
commonly used model selection indices in MGMM with con-
tinuous outcomes, including AIC, CAIC, BIC, SABIC, VLMR, 
and ALMR, all of which except for CAIC are available in 
Mplus (L. K. Muthén & Muthén, 1998-2010). The perfor-
mances of these indices are compared under the correct model 
specification, which includes the higher level of the nesting to 
accommodate the clustered data structure, and under the mis-
specified model, where the higher level is ignored. This study’s 
results can provide insights into the robustness of the model 
selection indices when a higher level in MGMM is ignored 
under a variety of design conditions as well as the best practice 
to use when such misspecification is inevitable.
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Study 1: Two-Class Case

Method

Data generation.  Data with two known subpopulations under 
a three-level model (e.g., repeated measures nested within 
students and students nested within schools) were first gen-
erated. The three-level model for data generation is shown 
below:
Level 1:

	 Y Time etij ij ij tij tij= + ( ) +π π0 1 , 	 (2a)

with

	
e Ntij ~ , .0 2σ( )

	 (2b)

Level 2:

	 π0 00 01 0ij j j ij ijsubpopulation r= + +β β , 	 (2c)

	 π1 10 11 1ij j j ij ijsubpopulation r= + +β β , 	 (2d)

with

	
r

r
MVN

ij

ij

0

1

01

0









 =



















~ , .0 Tπ

π π

π π

τ τ
τ τ
00

1 11
	 (2e)

Level 3:

	 β γ µ00 00 0j j= + , 	 (2f)

	 β γ01 01j = , 	 (2g)

	 β γ10 10j = , 	 (2h)

	
β γ11 11j = ,

	 (2i)

with

	 µ τβ0 000j N~ , ,( ) 	 (2j)

where the time variable ( )Time tij  was centered and had val-
ues of [−1.5, −0.5, 0.5, 1.5], and subpopulationij was a dichot-
omized variable with 0 and 1 representing two different 
subpopulations. The subscript t represents the measurement 
occasions (t = 1, 2, 3, 4), the subscript i represents the indi-
viduals (i = 1 . . . nj), and the subscript j represents the clusters 
(j = 1 . . . J). We used four repeated measures for all simula-
tion conditions because (a) previous studies found no signifi-
cant effect of the number of repeated measures on model 
estimation, and (b) four waves of repeated measures were 
most commonly used in both simulation studies (Enders & 
Tofighi, 2008; Nylund et al., 2007; Tofighi & Enders, 2008) 
and empirical studies (Khoo, West, Wu, & Kwok, 2006).

In this three-level model, four fixed effect coefficients 
(i.e., γ00, γ01, γ10, and γ11) and five variances and covariances 

of the random effects (i.e., σ2, τπ00, τπ01, τπ11, τβ00) needed to 
be specified. The average growth models for the two sub-
populations were specified as follows so that Subpopulation 
A represents a low-start and slow-growing group and 
Subpopulation B represents a high-start and fast-growing 
group:
Subpopulation A:

	 Y Timetij
tij

 = + ×( )1 00 10. . , 	 (3a)

Subpopulation B:

	 Y Timetij
tij

 = + ×( )2 50 60. . . 	 (3b)

Based on the settings presented in Equations 2a and 2b, 
γ00 , γ01, γ10 , and γ11  were set to 1, 1.5, 0.1, and 0.5, respec-
tively. The residual variance was set to σ2 = 1.0.

Design factors.  Previous simulation studies have identified 
some important design factors that may affect the perfor-
mance of the model selection indices. First, the degree of 
class separation dramatically impacts enumeration of the 
correct number of classes; if the generated classes are 
well-separated, the correct number of classes is more eas-
ily identified (Henson et  al., 2007; Tofighi & Enders, 
2008). Second, the latent class mixing proportions have a 
substantial impact on class enumeration (Enders & Tofighi, 
2008; Henson et  al., 2007; Tofighi & Enders, 2008). In 
unbalanced situations where one latent class has an 
extremely low mixing proportion (e.g., 7% in Tofighi & 
Enders, 2008, 10% in Henson et  al., 2007), the model is 
less likely to converge and the class enumeration is less 
accurate. Third, sample size influences model selection 
index performance in class enumeration, performing better 
with larger sample sizes (Henson et  al., 2007; Tofighi & 
Enders, 2008). Given these findings, we manipulated five 
design factors: degree of separation, conditional intraclass 
correlation (ICC), number of clusters, cluster size, and 
latent class mixing proportions.

Degree of separation.  We manipulated the magnitude 
of the Tπ matrix, which includes the within-class vari-
ance parameters (see Equation 2e), to produce different 
degrees of separation. Although some research has imple-
mented algorithms that generate mixture distribution data 
using data characteristics such as pairwise overlap between 
classes (e.g., Maitra & Melnykov, 2010; Melnykov, Chen, 
& Maitra, 2012), we manipulated the magnitude of the Tπ  
matrix because other research has shown that it is a suffi-
cient method for generating data from a mixture distribution 
(e.g., Chen et  al., 2010). Holding the mean growth factors 
of the two subpopulations constant, the larger the variation 
of individual growth trajectories within each subpopulation, 
the more overlapping and less separated the two subpopula-
tions are. Following Raudenbush and Liu’s (2001) criteria, 
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we used Tπ1 =








 =











τ τ
τ τ
π π

π π

00 01

10 11

100 025

025 050

. .

. .
 as small Tπ and 

Tπ2 =








 =











τ τ
τ τ
π π

π π

00 01

10 11

200 050

050 100

. .

. .
 as medium Tπ. As illus-

trated in Figures 1 and 2, with the small Tπ1 matrix, the two 
subpopulations only overlap slightly at the first time point but do 
not overlap at the subsequent time points1, indicating a medium 
level of separation. However, with the medium Tπ2  matrix, the 
two subpopulations overlap at all four time points, indicating 
a low level of separation.

Conditional ICC.  We selected two levels of conditional 
ICC, .10 and .20, to represent small clustering effect and 
medium clustering effect (Hox, 2010). Based on the condi-
tional ICC and Τπ matrix, the value of τβ00  was determined 
by conditional ICC = + +τ σ τ τβ π β00

2
00 00/ ( ) . Hence, τβ00  

was 0.122 when the conditional ICC was .10 and the Tπ 
matrix was small, 0.133 when the conditional ICC was .10 
and the Tπ matrix was medium, 0.275 when the conditional 
ICC was .20 and the Tπ matrix was small, and 0.300 when 
the conditional ICC was .20 and the Tπ matrix was medium.

Number of clusters.  We considered three levels for the 
number of clusters: 30, 50, and 80. Recently, Graves and 

Frohwerk (2009) systematically reviewed 27 studies using 
multilevel modeling from five journals devoted to school 
psychology research and practice. For the 27 studies, the 
cluster number (e.g., number of schools) had a mean of 28 
and a minimum of 17. However, we use 30 as the minimal 
number of clusters because the multilevel modeling research 
design literature suggests at least 30 clusters are needed to 
provide unbiased estimates of fixed and random effects that 
can be expected to replicate in repeated samples from the 
same population (Hox, 2010; Kreft & De Leeuw, 1998). 
We included 50 and 80 as medium and high cluster number 
levels, which enables our simulation study to mimic applied 
studies with higher cluster numbers and/or in areas other 
than school psychology, and allows us to examine the impact 
of a broader range of cluster numbers and overall sample size 
combinations on the estimation of the MGMMs.

Cluster size.  We selected two levels for cluster size: 20 and 
40 individuals per cluster. Based on Graves and Frohwerk’s 
(2009) review, the average cluster size was 44 (SD = 43). 
The level of 40 individuals per cluster was close to the mean 
cluster size while the level of 20 individuals per cluster was 
close to the 50th percentile (n = 24).

To further justify the sample size conditions, we con-
ducted a literature search in PSYCINFO (from year 2000 to 
2011) for empirical studies applying GMM in different sub-
stantive areas. We found a total of 171 studies; however, only 
one recent study used MGMM (i.e., Tobler & Komro, 2010). 
After removing eight studies with extreme sample sizes, the 
overall sample size of the remaining 163 studies ranged from 
115 to 5,914, with a mean of 969 (SD = 1,204). Based on the 
design factor levels of cluster number (30, 50, and 80) and 
cluster size (20, 40), the combined/overall sample size in our 
simulation study covered a wide range (i.e., from 600 to 
3,200) that is common in applied studies in social sciences.

Mixing proportion.  The mixing proportions of the two sub-
populations were set to be balanced or unbalanced. In the 
balanced situation, mixing proportion was set to 50% and 
50% for the two subpopulations. In the unbalanced situation, 
the mixing proportion was set to 25% for the low-start and 
slow-growing group and 75% for the high-start and fast-
growing group, to mimic a situation in school setting where 
the majority of students develop their reading skills quickly 
(Nylund et al., 2007). We did not consider a more extreme 
unbalanced situation because previous research found that 
models with extreme population mixture proportions (i.e., 
10% or less) of a subpopulation were less likely to converge 
and the class enumeration was less accurate (Henson et al., 
2007; Tofighi & Enders, 2008).

In summary, the simulation used a 2 (degree of separa-
tion: low or medium) × 2 (cluster size: 20 or 40 cases) × 3 
(number of clusters: 30, 50, or 80 clusters) × 2 (mixing pro-
portions: 50%:50% or 75%:25%) × 2 (ICC: .10 or .20) fac-
torial design to generate the data. A total of 500 replications 
were generated for each condition using the SAS 9.2 Proc 
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Figure 1.  Mean growth trajectories with error bars for small  
Tπ1 matrix (medium separation).
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Figure 2.  Mean growth trajectories with error bars for medium
 Tπ1 matrix (low separation).
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IML procedure, yielding a total of 24,000 datasets (500 
datasets × 48 conditions). For each replication, six different 
models—that is, 2 model specifications (true/misspecified) 
× 3 different class solutions with different numbers of 
classes (1, 2, and 3) = 6 models—were fitted using the 
Mplus 6.1 Mixture routine (L. K. Muthén & Muthén, 1998-
2010); analyses were conducted using the MLR (MLR is a 
robust maximum likelihood estimator that uses a Huber-
White sandwich approach to adjust standard errors for non-
normality) estimator. The number of initial stage random 
start values was initially set to 50 and the number of final 
stage optimizations was set to 10. If there were any conver-
gence issues during analysis, the number of random starts 
was increased.

Analysis.  All 24,000 datasets had converged results for fitted 
models and a reasonable number of observations in each 
latent class (i.e., class size no less than 6% of the total sample 
size). The performance of a model selection index was mea-
sured by the proportion of replications in which the index 
retrieved the correct number of classes.

Criterion for determining success in class enumeration.  For 
AIC, differences less than 2 suggest no credible evidence as 
to which model is better, differences between 2 and 4 weak 
evidence, differences between 4 and 7 definite evidence, dif-
ferences between 7 and 10 strong evidence, and differences 
larger than 10 very strong evidence (Burnham & Anderson, 
2002). We adopted the cutoff value of 4 points; specifically, 
for AIC to select the correct two-class solution, it had to 
satisfy two requirements. First, the two-class AIC had to be 
smaller than the one-class and three-class AIC. Second, the 
two-class AIC had to be 4 or more points smaller than the 
one-class AIC. Based on the K-L information theory, AIC 
differences can be converted to Akaike weight wi

2 for each 
model tested in a set (Burnham & Anderson, 2002, 2004). 
The Akaike weight of a model can be interpreted as the prob-
ability associated with the model. Table 2 shows the Akaike 
weights for the one-class, two-class, and three-class solu-
tions when AIC2class is 4 points less than AIC1class. We can 
see that using our rule, the two-class solution always has the 
highest probability, even when the difference between the 
two-class and three-class AIC is small.

For BIC, differences less than 2 suggest weak evidence, 
differences between 2 and 6 positive evidence, differences 
between 6 and 10 strong evidence, and differences larger 
than 10 very strong evidence (Raftery, 1996). The difference 
in BIC can also be converted into relative probability. For 
instance, if the two-class BIC is 2 points less than the one-
class BIC, the Bayes factor for a two-class model against a 
one-class model is 3 (i.e., B21 1 2≈ −exp(( ) / )BIC BIC2 ), and 
the posterior probability associated with the two-class solu-
tion is .75 (Raftery, 1996). Hence, we adopted the cutoff 
value of 2 points for the BIC.

For CAIC and SABIC, no guideline has been proposed 
before. We used 2 as their cutoff values because they are 
similar to BIC in computation.

As previously mentioned, different rules were used to select 
best-fitting models for VLMR and ALMR. Because these two 
indices use a significance test, when testing the k-class model (k 
> 1), there are two possible decisions. When the p value of these 
indices is equal or smaller than .05, the k-class model would be 
selected over the (k − 1)-class model; when the p value is larger 
than .05, there is a lack of evidence for significant improvement 
and therefore the more parsimonious model—that is, (k − 
1)-class model—is selected (Lo et al., 2001). The procedure for 
determining the best model (see Figure 3) begins with the two-
class model, and continues until a comparison of the k-class 
model, and the (k + 1)-class identify the k-class solution as the 
better model. We stopped at the three-class model because our 
interest was in whether the correct number of classes was identi-
fied and any decision other than the two-class solution would be 
considered a wrong decision.

Difference between true and misspecified models.  We exam-
ined how differently the indices performed under the true 
model (i.e., consider the higher level) and the misspecified 
model (i.e., ignoring the higher level). The accuracy of each 
index under the true and misspecified models was compared 
and differences were computed.

Impact of the design factors.  ANOVAs were conducted 
to determine the impact of the five design factors on the 
fit indices’ class enumeration accuracy. The percentage 
of correct model identification was the analysis outcome 
(e.g., the outcome value is 90% if two-class model was 
selected for 450 out of 500 replications). Eta-squared (i.e., 
η2 = SS /SSEffect Total) was computed as the effect size indica-
tor. With a balanced design, the ANOVA results are expected 
to be robust regardless of the sampling distributions of the 
various statistics, some of which can be expected to be non-
normal (Glass & Hopkins, 1996).

Results

Overall fit index performance.  Figure 4 shows the average per-
centages of one-class, two-class, and three-class (or more) 
models identified by AIC, CAIC, BIC, SABIC, VLMR, and 
ALMR for all 24,000 datasets under both true and misspecified 

Table 2.  Example of Relationship Between AIC Difference and 
Akaike Weight.

Δ3 AW1 AW2 AW3

4 0.11 0.79 0.11
3 0.10 0.74 0.16
2 0.09 0.67 0.24
1 0.08 0.57 0.35
0.1 0.06 0.48 0.46

Note. AIC = Akaike information criterion; AW = Akaike weight; 
subscripts 1, 2, and 3 refer to one-class, two-class, three-class models, 
respectively; Δ3 = AIC3 − AIC2.
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models. As shown in the figure, all model selection indices cor-
rectly identified the two-class solution (i.e., the correct solu-
tion) in most replications regardless of model specification 
(i.e., correctly specified or misspecified model). For the true 
model, BIC had the highest percentage of correct classification 
(98%), followed by SABIC and CAIC (97%), ALMR (90%), 
VLMR (89%), and AIC (76%). For the misspecified model, 
SABIC had the highest percentage of correct classification 
(91%), followed by BIC (82%), ALMR (81%), VLMR (80%), 
CAIC (78%), and AIC (66%). The difference in classification 
accuracy between true and misspecified models was 6%, 9%, 
9%, 9%, 16%, and 20% for SABIC, VLMR, ALMR, AIC, 
BIC, and CAIC, respectively.

Under the true model, the proportion of inconclusive clas-
sification ranged from approximately 20% for AIC, to almost 0 
for CAIC, BIC, and SABIC. More inconclusive classification 
appeared under the misspecified model, with AIC again having 
the highest proportion, followed by BIC and CAIC, and then 
SABIC. CAIC and BIC had a tendency to underextract the 
number of classes under the misspecified models, whereas 
AIC, VLMR, and ALMR tended to overextract the number of 
classes under both the true and misspecified models.

Effect of design factors.  ANOVA results indicated that ICC, 
cluster number, and cluster size were the three most impor-
tant factors. Table 3 shows the performance of the six model 

selection indices under both the true and false models as well 
as the difference between the true and misspecified models 
collapsed over the three factors.

ICC had a negative impact on all six model selection indi-
ces under the false model. The average accuracy of class 
enumeration decreased as ICC increased from .1 to .2 (η2  
ranged from .12 to .16).

In general, cluster number and cluster size had positive 
effects on the accuracy of the IC indices. As cluster number 
and cluster size increased, the accuracy of class enumera-
tion increased (ηClusternumber

2  ranged from .07 to .43; ηClustersize
2  

ranged from .07 to .30), except that cluster size had no sub-
stantial impact on AIC under the misspecified model. 
However, for VLMR and ALMR under the true model, 
cluster number affected classification accuracy negatively 
( ηClusternumber

2  = .14 and .09 for VLMR and ALMR, respec-
tively), and cluster size had no substantial effect. 
Specifically, the accuracy of VLMR and ALMR did not 
change substantially when cluster number increased from 
30 to 50, but when cluster size changed from 50 to 80, the 
classification accuracy decreased about 4% on average.

In addition, increasing Τπ matrix decreased the accuracy 
for CAIC, BIC, VLMR, and ALMR under both the true and 
misspecified models, and SABIC under the misspecified 
model only ( η2  ranged from .06 to .14). As the mixing pro-
portions changed from balanced to unbalanced for the two 

2-class Model 

Yes
s 

p < .05 No 

1-class is the 
best solution 

3-class Model 

Yes
s 

p < .05 No 

2-class is the 
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4-class Model 
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s 
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Figure 3.  VLMR/ALMR decision flowchart.
Note. VLMR = Vuong–Lo–Mendell–Rubin likelihood ratio test; ALMR = adjusted Lo–Mendell–Rubin likelihood ratio test.
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subpopulations, the accuracy of class enumeration increased 
for VLMR and ALMR under the true model, and for CAIC, 
BIC, and SABIC under the misspecified model, but 
decreased for AIC under the true model ( η2  ranged from 
.06 to .47).

Study 2: Three-Class Case

Method

In Study 2, we examined the performance of the previously 
mentioned model selection indices in a three-subpopula-
tion MGMM. According to Tofighi and Enders’s (2008) 
review, three-class models are also common in published 
studies using GMM. In addition, increased number of sub-
populations might increase the difficulty of separating 
latent classes. Therefore, Study 2 can help determine 
whether fit index performance remains consistent in more 
complicated situations. The design conditions and analysis 
procedure remained mostly similar as those in Study 1 
with a few modifications, which are described in the fol-
lowing sections.

Data generation.  In Study 2, data with three known subpopu-
lations under a three-level model were first generated. The 
Level 1 model was the same as in Study 1. The Level 2 and 
Level 3 models were as follows:

Level 2:

	 π β β β0 00 01 02 01 2ij j j ij j ij ijD D r= + + + , 	 (4a)

	
π β β β1 10 11 12 11 2ij j j ij j ij ijD D r= + + + ,

	 (4b)

with

	

r

r
MVN

ij

ij

0

1

00 01

10 11









 [ ] =



















~ , .0 Tππ

τ τ
τ τ
π π

π π 	 (4c)

Level 3:

	 β γ µ00 00 0j j= + , 	 (4d)

β γ01 01j = ,

	 β γ02 02j = , 	 (4e)

	 β γ10 10j = , 	 (4f)

β11 11j = γ ,

	 β12 12j = γ , 	 (4g)

with

	 µ0 000j N~ ( , ),τβ 	 (4h)
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= adjusted Lo–Mendell–Rubin likelihood ratio test.
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where D1ij and D2ij were dummy variables to represent 
the three different subpopulations (i.e., D1ij = 1 and D2ij = 0 
for Subpopulation A; D1ij = 0 and D2ij = 1 for Subpopulation 
B; and D1ij = 0 and D2ij = 0 for Subpopulation C).

The average growth models for the three subpopulations 
were specified so that the two subpopulations in Study 1 
remained the same as in Equations 2a and 2b, and a third 
subpopulation with a high start but a decelerating mean 
growth trajectory (i.e., Equation 3k) was added:
Subpopulation C:

	 Y Timetij
tij

 = − ×( )3 00 30. . . 	 (4i)

We chose the growth pattern for Subpopulation C based on a 
review by Tofighi and Enders (2008). The shape of estimated 
growth trajectories usually includes three classes: (a) a “zero 
class” of individuals with low and stable levels of some problem 
behaviors (i.e., Subpopulation A), (b) an “accelerating class” 
with low start but increasing number of problems (i.e., 
Subpopulation B), and (c) a “decelerating class” with higher 
start but decreasing number of problems (i.e., Subpopulation C).

Based on the settings presented in Equations 2a, 2b, and 
3k and the coding of the dummy variables, γ00 ,  γ01,  γ02 ,  
γ10 ,  γ11,  and γ12  were set to 3, −2, −0.5, −0.3, 0.4, and 0.9, 
respectively. Hence, the intercepts for each subpopulation 
were 1.00 (I1), 2.50 (I2), and 3.00 (I3), and the slopes were 
0.10 (S1), 0.50 (S2), and −0.30 (S3), respectively.

The three subpopulations’ mixing proportions were fixed 
to be balanced, with 33.33% for each subpopulation, because 
the effect of mixing proportions was not substantial accord-
ing to Study 1’s findings. The cluster size was set to be 21 
and 42 for the ease of assigning equal number of individuals 
into three subpopulations during data generation through 
SAS (version 9.2; SAS Institute Inc., 2002-2008). Because 
the impact of cluster number has been clearly shown in Study 
1, we only adopted the low and high levels for this design 
factor (i.e., 30 and 80) and omitted the intermediate level 
(i.e., 50) to reduce the total number conditions. The vari-
ances and covariance of the random effects as well as the 
number of repeated measures were the same as in Study 1. 
The mean growth trajectories of the three subpopulations 
and the level of separation under the small and medium Tπ  
matrix are illustrated in Figures 5 and 6.

In summary, the simulation used a 2 (magnitude of the Tπ 
matrix: small or medium) × 2 (number of participants per 
cluster: 21 or 42 cases) × 2 (number of clusters: 30 or 80 
clusters) × 2 (ICC: .10 or .20) factorial design to generate the 
data. Similar to Study 1, 500 replications were generated for 
each condition yielding a total of (500 datasets × 16 condi-
tions) 8,000 datasets.

Analyses and Results

The analysis procedures and observed outcomes were the 
same as those for Study 1. The performance of the six fit 

indices had several similarities with those in Study 1. 
Therefore, we only highlighted patterns that are different.

Overall fit index performance.  Results including the percent-
ages of correct and incorrect classifications by the six model 
selection indices for both the true and misspecified models 
are presented in Figure 7. Because Study 2 contained fewer 
design conditions than Study 1, only results from design con-
ditions similar across two studies were used for comparison. 
AIC had a much lower class enumeration accuracy (below 
40%) compared with that in Study 1 (above 65%) for both 
true and misspecified models. CAIC and BIC still performed 
well in true models; furthermore, their enumeration accuracy 
under the misspecified models improved by 13% and 11%, 
respectively, compared with that in Study 1. Compared with 
results from Study 1, SABIC’s accuracy decreased by 16% 
under the true model and 7% under the misspecified model, 
with the overextraction rate increasing by 6% and 4%, 
respectively. The accuracy of VLMR and ALMR dropped by 
7% under the true model and 10% under the misspecified 
model compared with that in Study 1.

In summary, under the misspecified model, BIC and 
CAIC had higher percentages of correct class enumeration 
(i.e., 93% and 90%) than SABIC (84%), followed by VLMR 
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and ALMR (69% and 71%). The difference in classification 
accuracy between true and misspecified models was −2%, 
−3%, 5%, 8%, 12%, and 12% for SABIC, AIC, BIC, CAIC, 
ALMR, and VLMR, respectively.

Effect of design factors.  The effects of the design factors 
remained mostly similar as what was found in Study 1; there-
fore, only a few different patterns are highlighted here. For 
AIC, cluster number and cluster size affected the classifica-
tion accuracy negatively (ηClusternumber

2  = .46 and .38, ηClustersize
2  

= .24 and .26 for true and misspecified models, respectively). 
As cluster size and number increased, the class enumeration 
accuracy for all AIC decreased. The accuracy of SABIC also 
decreased significantly (i.e., overall 13% for true model and 
5% for misspecified model) when sample size was at the 
highest level. In addition, ICC did not affect the accuracy of 
SABIC, VLMR, and ALMR under the false model.

Study 3: Complex Model in Two-Class 
Case

In the first two simulation studies, the within-class covari-
ance structure (i.e., the Tπ matrix) was identical across latent 
classes. In reality, however, this might not be true. In this 
simulation, we examined the effect of having different Tπ  
matrices across classes on model selection index performance. 
We generated two-class multilevel data with a small   Tπmatrix 
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Population B. The analysis procedure was similar as that of 
Study 1. Note that now class-specific variances were esti-
mated for each model fitted.

As expected, there were more convergence issues as the 
model became more complex. A total of 33 replications were 
excluded from further analysis due to nonconvergence or 
local solutions for the three-class MGMM or GMM models. 
We highlighted the results that are different from Study 1 in 
the following section (see Table 3). AIC’s accuracy decreased 
substantially, whereas CAIC, BIC, VLMR, and ALMR 
became more accurate as the model became more complex. 
SABIC performed similarly as in Study 1, except its accu-
racy decreased under the small sample size condition under 
the true model.

Discussion and Conclusion

The current study examined model selection index perfor-
mance in class enumeration for MGMMs when the top level 
of nesting was ignored. As expected, under the correctly 
specified MGMM, the indices’ performance was mostly con-
sistent with the findings in previous studies. BIC and CAIC 
had the highest class enumeration accuracy, followed by 
SABIC, ALMR, and VLMR, with ALMR and VLMR per-
forming similarly. AIC had the lowest enumeration accuracy. 
SABIC, ALMR, VLRM, and AIC tended to overextract the 
number of classes when there were three subpopulations and 
less clear-cut class separation. When the highest data level 
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was ignored and a single-level GMM was fitted to the data, 
the classification accuracy of all model selection indices 
decreased compared with the accuracy under the true model. 
We discuss the impact of design factors, Bonferroni correc-
tion with VLMR/ALMR, and the implications for research-
ers in the following section.

Impact of Design Factors

The impact of ICC.  The ICC had the biggest impact on the 
difference between the true and misspecified models. An 
important advantage of using multilevel models is that by 
modeling the higher level nesting structure (e.g., schools), 
variation in the individual growth trajectories can be decom-
posed into within- and between-organization components 
(Raudenbush & Bryk, 2002). As shown in some previous 
studies on multilevel analysis (e.g., Meyers & Beretvas, 
2006; Moerbeek, 2004), ignoring the highest level data struc-
ture results in the redistribution of the variance from the 
ignored level (or the organization/school level) to the adja-
cent level (i.e., the individual/student level). A similar vari-
ance redistribution mechanism has been found in MGMM 
(e.g., the overestimation of τπ00 , Chen et  al., 2010). The 
reduction in class enumeration accuracy is therefore likely 
the result of the redistributed higher level variance, which 
can increase the variation of the individual growth trajecto-
ries, potentially increasing overlap between different latent 
classes.

The impact of degree of separation.  The magnitude of the Tπ  
matrix is related to the variation within each latent class and 
thereby the degree of separation of different latent classes. It 
is not surprising that as the magnitude of Tπ  matrix increased 
(i.e., latent classes became less separated), the class enumer-
ation accuracy under both the true and the misspecified mod-
els decreased. Furthermore, model selection index 
performance deteriorated more under the misspecified model 
than under the true model when the magnitude of Tπ  
increased. This indicates that model selection indices are 
more sensitive to class separation when the nesting structure 
is ignored and thus even less likely to identify the correct 
number of classes when class separation is less clear.

The impact of sample size.  Sample sizes affected the indices 
in different ways. Our finding is consistent with previous 
findings that CAIC and BIC tend to select the correct class 
solution more frequently as sample size increases under the 
true model (Nylund et  al., 2007). However, the impact of 
small sample size on CAIC and BIC under the misspecified 
GMM is much more serious than its impact under the true 
model. Previous research on two-level GMM found that BIC 
and CAIC tended to underextract the number of classes 
under small sample sizes even when the model was correctly 
specified. It is possible that the N adjustment is too strong 
when N is small or Ln is not the optimal function. However, 

the performances of SABIC (with smaller penalty on N), 
VLMR, and ALMR were less affected by small sample size 
conditions. The performance gaps between the true and the 
misspecified model for SABIC, VLMR, and ALMR were 
much smaller than those for CAIC and BIC. Therefore, when 
sample size was small, SABIC, VLMR, and ALMR were 
generally more accurate than CAIC and BIC under the mis-
specified model.

As shown in Equations 1a to 1d, different sample size (N) 
functions are used in the penalty term for different IC indi-
ces. Figure 8 illustrates how class enumeration decisions 
made by different IC change with sample size based on the 
log-likelihood values from an empirical data analysis. 
Suppose we are comparing the three-class solution and the 
four-class solution. The difference between IC4class  and 
IC3class  is

∆IC Penalty Penalty

Pen

4class-3class = − +( ) − − +( )
=

2 24 4 3 3log logL L

aalty -Penalty4 3 4 32 2( ) − −( )log log .L L

Let ∆Penalty Penalty Penalty= −4 3  and ∆2log L =  
2 24 3log logL L− . Figure 8 plotted ∆Penalty  and ∆2log L  
against sample size ( 1 ≤ N ≤ 104). The ∆2log L  was different 
under the MGMM and the GMM models (see Figure 8 for 
the two curved lines). We can see that ∆2log L  was positive 
and increased as the sample size increased. The ∆Penalty  
was different depending on the particular IC index (see 
Figure 8 for the four straight lines); however, it was the same 
under MGMM and GMM models because the difference in 
the number of parameters (i.e., p) between the four- and 
three-class solutions was the same under MGMM and GMM. 
We can see that ∆Penalty  increased as sample size increased 
for CAIC, BIC, and SABIC whereas the ∆Penalty  for AIC 
was a constant despite the sample size increase. When a 
∆Penalty  line intersects a ∆2log L  line, it means that 
∆IC class class4 3−  is zero and the four-class solution is as good as 
the three-class solution (the corresponding sample size is the 
cutoff sample size). When the ∆Penalty  line is above the 
∆2log L  line, it means that ∆IC class class4 3−  is greater than zero 
and the three-class solution is better. Conversely, if the 
∆Penalty  line is below the ∆2log L  line, it means that 
∆IC class class4 3−  is smaller than zero and the four-class solution 
is better. Apparently, the cutoff sample size is dependent 
upon the likelihood values of the tested models and the cor-
responding number of estimated parameters (i.e., model 
complexity).

Figure 8 shows that when sample size is large enough, all 
indices will favor the four-class solution. Note that SABIC 
will also favor the four-class solution when sample size is 
very small because it has two crossing points. The range of 
sample size in which the IC indices will select the three-class 
solution (i.e., when the ∆Penalty  line is above the ∆2log L  
line) is the largest for CAIC, followed by BIC, SABIC, and 
AIC. In other words, the range of sample size in which the IC 
indices will favor the four-class solution is the largest for 
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AIC, followed by SABIC, BIC, and CAIC. This can explain 
several findings of our simulation studies. First, AIC tended 
to overextract classes most and SABIC had some overextrac-
tion but much less than AIC, whereas BIC and CAIC were 
more conservative and had less overextraction. This caused 
the accuracy of AIC and SABIC to decrease with the sample 
size increase in both studies. Second, SABIC could also over-
extract when sample size was small because it had two cross-
ing points. This caused the accuracy of SABIC to be lower 
compared with BIC and CAIC under the smaller sample size 
condition in Study 2. Third, the range of sample size for an IC 
index to choose the four-class solution is larger under GMM 
than under MGMM. This explained why overextraction of 
classes was more likely to occur under GMM than MGMM.

The MGMM examined in this study was strategically 
specified to have only one Level 3 random effect, which cap-
tures the intercept variance between cluster/organization 
means. Under specifications where the number of parameters 
at Level 3 increases (e.g., by including a slope residual vari-
ance, latent classes, or fixed effects at the organization level), 
∆Penalty  would remain the same for true and misspecified 
MGMM; however, these additions may change the amount 
and shape of the Level 2 variance distribution, which could 
impact the number of within-cluster classes. Regarding the 
current study, these Level 3 additions can also impact the 
accuracy of class enumeration (Chen et al., 2010).

Bonferroni Corrections With VLMR/ALMR

One reason for VLMR/ALMR’s overextracting the number 
of classes might be increased Type I error rate resulting from 

multiple testing for the same dataset. In previous research, no 
correction for α was used and the effect of using corrected α 
is unknown (B. Muthén, personal communication, March 8, 
2011). Therefore, we have examined the accuracy of VLMR 
and ALMR after applying Bonferroni correction to α in both 
studies. Based on the number of VLMR/ALMR from each 
study, we used α = .05 / 2 = .025 for Study 1 and α = .05 / 3 
= .167 for Study 2. We found that the overall accuracy of 
VLMR and ALMR improved under both the true and mis-
specified models (improvement ranged from 1% to 10%). 
Furthermore, the difference between the nonadjusted and 
adjusted VLMR/ALMR increased as the cluster number and 
cluster size increased. By using the Bonferroni correction to 
α, VLMR/ALMR is less likely to overextract the number of 
classes, an improvement especially noticeable in large sam-
ple size conditions, in misspecified models, and when there 
were more than two subpopulations in data generation. There 
was no appreciable difference between the nonadjusted and 
adjusted VLMR/ALMR under the small sample size condi-
tion (i.e., N = 600 or 630) and for the true model. Therefore, 
Bonferroni correction seems more appropriate for data with 
large sample sizes (N ≥ 1,000) only; besides, when the higher 
level nesting structure is ignored, the Bonferroni correction 
would be especially useful to achieve higher accuracy for 
VLMR/ALMR.

Implications for Researchers

Techniques such as GMM and MGMM that are rooted in 
structural equation modeling can be viewed as model-building 
techniques in which researchers start with a simpler model 

Figure 8.  Example of the effect of sample size on class enumeration decisions by IC indices.
Note. IC = information criterion; AIC = Akaike information criterion; CAIC = consistent AIC; BIC = Bayesian information criterion; SABIC = sample 
size–adjusted BIC; MGMM = multilevel growth mixture model; GMM = growth mixture model.
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and build up to a more complex one (Kline, 2010). The 
results of the current study can aid researchers in this model-
building process because they demonstrate the importance of 
accounting for nested data structure and provide information 
on which fit indices can most accurately identify the appro-
priate model when using MGMM. Based on our findings, we 
strongly recommend that researchers accommodate multi-
level structure by using MGMMs, especially when the sam-
ple size is relatively small, the ICC is relatively large, or 
both. Table 4 summarizes the top performing indices under 
different conditions.

In general, when the sample size is small, SABIC is pre-
ferred, whereas when the sample size is large, BIC and CAIC 
are preferred. Note that the sample size is relative to ICC. For 
example, 1,200 may be considered as a large sample size 
when ICC is .1, but small when ICC is .2.

The cutoff value of 2 is a reasonable value to use for BIC, 
CAIC, and SABIC. In the process of finding the best fit 
model, when the decrease in the indices’ values (especially 
SABIC) becomes less than 2, researchers can stop fitting 
more complicated models (i.e., models with more classes) 
and select the model with the second lowest IC index.

VLMR and ALMR can be used as references when sam-
ple size is small (i.e., N ≤ 630), but should be used with cau-
tion when sample size is large due to their tendency to 
overextract classes. Bonferroni correction can help improve 
VLMR/ALMR’s accuracy for data with large sample size (N 
≥ 1,000).

Under more complex models, we recommend using 
CAIC, BIC, VLMR, and ALMR for MGMM; SABIC is only 
suitable for large sample size conditions. For misspecified 
models, CAIC and BIC are best, SABIC is appropriate for 
large sample size conditions, and VLMR and ALMR can 
also be used, but tend to overextract classes.

It is important to note that these fit index recommenda-
tions are based on the simulation conditions used in this 
study. Readers should be cautious when applying our find-
ings to models and conditions that are very different from 
those studied in this article.

Limitations and Future Directions

Accurate class enumeration is perhaps the greatest challenge 
in mixture modeling and much is still unknown about highly 
complex mixture models such as the MGMM. That said, 
there are some limitations to the current study that raise cau-
tion regarding generalizing the results. First, the residual 
variance of the slope at the organization level was con-
strained to zero. While this specification will be common for 
empirical studies because organization level slope variation 
tends to be small, which may result in convergence problems 
(Palardy & Vermunt, 2010), including the organization level 
slope random effect and other Level 3 parameters may 
impact class enumeration.

Second, while this study focuses on the particular model 
misspecification of ignoring the highest level of the hierar-
chical data, there are other types of model misspecifications 
and assumption violations that may affect class enumeration. 
For instance, misspecifying the shape of the growth trajec-
tory or violating the multivariate normality assumption for 
the repeated measures can effect class enumeration (Bauer & 
Curran, 2003, 2004). Additional research is needed to address 
these issues.

Third, the current study was conducted under frequentist 
estimation using the maximum likelihood estimator. Recently, 
Bayesian estimation for multilevel models has been gaining 
attention due to its advantages over the classical approach 
(Hamaker & Klugkist, 2011). The deviance information crite-
rion (DIC; Spiegelhalter, Best, Carlin, & Van der Linde, 
2002) is available under the Bayesian estimation, and it can 
be used in similar fashion as the AIC and BIC to select the 
optimal model (i.e., models with small DIC values are 
favored). In the most recent version of Mplus 6.1 (L. K. 
Muthén & Muthén, 1998-2010), the Bayesian estimator is 
available but not yet implemented for MGMM (B. Muthén, 
personal communication, July 29, 2011). In addition, 
Bayesian analysis with a specific prior distribution allows 
model selection using posterior model probabilities or the 
Bayes factor (Hamaker & Klugkist, 2011). We expect the 
model selection by DIC to be similar to AIC according to 

Table 4.  Better Performing Indices Under Small and Large N by Type of Model.

Type of model Small N Large N

MGMM
  Two class, same variance SABIC, BIC, CAIC/VLMR/ALMR BIC/CAIC, SABIC, VLMR/ALMR
  Three class, same variance BIC, CAIC, VLMR/ALMR, SABIC BIC, CAIC
  Two class, different variance BIC, CAIC, VLMR/ALMR BIC, CAIC, SABIC, VLMR/ALMR
GMM
  Two class, same variance SABIC, VLMR/ALMR SABIC, BIC, CAIC, VLMR/ALMR
  Three class, same variance SABIC, VLMR/ALMR BIC, CAIC, SABIC
  Two class, different variance BIC/CAIC, VLMR/ALMR BIC/CAIC, SABIC, VLMR/ALMR

Note. MGMM = multilevel growth mixture model; SABIC = sample size–adjusted BIC; BIC = Bayesian information criterion; CAIC = consistent AIC; 
VLMR = Vuong–Lo–Mendell–Rubin likelihood ratio test; ALMR = adjusted Lo–Mendell–Rubin likelihood ratio test; GMM = growth mixture model; AIC = 
Akaike information criterion.
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Spiegelhalter et al. (2002), whereas Bayes factor and poste-
rior probabilities under full Bayesian analysis to be similar to 
the BIC, as they belong to Bayesian model selection approach. 
Additional research on the performance of DIC, posterior 
model probabilities, and Bayes factor for MGMM and GMM 
under the Bayesian estimation framework is needed to see 
how they compare with the classical/frequentist approach.

Appendix

Below is a list of all acronyms used in the current article as 
well as what they denote, in alphabetical order.
AIC—Akaike information criterion
ALMR—adjusted Lo–Mendell–Rubin likelihood ratio test
ANOVA—analysis of variance
BIC—Bayesian information criterion
BLRT—bootstrap likelihood ratio test
CAIC—consistent Akaike information criterion
FMM—factor mixture model
GMM—growth mixture model
IC—information criterion
ICC—intraclass correlation
ID—identifier
IRT—item response theory
LCA—latent class analysis
LCGA—latent class growth model
LGCM—latent growth curve model
LR—likelihood ratio
LRT—likelihood ratio test
K-L—Kullback–Leibler
MGMM—multilevel growth mixture model
SABIC—sample size–adjusted BIC
VLMR—Vuong–Lo–Mendell–Rubin likelihood ratio test
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