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Abstract: Offspring within families, both human and nonhuman, often differ. The obvious 
question is: Why? Work on psychological differences on children within human families 
has focused primarily on differences in the nonshared environment of contemporary 
siblings, though the precise location of this nonshared environment is still the subject of 
much debate. Here I explore the range of explanations for within-brood diversity from the 
perspective of nonhuman families, particularly birds that share certain key features with 
human families. I examine the role of social rank in creating a nonshared environment 
within the family, and present data from a model system (an altricial bird) to illustrate how 
different the effective environments experienced by offspring sitting side-by-side in the 
same confined physical space, tended by the same parents, and experiencing similar 
ecological variability, can be. These broodmates can effectively live in different worlds. I 
then briefly explore other sources of diversity among offspring in nonhuman families, 
including within brood genetic differences and non-genetic maternal (parental) effects that 
often covary with birth / hatching rank. Given the ubiquity and far-reaching consequences 
of maternal effects in nonhuman families, and some human data suggestive of similar 
patterns, it would seem worthwhile to explore the potential role of maternal effects in 
creating phenotypic diversity in psychological traits among children in human families.  

Keywords: social rank, sibling competition, nonshared environment, effective, maternal 
effect, birth order, hatching asynchrony 
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Introduction 

Why do offspring within the same family so often differ? This fundamental 
question crosses discipline lines and has vexed social and natural scientists alike. Workers 
in different fields, drawing from different traditions, using different research methods, not 
surprisingly provide different answers to the same question. A sociologist might explain 
differences among children from societal, cultural and political contexts (Corsaro, 2005; 
Freese, Powell, and Steelman, 1999). A psychologist might explain differences among 
children with reference to the features of the nonshared environment among contemporary 
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siblings, either inside or outside the family (Harris, 1995, 1998; Plomin, 2011; Plomin and 
Daniels, 1987; Sulloway, 1996). A behavioral ecologist might focus upon developmental 
plasticity in heterogeneous environments (Pfennig, 1992; Stearns, 1989) or one of the 
myriad maternal effects that have far reaching effects on offspring phenotypes (Groothuis, 
Muller, von Engelhardt, Carere, and Eising, 2005; Mousseau and Fox, 1998). Even a casual 
reading of these diverse literatures makes it obvious that they have much to offer each 
other, both in terms of explanatory framework and methodologies used. For example, the 
methods used by psychologists interested in the question of jealousy in human infants may 
be directly transferable to animal models (Hart and Legerstee, 2010). Here I have the 
modest goal of using studies of animal models to help potentially explain the origin of 
differences among children within human families.  

It has been clear ever since the seminal paper of Plomin and Daniels (1987) that a 
chief source of such differences lurks in the nonshared environments of contemporary 
offspring within the same family. But exactly what and where are these nonshared 
environments? Are they the peer relations outside of the family as Harris (1995, 1997) 
suggests? Or do they rest within different niches created within the family by birth order as 
Sulloway and his colleagues argue (Sulloway, 1996, 2007; Zajonc and Sulloway, 2007)? 
Or is it the “gloomy prospect” that Plomin and Daniels originally raised, that differences 
among children arise from “random, idiosyncratic, or serendipitous events such as 
accidents, illnesses and other traumas” (Plomin and Daniels 1987, p. 8)? The exact location 
and nature of the nonshared environment remains uncertain, but its existence seems to be 
required to explain differences among children within a family: It is our environmental 
“dark matter.” 

From the perspective of a researcher working on nonhuman families, a further 
question arises: Is the nonshared environment the only source of variation among offspring 
within the same family? Recent work on nonhuman families, and in particular birds (see 
below), suggests that the answer is “no.” Both heritable variation, and nonheritable 
maternal effects can generate substantial differences among progeny within the same 
family in both human (e.g., Bouchard and Loehlin, 2001) and non-human families (see 
below). For example, mother birds may make systematic adjustments to egg size or the 
quantity of hormones deposited in eggs in relation to laying sequence (Groothuis et al., 
2005; Slagsvold, Sandvik, Rofstad, Lorentsen, and Husby, 1984), creating intrinsic 
differences among progeny at birth or hatching. I shall discuss below why parents might do 
this, and what the implications are for the study of human families.  

I am going to make the bold and perhaps precarious assumption that certain animals 
provide useful models for the study of human families. Those animals are not other 
mammals. Humans are unlike most mammals that usually raise offspring more or less 
simultaneously in multi-offspring litters. Instead, humans give birth to usually single 
offspring at intervals, and because of the protracted period of parental care, often have 
families of different-aged dependent offspring. This pattern finds no strong parallel even 
among our closest primate relatives. Rather, a closer match is found among altricial birds 
that practice hatching asynchrony (Magrath, 1990). As in human families who also raise 
altricial offspring, parent birds are often confronted with mixed-age broods of dependent 
offspring at different developmental stages and with differing resource needs. Age, size and 
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developmental asymmetries lead to unequal competitive abilities in accessing parentally 
delivered resources. The age differences involved may appear small at first glance – 1, 2 or 
3 days in the case of the red-winged blackbirds that I shall discuss below – but the nestling 
period lasts only a dozen days. These age differences generate an asymmetric sibling 
rivalry (sensu Forbes and Glassey, 2001), and the asymmetry is very large, perhaps the 
rough equivalent of a 2-to-6-year inter-birth interval between human children.  

I do note that the comparison between altricial birds and altricial humans is not 
perfect. Multi-offspring human families are built over a number of years and a common 
pattern is for older parents to be wealthier (see, e.g., Steelman and Powell, 1989). Another 
key difference is the origin of hatch vs. inter-birth intervals. Birds can potentially control 
hatching asynchrony simply and precisely by varying the onset of incubation, and maternal 
effects are easy to envision. Whether a similar modulation of competitive asymmetries 
among progeny occurs in humans via birth spacing is less clear. If inter-birth interval is 
adaptively modulated in humans, it seems likely to be controlled with less precision than in 
birds. While there are important similarities between birds and humans in their manner of 
parenting, their differences should not be understated. 

Developmental psychologists, behavioral geneticists, and sociologists are all 
interested in the origins of differences among children within families in personality, 
behaviour, intelligence, growth trajectory or health status, and differentiate between the 
shared and nonshared environment of siblings (Frampton, Jenkins, and Dunn, 2010; Harris, 
1995; Kristensen and Bjerkedal, 2007; Plomin and Daniels, 1987; Steelman, Powell, 
Werum, and Carter, 2002; Sulloway, 1996). The nonshared environment is those 
phenomena unique to each child, such as birth rank or peer relations, and not general to the 
entire family (Plomin and Daniels, 1987). The shared environment includes those 
environmental phenomena shared among all members of the same family such as resource 
availability, family size and the number of parents (Harris, 1998; Plomin and Daniels, 
1987) and is expected to generate similarities among siblings, as would shared hereditary 
effects (Plomin and Daniels, 1987). Recent work, however, shows that shared 
environments can exert differential effects on individual offspring conditional on the 
properties of the offspring. For example, human children with a negative outlook on life 
may be more vulnerable to the adverse effects of maternal depression (Frampton et al., 
2010; Jenkins, Simpson, Dunn, Rasbash, and O’Connor, 2005). Here I borrow this 
framework to examine differences in the performance of offspring in a non-human animal 
model – an altricial songbird – to study the environmental origins of within-family 
differences among siblings. I use this approach to address two questions. First, how 
different are the effective environments of contemporary offspring in the same family? 
Second, how does an environmental stressor – year to year ecological variability – affect 
offspring performance in relation to the properties of the shared and unshared environment?  

For both questions I use a simple metric: whether an offspring lives or dies during 
the nestling period in relation to the features of the within-family environment that affect 
sib-sib competition, the size and structure of the family in which a nestling lives (shared 
environments), and the social rank of the offspring (a mixture of shared and nonshared 
environments). At the outset I will emphasize one important point. I have noted above in 
my introduction the different potential locations of the unshared environment. In the system 
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that I am about to describe – an altricial bird – all offspring are confined to the same 
physical space – the nest – for the duration of the nestling period. This simplifies matters 
greatly. Any differences that arise among individual offspring must arise from within the 
family. 

Materials and Methods 

I examined within-family variation in offspring performance in the red-winged 
blackbird (Agelaius phoeniceus) – that serves as a model system for the study of sibling 
competition and parental care (Forbes and Glassey, 2001). Like humans, these birds exhibit 
developmental asynchrony created by asynchronous hatching of nestlings; this results in 
the age differences among progeny (up to 3 days, or 25% of the nestling period) that 
underpin an asymmetric sibling competition between older, larger and stronger core 
siblings, and weaker “marginal” counterparts (Forbes and Glassey, 2001). Core progeny as 
a result enjoy growth and survival advantages over their marginal nestmates (Forbes, 2009, 
2010a, 2011; Forbes, Thornton, Glassey, Forbes, and Buckley, 1997; Mock and Forbes, 
1995; Mock and Parker, 1997).  

I studied red-winged blackbirds nesting in near Winnipeg, Manitoba over 18 field 
seasons from May to August 1993 to 2010. Daily censuses were conducted at an average of 
278 nests each year with the assistance of a field crew. Detailed methods have been 
described elsewhere (Forbes, 2009, 2010a; Forbes and Wiebe, 2010) and I present only a 
précis here. Nests were visited from the onset of egg-laying until the youngest nestlings 
reached at least 8-d of age (hatching = day 1). For ethical reasons, nestlings were generally 
not handled after day 10 to prevent premature fledging. Eggs and nestlings were marked for 
individual identification, and nest contents were monitored. 

I divide the brood into core and marginal elements (Mock and Forbes, 1995) based 
upon the hatching pattern of individual offspring (Forbes et al., 1997). All nestmates 
hatching together on the first day of the nestling period are the core brood; nestlings 
hatching 1 or more days later are the marginal brood (see Forbes, 2010a for detailed 
methods of classifying core vs. marginal progeny). I further subdivide the marginal brood 
into three levels: m1, m2 and m3 (Forbes, 2011). Because of the incubation pattern of red-
winged blackbirds, these subscript designations correspond both to the number of days that 
a marginal offspring hatches after its core counterparts, and its rank within the marginal 
brood. If, for example, three marginal offspring are present alongside one or more core 
offspring, the m1, m2, and m3 progeny will usually have hatched 1, 2 and 3 days after the 
core offspring.  

I denote family size and structure as cj, where c is the number of core hatchlings (1 
≤ c ≤ 5) and j is the number of marginal offspring at hatching (0 ≤ j ≤ 4) (Forbes, 2009, 
2011). Rank within the brood is denoted as either c (= core) or mi, where m denotes 
marginal status and the subscript i denotes rank within the marginal brood based on age); 
m1 progeny are found in all broods with ≥1 marginal offspring; m3 progeny are only found 
in broods with ≥ 3 marginal progeny. Table 1 shows the mean survival to day 8 of core, m1, 
m2 and m3 progeny in the 13 most common brood structures; five additional brood 
structures were vanishingly rare. Though survival to leave the nest is an obviously 
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incomplete measure of fitness, it is a useful proxy as survival among specific classes of 
offspring showed a near maximal range of variation (see Table 1 and Figure 1) and 
fledging success is a robust predictor of recruitment to the breeding population in redwings 
(Weatherhead and Dufour, 2000). I note that I do not expect that all parents surveyed here 
to be of equal quality: Parents laying larger clutches quite probably have access to more 
resources (e.g., Högstedt, 1980). Given that the lowest survival of progeny is found in the 
largest broods, this represents a conservative assumption for my analysis. 
 
Table 1. Estimate of the effective core brood size ĉ in relation to social rank, family 
structure, and year type in red-winged blackbirds studied near Winnipeg, Manitoba from 
1993 to 2010 

Family 
structure 

Social rank of focal nestling 

n core  m1  m2  m3  
Good 
years 

Bad 
years 

Good 
years 

Bad 
years 

Good 
years 

Bad 
years 

Good 
years 

Bad 
years 

Good 
years 

Bad 
years 

10 16 14 -0.22 2.00        

11 29 25 1.94 1.03 1.94 6.03     

12 42 40 1.34 3.50 3.16 5.25 6.54 9.16   

13 55 33 0.35 -0.22 0.94 1.68 3.25 6.41 16.88 23.46 

20 15 42 1.86 2.75       

21 80 73 3.88 2.75 7.59 10.06     

22 113 94 0.88 4.27 5.97 9.75 14.97 23.72   

23 15 12 0.82 6.99 1.86 4.99 12.28 23.22  24.78    28.43 

30 28 28 2.38 3.88       

31 89 108 2.81 6.15 14.88 19.76     

32 20 12 2.39 4.12 11.29 18.01 26.10 25.82   

40 8 11 4.66 8.30       
Notes: Family structure is depicted as cm, where c is the number of core offspring at hatching, and the 
subscript m is the number of marginal offspring at hatching. ĉ provides a measure of the effective size 
of core brood for progeny of a given social rank in a given family size. It represents the size of core 
brood required to generate the observed mortality of a given offspring class based upon a linear 
extrapolation of the relationship between core brood size and survival in good years. A value of ĉ that is 
beyond the normal range of variation for this population (a maximum brood size of five) is shown in 
boldface. The sample size is the number of broods observed. The effective brood size provides a simple 
metric of the effective environment experienced by offspring of different social rank. 

Results 

I measured the survival of nestlings to fledging in relation to social rank and family 
structure in years of above and below average reproductive success (see Forbes, 2009, 
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2010a for details about how year type was categorized): I shall call these “good” and “bad” 
years as a shorthand description, and the data are shown in Figure 1. To estimate a “bad” 
year’s effect, I first analyzed the relationship between the size of the core brood (c) and the 
survival of core nestlings (s), in years, of above reproductive success using simple linear 
regression:  

 
s = 0.993 – 0.032 c;  R2 = 0.328, P = 0.052 

I used the regression coefficients to interpolate the observed mortality of marginal offspring 
of a given social rank (m1, m2, or m3) in a given family structure into an estimate of the 
effective core brood size, ceff – i.e., what size of core brood would have yielded the 
equivalent mortality rate observed in a focal marginal offspring in a good year (see Table 
1). 
 Inspection of the data showed, as expected, a reasonably good fit between the 
observed and estimated core brood sizes (r = 0.802, p = 0.002). The question of direct 
interest, however, is what would the equivalent core brood size (ĉ) have to be to generate 
the observed mortality (see Figure 1) for marginal offspring in those brood structures? To 
estimate this, I simply rearranged the regression equation above:  

ĉ = (0.993 – sij) / 0.032c 

Where sij is the survival of a nestling of social rank i in brood structure j, and ĉ is the 
effective size of the core brood at hatching in a good year. 

I acknowledge that extrapolation outside the observed range of variation is 
dangerous practice and violates the norms of statistical etiquette. That caveat 
notwithstanding, the analysis provides a rough measure of the effective environments 
experienced by offspring of different social rank. And sometimes the effective 
environments were very different.  

 
How vulnerable are offspring to bad years? 

I examined the relationship between social rank, family size, and vulnerability to 
below average ecological conditions (bad years) by computing the difference in mean 
survival for offspring between years of above and below average reproductive success (data 
shown in Figure 1). The difference (d) shows the extent to which offspring were affected 
by adverse conditions (-1 ≤ d ≤ 1) – e.g., a value of zero indicates that a focal offspring was 
not affected by bad years; a positive value of d indicates that offspring exhibited lower 
survival in bad years than in good years, a negative value of d the opposite.  

Multiple regression analysis indicated separate and significant effects of both social 
rank (core = 0, m1 = 1, m2 = 2, m3 = 3) on the difference in survival across years (core 
brood size at hatching: β = 0.040, p = 0.022; social rank: β = 0.065, p = 0.001; overall 
regression: R2

adj = 0.328, F2,24 = 7.337, p = 0.003); the size of the marginal brood was not 
strongly related to the magnitude of d (marginal brood size at hatching: β = 0.009, p = 
0.616) and this variable was deleted from the best-fit model. In short, low ranking marginal 
offspring in families with more core offspring were more strongly affected by bad years 
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than either core offspring or high-ranking marginals (see Figure 1). 
 
Figure 1. Survival of nestling red-winged blackbirds in good (open bars) and bad years 
(shaded bars) in relation to social rank and family structure 
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Notes: Core offspring (c) are shown in top panel; m1 marginal offspring 
are shown in middle panel; m2 and m3 marginal offspring are shown in 
bottom panel. The subscripted number, ij shows the number of core (i) 
and marginal (j) nestlings at hatching.  Sample sizes are the same as 
shown in Table 1. 

Discussion 

Offspring within both human and nonhuman families differ, often dramatically. The 
key question is: Why? As Plomin and Daniels (1987) noted more than a quarter century 
ago, hereditary effects and the shared environment are expected to produce similarities 
among progeny within the same family. Differences among progeny, conversely, are 
expected to stem primarily from the nonshared environment of individual offspring. But 
where does the nonshared environment lie? Here I report the results of work on a model 
system for nonhuman families – an altricial bird – that examines the role of social rank in 
creating phenotypic differences among progeny. Differences in social rank were created by 
hatching asynchrony, a maternal effect that resulted in broods of mixed-age offspring. And 
although offspring within the same family shared the same confined physical space, were 
tended by the same parents, and experienced similar extrinsic ecological variation, they 
exhibited dramatic variations in overall survival and their sensitivity to year-to-year 
ecological variation. Both survival and the degree of sensitivity were conditional upon 
offspring social rank (nonshared environment), and its interaction with the size and 
structure of the family created by their mothers (shared environment). Here I use a simple 
metric, the effective brood size, to compare the effective environments experienced by 
offspring within the same family. And the observed differences were striking.  

Although there was overlap in the effective core brood size for core and marginal 
offspring, particularly for high-ranking (m1) marginals and especially in small families, 
there were also broad regions of non-overlap. The effective brood size ranged as high as 11 
in bad years and 26 in good years for lower ranking (m2 and m3) marginal offspring. As the 
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normal maximum brood size at hatching in this population is five, with broods of six and 
seven occurring but being vanishingly rare (Forbes, 2010a), this places these marginal 
progeny far outside the normal range of brood size for this population. Overall, 16 of the 28 
estimates of marginal offspring survival (bold-faced entries in Table 1) exceeded the 
normal brood size. 
 Offspring social rank also explained in large part the differential effect of a shared 
environmental factor for all siblings: year-to-year ecological variability. How resource 
shortfalls are experienced by individual offspring was conditional upon both family size 
and where that individual sat in the brood hierarchy. Core offspring in different brood 
structures were affected relatively little by year-to-year ecological variability, as too were 
high ranking (m1) marginal offspring in small broods. However, m1 progeny in large broods 
and m2 progeny were strongly affected by year-to-year variability, showing marked 
declines in survival in bad years. Intriguingly, low-ranking marginals in the largest broods 
(m2 in 32 broods and m3 in 23 broods; see Figure 1) were not strongly affected by year-to-
year ecological variation: Their survival prospects were already so grim even in good years 
that there was little room for further decline. 

This set of results is important for four reasons: 1) they show how different the 
effective environment for contemporary siblings can be; 2) they show in a nonhuman 
animal model how the response to a shared environment can differ according to intrinsic 
differences among offspring; 3) they show how the unshared environment that exists for 
contemporary siblings can exist within the family unit; and 4) they have implications for 
how maternal effects are allocated within families. 
 
How different are the effective environments of contemporary siblings?  

The results above show that differences in the effective environment experienced by 
progeny within a brood can be striking. A high ranking member of the brood hierarchy, for 
example, can be living in an effective brood of less than three, while a junior brood 
member can be living in an effective brood of more than 26 (see Table 1). A brood size of 
26, in fact, does not exist in nature: It is a “meta” brood size, which shows that offspring of 
lower social rank are living in quite different worlds than their counterparts sitting in close 
physical contact beside them. 

These different family niches should favor different offspring traits. For example, 
Mainwaring, Dickens, and Hartley (2010) show that social rank, and not maternal effects, 
are the chief determinants of phenotypic variation in nestling blue tits (Cyanistes caeruleus) 
in a suite of traits linked to sibling competition; nestlings prioritized growth of tarsi over 
feather development to maintain standing within the nest. More recently, Mainwaring and 
Hartley (2012) have found that later-hatched nestling zebra finches (Taeniopygia guttata) 
exhibited greater exploratory behaviour as adults. Variation in early nutritional conditions 
(later hatched nestlings grow slower) appears to influence behavioral development and 
personality. These appear to be examples of phenotypic plasticity during development 
(Stearns, 1989) that serve as adaptations to different social environments. They are a 
polyphenism that emerges from the interaction of a hereditary program with different 
environmental cues. 

It would not be surprising if such phenotypic plasticity in response to offspring 
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social environment was widespread in altricial species, including humans. Sulloway (1996) 
argues cogently that behavioral adaptations to different niches within human families yield 
differences in personality in relation to birth rank. Though this work is still much 
discussed, the results of work on non-human models and altricial birds in particular provide 
strong support for this argument. 
 
The phenotypic response to a shared environment is conditional upon social rank 

How nestling blackbirds responded to features of the shared environment was 
conditional upon the properties of individual offspring. This follows from an asymmetric 
sibling rivalry that parents initially established via hatching asynchrony, conferring 
advantages to progeny of high social rank and disadvantages to others. As such, offspring 
of low social rank were more vulnerable to resource shortfalls.  

This result parallels work on human children, where siblings exposed to maternal 
depression (an adverse and shared environmental effect) differed according to the 
perspective of the children in the mother-child relationship, a nonshared environmental 
factor (Frampton et al., 2010; Jenkins et al., 2005). Similarly in blackbirds, the offspring 
response to the challenge of adverse ecological conditions was conditional upon social rank 
and the interaction with family size. In the objective environment of these altricial birds, 
ecological stress is a shared family-level risk factor, but in bad years, some siblings are 
profoundly affected, others little at all. A shared family-level risk had a nonshared effect 
conditional on offspring social rank.  

An obvious question is whether parallels exist within human families. Do children 
of lower social rank experience resource shortfalls in a similar manner to more senior 
progeny? Statistically this might emerge, for example, as an interaction between 
socioeconomic status and birth rank. Work on altricial birds suggests strongly that resource 
shortfalls are not shared equally among the sibship, but disproportionately fall upon 
offspring of lower social rank (Forbes, 2011; Forbes and Glassey, 2001; Forbes and Mock, 
1996; Forbes et al., 1997; Lack, 1947; Mock and Forbes, 1995). Asymmetric sibling rivalry 
effectively buffers offspring of high social rank (the core brood) from resource shortfalls, 
while leaving offspring of lower social rank vulnerable. A statistical signature of 
asymmetric sibling rivalry is increased variation in performance (in birds, offspring growth 
and survival) among lower ranking brood members (Forbes, 2009; Forbes and Glassey, 
2000). This seems worth exploring in human families.   
 
The nonshared environment exists within the family 

A key insight derived from the study of altricial birds concerns the shared and 
nonshared environments experienced by contemporary offspring. Even though different 
individuals share the same confined physical space at the same time, are tended by the 
same parents, and are influenced by the same extrinsic ecological conditions, they can 
effectively live in different worlds (Forbes, 2011). This has potentially deep implications 
for the study of human families and the influence of birth order and social rank. We assume 
that offspring share a common family environment and that this should induce similarities 
among contemporary offspring. But is this assumption valid? Work on altricial birds 
suggests not necessarily. From below, competitive asymmetries among contemporary 
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offspring mean that offspring often do not enjoy equal access to resources with 
concomitant effects on growth and survival. From above, parents may play favorites and 
treat offspring unequally (Lessels, 2002; Lyon, Eadie, and Hamilton, 1994). Both may 
contribute to offspring in the same place at the same time experiencing the world very 
differently. 

Differences in social rank and parental favoritism may generate wide differences in 
the effective environment experienced by contemporary offspring. This is not a 
straightforward question to address. The effective environment cannot be measured 
directly, but rather is inferred from offspring performance. Instead, we must focus on 
properties of the objective environment – family size, birth rank, family income, number of 
parents – that can be measured directly to establish the sources of variation that exist 
among progeny within the same family.  

It is clear that the strongest determinant of differences in offspring fitness in this 
avian system comes not from extrinsic environmental variation (year-to-year variation in 
brood-rearing conditions), but from the within-family inequality among progeny. That is, 
the unshared environment largely exists within the family unit living in the same confined 
physical space. There are no differences in peer relations outside the family (nestlings do 
not leave the nest), only differences in competitive ability established at birth and that 
unfold during the period of parental care. 
 Altricial birds are obviously very different from humans in many key respects, but 
there are sufficient parallels to at least entertain the argument that the missing unshared 
environment that generates differences among human children within the same family 
might indeed lurk within the family. 
 
Maternal effects are both a cause and consequence of asymmetric sibling rivalry 

The competitive asymmetries among nestling blackbirds were established by the 
maternal effect of hatching asynchrony (Glassey and Forbes, 2002). Much recent work has 
focused on the role of maternal effects in relation to nestling social rank in birds, and the 
potential to compensate for the inimical effects of hatching asynchrony (reviewed in Saino 
et al., 2011). This work has focused primarily on how parents might manage sibling 
competitions for parentally provided resources – e.g., extra maternal testosterone may 
enhance begging performance of last-hatched nestlings (Groothuis et al., 2005; Schwabl, 
Mock, and Gieg, 1997; Sockmann, Sharp, and Schwabl, 2006).  

But maternal effects may also play a compensatory role. Instead of managing 
sibling competitions directly, maternal effects such as boosts in maternally provided 
hormone levels, antioxidants, immune system complements, or egg size (Groothuis et al., 
2005; Müller, Boonen, Groothuis, and Eens, 2010; Royle, Surai, and Hartley, 2001; 
Schwabl, 1996; Slagsvold et al., 1984; Sockmann et al., 2006) may instead reflect the 
different worlds in which these offspring live. Life in an effective brood of 11 to 26 is very 
different than in a brood of two or three. Thus, these maternal effects may not serve to 
manage sibling competition per se, but reflect the different challenges faced by offspring of 
different social rank.  

Slagsvold et al. (1984) long ago suggested that parent birds might vary egg size in 
relation to hatching asynchrony to modulate the effects of sibling competition. A larger last 
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laid egg would provide additional resources for an offspring initially handicapped in sibling 
competition, promoting its survival; they called this the brood survival hypothesis. 
Conversely, a small final egg would exaggerate the competition and accelerate the process 
of brood reduction. Forbes and Wiebe (2010) provided empirical support for a brood 
survival function, finding that early mortality of marginal, but not core, offspring was 
affected by egg size. 

More generally, maternal effects that establish competitive asymmetries (cardinal 
maternal effects) may trigger secondary maternal effects. Much recent work on altricial 
birds has focused on the role of maternal androgens deposited in the yolk of eggs that differ 
with laying and hatching order, and alter nestling phenotype. Maternal testosterone, for 
example, has a wide array of effects, including inducing greater begging intensity, which 
may in turn promote the survival of these offspring (Eising and Groothuis, 2003; Groothuis 
et al., 2005; Lipar and Ketterson, 2000; Schwabl, 1996). But testosterone may also bear a 
cost of depressed immune system function that may induce further maternal effects to 
compensate for the inimical pleiotropic effects of extra androgens. Royle et al. (2001) 
suggested that mothers may deposit extra anti-oxidants in eggs with higher titres of 
maternal testosterone to offset the immunological costs.  

The work on nonhuman families shows quite clearly that some offspring within the 
same family start their postnatal existence very different than brood or littermates. I shall 
now turn to the role of such intrinsic differences in generating within-brood diversity 
among families.  
 
Sources of intrinsic differences among progeny at birth or hatching 

Work on differences among offspring within human families has focused chiefly 
upon differences in the nonshared environment of offspring. Less attention has been given 
to considering the possible role of intrinsic differences that exist within the same family 
among progeny – be they genetic or otherwise – in generating phenotypic differences 
among human children. The sources of intrinsic differences among progeny can be divided 
into genetic effects, those with an environmental origin, and combinations of these. Plomin 
and Daniels (1987) noted that heritable effects are expected to generate similarities among 
progeny within the same family, not differences. But work on nonhuman families reveals a 
growing number of mechanisms that stand as exceptions to this general rule. 
 The sources of intrinsic differences that stem from environmental causes are 
manifold. They include non-genetic maternal effects that are ubiquitous in nonhuman 
families and often covary with birth or hatching order. With respect to psychological 
differences among children in human families, these seem to have been little discussed 
except insofar as they stand counterexamples to estimates of heritability for psychological 
traits – i.e., differences in the prenatal environment experienced by monozygotic and 
dizygotic twins and/or singletons in classical twin studies of heritability. Here the line of 
argument is that these maternal effects result in estimates of heritability that are biased high 
(Conley, 2011; Patterson, 2007). But work on nonhuman families, particularly birds, shows 
that maternal effects may be used as tools to modify offspring phenotype to match the post-
natal environment. 
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Benefits of offspring diversity within the family 
There is growing interest in the role of phenotypic and genotypic diversity among 

siblings and the fitness consequences for both parents and offspring. The potential benefits 
of diversity are manifold. Developmental asymmetries among progeny, for example, may 
reduce peak demands for critical resources such as food, space, or oxygen. The 
ornithologist David Hussell long ago suggested that hatching asynchrony in altricial birds 
staggered the maximum food demands of nestlings, reducing peak demands on parents 
(Hussell, 1972; see also Mock and Schwagmeyer, 1990). McLeod and Marshall (2009) 
similarly suggest that genetic differences among progeny resulting in developmental 
asynchrony may spread out the peak oxygen demand in genetically diverse clutches of 
marine polychaetes. Age-differences among progeny do not necessarily create phenotypic 
diversity, but they do create the asymmetric sibling competitions that can lead to 
phenotypic diversity.  
 Genetic diversity among contemporary progeny may yield fitness benefits by 
reducing competition among sibs, creating diversity among the offspring workforce 
(Ergonomic Hypothesis), and creating immunological diversity within the brood (McLeod 
and Marshall, 2009). Spreading out resource demands and reducing peak loads, as in the 
marine polychaetes noted above, is one mechanism for more efficient resource partitioning, 
akin to encouraging electricity users to shift usage patterns to off-peak hours. In effect, the 
resource base available for offspring is expanded.  
 There is growing empirical evidence for the Ergonomic Hypothesis of offspring 
diversity derived chiefly from studies of social insects. Offspring from different patrilines 
create workers in a colony with different propensities to engage in specific tasks, and more 
diverse colonies respond better to changing task needs (Mattila and Seeley, 2007; Oldroyd 
and Fewell, 2007). Polyandry is an obvious mechanism to create genetic diversity within a 
brood (Birkhead and Møller, 1992). Blended families of adopted and biological children 
might represent a human parallel. Differences in personality that arise from differences in 
family niche, as Sulloway suggests, might also generate greater offspring diversity. 

A further potential benefit of offspring diversity arises from bet-hedging. Bet-hedging 
strategies involve sacrificing arithmetic mean fitness to reduce variance in fitness (Cohen, 
1966; Donaldson-Matasci, Lachmann, and Bergstrom, 2008; Seger and Brockmann, 1987). 
By creating a diversified offspring portfolio, parents may reduce variance in fitness and 
increase geometric mean fitness (Crean and Marshall, 2009; Forbes, 2009, 2010b). 
Laaksonen (2004), for example, suggests that hatching asynchrony in birds – a maternal 
effect – may represent an offspring diversification strategy that yields bet-hedging benefits 
by inducing phenotypic variation among progeny. Miller (1997) made the provocative and 
parallel suggestion concerning nonshared environments in human behavioral genetics: 
Quite the opposite of Plomin and Daniels’ gloomy prospect of random idiosyncrasies 
generating differences among progeny, Miller suggests that these may be manifestations of 
a strategy of evolved randomness. Such randomness would serve to create phenotypic 
diversity within a family for a variety of reasons that include, but are not restricted to, bet-
hedging. 

To date there has been little if any work on the benefits of diversity within human 
families. Hrdy and Judge (1993) examined the social and ecological conditions that would 
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underpin a mandatory diversity among progeny arising from primogeniture. Consolidating 
the wealth transfer from one generation to the next in a single offspring, usually the eldest 
son, appears under some circumstances to maximize the continuation of the family line. 
Such a wealth transfer automatically results in different life paths for daughters and 
younger sons. Diversity here is adaptive compared to an egalitarian distribution of 
resources and arises as an epiphenomenon of the rules of wealth transfer. 

Sulloway (1996, 2010) cites an example that would, however, fall under the 
ergonomic hypothesis. Ralph Nader and his three elder sibs divided the world into four 
parts with each specializing on their region’s culture, history, and language. Sulloway notes 
that the four siblings understood intuitively that they were better off specializing in 
different areas of study and then pooling their collective resources (Sulloway, 1996). As 
with genetically diverse hymenoptera families, human families might benefit from the 
potentially symbiotic interactions that can arise from phenotypic diversity. 

Another potential example of the ergonomic hypothesis applied to humans may be 
sexual orientation and birth order. Androphilic males are more common later in the birth 
order, especially when preceded by brothers (see below). If the presence of a larger number 
of older brothers in the family reduced the success of later-born males, then perhaps an 
androphilic male not in direct competition with his brothers might benefit the family by 
assisting collateral relatives (Ruse, 1982; Wilson, 1975). If this arose as a maternal effect, 
then it need not be adaptive for the affected individual – i.e., the indirect fitness benefit of 
raising nieces and nephews need not compensate entirely for the loss of direct fitness, but if 
it did not, would represent a selfish maternal effect (sensu Marshall and Uller, 2007). The 
fa’afafine of Samoa, an androphilic caste of males, may provide such an example. The 
fa’afafine show greater avuncular tendencies than gynophilic males (Vasey and 
VanderLaan, 2010; Vasey, Pocock, and VanderLaan, 2007) and the benefit accrues 
primarily to nieces and nephews. Though conjectural, one potential evolutionary 
interpretation is that a male with low expected direct success might yield lesser 
reproductive returns for the extended family than an additional helper, especially when 
viewed from the perspective of the mother.  
 
Maternal effects in humans? 

There is growing evidence that maternal effects play a role in the development of an 
array of traits in humans and that these are mediated by birth order, and in particular 
fraternal birth order. The presence of older brothers, but not sisters, in the sibship is, for 
example, associated with a lower birth weight of the subsequent sibs, particularly males 
(Blanchard and Ellis, 2001; Côté, Blanchard, and Lalumière, 2003; Magnus, Berg, and 
Bjérkedal, 1985), an effect that carries over to adulthood as lower height (Rickard, 2008); 
there is a parallel fraternal birth order effect for the incidence of male homosexuality 
(reviewed in Blanchard, 2004). There is strong evidence that the presence of male offspring 
in the womb and their cells in maternal blood primes the maternal immune system against 
minor (HY) antigens (Verdijk et al. 2004). This has been linked to recurrent spontaneous 
abortion following a first-born son (Nielsen, 2011), and reduced birth weight of later-born 
sons (Nielsen et al., 2008). Such birth order effects could serve to modulate the extent of 
sibling competition via maternal effects, though they could be manifestations of a cryptic 
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sibling rivalry (Forbes, 2010b) that uses the mother as a conduit for “sibling effects.” The 
effect of birth order on traits such as sexual orientation, handedness and birth weight likely 
represent the tip of a phenotypic iceberg, and the current evidence suggests that they are 
mediated by the early prenatal environment, when synaptic connections are being 
established and brain circuits are highly plastic (Champagne and Curely, 2005). 
 Evidence of the use of maternal effects to tailor offspring phenotype to their post-
natal environment is burgeoning in nonhuman systems. There is also growing evidence of 
the importance of the early prenatal environment on a suite of behavioral and health related 
traits in humans (de Weerth, Buitelaar, and Mulder, 2005; Vallée et al., 1997). Some of 
these effects, such as the increased prevalence of hypertension and coronary heart disease 
in the offspring of mothers pregnant during famine (Roseboom et al., 2003; Stein, Zybert, 
van der Pal-de Bruin, and Lumey, 2006), are clearly pathological. But it does not follow 
that all responses to maternally-mediated stress early in development are pathologies. 
Rather, some of these may be adaptive maternal effects that match offspring phenotype to 
current environmental conditions (Sachser, Hennessy, and Kaiser, 2011). It would seem 
worthwhile to extend this view more broadly to the development of psychological traits 
generally. Do mothers know best? They seem to know what is best for them, but that may 
not always be what is best for their offspring.  
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