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Abstract: Singing voice recognition is very different from speech recognition or automatic speech recognition because there are distinct dif-
ferences between speaking and singing voices. The problem is complex because music audio signals with their background instrumental
accompaniments are regarded as noise sources that degrade the performance of the recognition system. This study proposes a statistical learn-
ing method to recognise words in a vocal audio signal with background music and to classify the region of a singing voice in a polyphonic
audio signal. The goal of this study is to solve the problem of recognising words from sung input without using any method to separate in-
strumental from the background. This study also applies a concept from image recognition by using a spectrogram feature as an image to solve
the problem. An audio signal with accompanying music was analysed and transformed into a spectrogram feature. To recognise it, the entire
spectrogram feature was sliced, forming a feature vector for a feed-forward neural network classifier. Several classification functions were
compared, including K-Nearest Neighbour, Fisher Linear Classifier, Linear Bayes Normal Classifier, Naive Bayes Classifier, Parzen
Classifier and Decision Tree. The results show that using a feed-forward neural network can effectively recognise sung words at an accuracy
rate of more than 93.0%. In particular, this system can recognise cross-language music data.
1 Introduction

Sung word recognition is one of the interesting research topics in
the field of Music Information Retrieval (MIR). The first approach
to solve this problem used techniques from automatic speech recog-
nition (ASR). In this paper, we propose a novel technique to solve
the problem of singing voice recognition in polyphonic recordings.
Our assumption is that it is unnecessary to filter the instrumental
background from the singing voice to recognise the words being
sung. By taking this approach, we expect to achieve high recogni-
tion accuracy.

Singing is the act of producing musically relevant sounds with
the human voice. Singing is an augmented version of regular
speech because it uses sustained tonality, rhythm, and a variety of
other human vocal techniques. The problems involved in recognis-
ing words being sung under noisy background conditions, has been
a topic of interest to many researchers [1–8] especially the task of
recognising words mixed with several musical instruments.
Another issue in singing voice recognition is that the problem is
quite different from speech recognition (SR) or ASR because of
substantial differences between speaking and singing voices such
as the duration of vocal sounds, the volume, pitch, vibrato,
formant, rhythm and rhyme [9–16]. To make the problem realistic
and feasible, we considered singing voices in a polyphonic audio
signal sampled from commercial compact-discs (CD) or DVDs of
popular music recordings. The sampled set includes a comprehen-
sive list of the commercially pertinent genres in popular music, in-
cluding dance, soft rock, hard rock, rock, soul, hiphop, R&B, folk
and acoustic. All the music samples include a male or female singer
and the songs in this study include both Thai and English songs.
Another problem in the study of sung word recognition is that a
few English and Thai words have special characteristics due to
their tone patterns. Different tones have different meanings. For
example, depending on the rhythm, the sound of a Thai word
may be changed during singing.

The basis of this research involves sound classification techni-
ques. Several techniques have been proposed to solve the
problem of sound classification [17–25]. Most of these sound clas-
sification methods consist of two processing steps: feature extrac-
tion and classification. In the first step, feature exaction, the
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redundant information in the signal is transformed into descriptors
used as the input of a classifier for recognition in the second step.
Shenoy [26] used amplitude variation over time in each sub-band
and a threshold method on the energy functional the proportion
of frames classified as vocals–to predict the proportion of the
singing in the entire song. Nwe et al. [27] used harmonic attenuated
log frequency power coefficients (LFPCs) with hidden Markov
models (HMMs) based on three parameters, e.g., section type
(intro, verse, chorus, bridge and outro), tempo and volume. Tsai
et al. [28] used Mel-frequency cepstral coefficients (MFCCs) and
GMM models to differentiate vocal from non-vocal signals.
Berenzweig and Ellis [29] used the vector of posterior probability
as a feature and an HMM framework with two states, ‘singing’
and ‘not singing’. Chou and Gu [30] used 4 Hz modulation
energy, harmonic coefficients, 4 Hz harmonic coefficients, delta
MFCC and delta log energy as features and used a GMM model
to detect the singing voice. Berenzweig et al. [31] applied 13 per-
ceptual linear prediction coefficients (PLPCs) and MLP. Maddage
et al. [32] considered Linear Predictive Coding (LPC), LPC
derived cepstra (LPCC), MFCC, spectral power, the short time
energy function, and zero-crossing rate (ZCR) as features and a
multi-layer neural network consisting of an SVM and a GMM for
classification. The SVM was found to outperform the other classi-
fiers. Maddage et al. [33] later applied a TISFT (Twice Iterated
Composite Fourier Transform to each audio frame. Rocamora and
Herrera [34] used different paired sets of features such as MFCCs
with their deltas, LFPC with their deltas and double deltas,
PLPCs with their deltas, and HC and pitch and tested a variety of
classifiers such as an SVM, a back propagation NN, a decision
tree classifier, and two different K-Nearest Neighbour (KNN) algo-
rithms. Tzanetakis [35] used spectral shape features, MFCCs, mean
and deviation of pitch, centroid and LPCs for feature extraction and
a naÃ´rve Bayes network, nearest neighbour algorithms, a back-
propagation ANN (artificial neural network), a decision tree classi-
fier based on the C4.5 algorithm and SVM classifiers. Kim [36]
used a harmonic measure, defined as the ratio of the total signal
energy to the maximally harmonically attenuated signal and a
threshold method on the harmonic measure to classify segments.

Compared to other research areas in sound classification such as
speech, to the best of our knowledge, only a few frameworks have
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been proposed to investigate singing voice recognition with
background instrumental accompaniment. Most of the prior
investigations of singing voice recognition address recognising
phonemes first and then use a speech recogniser for lyrics recogni-
tion. Sasou et al. [10] tested an auto regressive HMM with pure
singing voice signals from the RWC database. These studies pre-
sumed that the sound involved only pure monophonic singing
voices without accompaniment; they did not consider the additional
difficulties for practicable use with musical audio signals such as
CD recordings. Suzuki et al. [37] combined both the melody and
the lyrics of a user’s singing voice to retrieve a song from a data-
base. They also used a large vocabulary SR system with an
HMM as the acoustic model adapted to the singing voice using
adaptive speaker technology.
Wong et al. [38] proposed a system for real-time alignment

of music sung in Cantonese, which is a particular tone language
in which the meaning of a word changes when it is pronounced
with a different pitch. An MLP was used to segregate vocal from
non-vocal segments, using the spectral flux, the HC, the ZCR, the
MFCCs, the amplitude level and the 4 Hz modulation energy as
input. The DTW algorithm was used to align the two sequences.
However, this method is not consistently effective because the dura-
tions of uttered phonemes depend on their locations in the music;
therefore, they differ even when the phonemes are the same. Kan
et al. [39] proposed what was probably the first English lyrics
sentence level alignment system for aligning lyrics to musical
signals for a specific song structure. Gruhne et al. [40] proposed
a system that performed automatic classification of 15 voiced
sung phonemes in polyphonic audio. Their procedure was based
on extracting harmonics and re-synthesising a number of partials
as a preprocessing step to reduce the influences from the accom-
panying musical sounds. Then, low-level features were extracted
from the audio and classified using classification techniques such
as SVM, GMM and MLP. Fujihara et al. [41] proposed automatic
synchronisation between lyrics and polyphonic music signals for
Japanese CD recordings. Their proposed system included detection
of vocal segments, segregation of vocals and adapting a speech
recogniser to the segregated vocal signals. During the first step,
the harmonics were extracted and re-synthesis was performed as
in Gruhne et al. [40]. A simple HMM was used to preserve only
the vocal regions while removing the non-vocal sections. Finally,
features extracted from the audio included MFCCs, delta MFCCs
and delta power. The Viterbi algorithm was used to align the
segmented vocal parts with the corresponding lyrics. Zwan et al.
[42] applied a neural network and rough sets to solve the
problem of an automatic singing voice recognition. However, this
approach is computationally complex because the method required
and combined many types of feature vectors for classification.
Mesaros and Virtanen [43] studied the use of n-gram language
models to recognise phonemes and words in monophonic and
polyphonic music. They considered uni-, bi- and tri-gram language
models for phonemes and bi- and tri-grams for words. During the
recognition process, an HMM-based phonetic recogniser was
adapted to the singing voice. However, their word recognition
system achieved a correct recognition rate of only 24%.
The difficulty in recognising lyrics lies with the types of

instruments and their power ratio (dB). Therefore, it is possible
that the background instrumental accompaniment has been regarded
as a noise source that degrades the performance of the recognition
system. During a singing period, the power ratio of a singing voice
may be stronger or weaker than the power ratio of the music instru-
ments. If the singing voice is stronger than the musical background,
the recognition is rather simple. In contrast, it becomes quite
complex when the power of the singing voice is weak in relation
to the background. Consequently, many methods based on features
extracted directly from the accompanied vocal segments have diffi-
culties achieving good performance when the accompaniment is
stronger or the singing voice is weaker. To solve these challenging
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background instrumental accompaniment problems, many studies
have used filtering processes or separation tasks to separate
the singing voice from the music accompaniment in monaural
recordings. The singing voice separation task analyses competing
entries to blindly separate the singers voice from music recordings.
Several techniques have been proposed that may be relevant to the
problem of recognising sung words with a complex musical back-
ground. Different researchers have developed several algorithms
for separating a voice from musical noise, as summarised below.
Many of the existing algorithms utilise the harmonic structure of
the singing voice to differentiate the singing pitch from the input
mixture for separation purposes. For example, Hu and Liu [44]
exploited CASA (Computational Auditory Scene Analysis) to seg-
regate singing voice units for each time frame. Raj [45] applied
PLCD (Probabilistic Latent Component Decomposition) to separate
singing voices from background music in popular songs.
Huang et al. [46] proposed RPCA (Robust Principal Component
Analysis) to separate singing voices from music accompaniment.

However, the most popular technique for separating singing
voices from background music is Non-negative matrix factorisation
(NMF) [47, 48]. NMF has often been used to separate a polyphonic
spectrogram into non-negative components and then cluster those
components into vocal components and accompaniment compo-
nents. Durrieu et al. [49] represented the leading voice using a
filter model, while an unconstrained NMF model was used to rep-
resent the background music. Imekli and Cemgil [50] presented a
Tensor 3 factorisation model for musical source separation. The
approach is an extension of NMF in which more than one matrix
or tensor object are factorised simultaneously. Their models
included spectral information using isolated note recordings or
incorporated harmonic information. Following Mohammadiha
et al. [51], Smaragdis and Leijon used a speech enhancement
method based on a Bayesian formulation of non-negative matrix
factorisation. They used an HMM in combination with Bayesian
non-negative matrix factorisation to derive the MMSE (minimum
mean square error) estimator with no information about noise.
Then, they learned the BNMF model online and used it to
develop an unsupervised speech enhancement system. Many
music pieces have repeated musical backgrounds over which
varying vocals are superimposed. Coincidentally, Yoo et al. [52]
and Kim et al. [53] applied NMPCF (non-negative matrix partial
co-factorisation) to separate drum sources from monaural mixtures
of polyphonic music containing various pitched instruments as well
as drums. Additionally, other techniques have been proposed for
separating polyphonic music such as HPSS (Harmonic-Percussive
Sound Separation) [54] and vocal F0 estimation [55, 56].

This paper focuses on singing voice recognition in polyphonic
recordings of popular music. Our hypothesis is that it is unnecessary
to filter the instrumental background from the singing voice to
recognise the sung words. Because background filtering processes
involve high computational costs, the computational complexity
in previous works was too high. Because the complexity of
musical backgrounds in terms of the relevant factors previously
mentioned is too high and uncontrollable, it would be better
to find an approach that did not involve eliminating the musical
background from the singing voice. Our objectives are concerned
with two essential issues. The first issue is the recognition speed.
By avoiding having to filter the musical background from the
singing voice, we expect the processing time to be greatly
reduced. The second issue emphasises the independence of the fol-
lowing factors: the durations of voice sounds, volume, pitch,
vibrato, formant, rhythm and rhyme. These two issues lead to the
problem of determining which representation domain is the most
suitable for any song so that the highest recognition accuracy of
the sung words can be obtained. In our algorithm, we transformed
the problem of recognising one-dimensional song signals into a
problem that involves recognising a colour image. Then, the fea-
tures of the image are extracted and classified. The details are
access article published by the IET under the Creative Commons
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discussed in the following sections. The rest of this paper is orga-
nised as follows. Section 2 formulates our studied problem and con-
straints. Section 3 discusses the concepts underlying our proposed
algorithm. Section 4 explains the data collection process. Section
5 explains the experimental setup. Section 6 evaluates the results,
and Section 7 concludes the paper.

2 Problem formulation and constraints

We considered the following situation. Given a song as a mixture
of musical background and singing voice recognise the lyrics.
There are two procedures involved in this situation. The first pro-
cedure concerns the problem of identifying the duration of each
sung word in each song, which can differ depending on the
singer and tempo. Then, there is the problem of how to make the dur-
ation of each sung word the same. The second problem is how to
recognise words in music sung over an instrumental background
music with instrumental interference. In polyphonic musical
recordings, the instrumental interference is treated as a noise source
that degrades the intelligibility of the singing voice signal. The sol-
utions to these two problems are independent from each other. In
this paper, we concentrate on both procedures. Hence, it is
assumed that the input to our algorithm is an audio signal that
already contains a sung word. The input is in the form of a set of
sampled audio signal values in a time series, i.e., {x (1),…, x(n)}.
Our study is constrained by the following factors and conditions.

2.1 Constraints

The problem considered in this paper is defined as follows. Given
a song consisting of human singing mixed with instrumental back-
ground, detect the points that include the human voice and recog-
nise the word sung at that point.

† Our system took a polyphonic music audio signal as the input
sampled from CD music recordings.
† The experiments include different musical genres such as rock,
hard rock, soft rock, dance, hip-hop, R&B, soul, folk and acoustic
from various artists.
† All the musical genres included either male or female singers.
† The lyrics could be sung in either Thai or English. However,
the number of Thai words is large; it is impossible to develop an
efficient algorithm to recognise all the possible words. Therefore,
only frequently occurring and common words, phases and
sentences in most of the sampled songs were considered. Table 2
summarises the frequently used Thai and English words, phrases
and sentences and their durations.

2.2 Problems discussed

The problems discussed in this paper are the following. Let
S= {x(1),…,x(n)} be a given series of sampled signals of a song.
Each x(i) may be a mixture of a singing voice with musical back-
ground or a singing voice alone.

† Recognise the sung word at point S without eliminating the
musical background.
† Find the essential features so that the recognition rate achieves
high accuracy.
† Determine whether the recognising algorithm is robust to the pre-
viously mentioned constraints.

3 Proposed concept

Recognising a sung word is more complex than recognising
a spoken word without any musical background. The strength
and clarity of a sung word are always detrimentally affected by
several factors such as singing style, the duration of the singing
voice and the instrumental background signal which has
This is an open access article published by the IET under the Creative
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uncontrollable volume, pitch, vibrato, formant and rhythmic varia-
tions. To effectively eliminate the musical background, the types of
musical instruments must be known in advance to properly filter the
corresponding musical signal frequencies from the signing word
signal. However, these frequencies are often unknown prior to the
filtering process. If the musical background cannot be completely
separated from the singing signal, then the recognition accuracy
percentage will obviously not be high. Furthermore, the unpredict-
ability of the singing duration can make the recognition process
complicated in terms of time complexity.

Our solution is based on the following observation and hypoth-
esis. The hypothesis is that for a sung word, there are various
ways to sing the word with different backgrounds. However, if
we plot the spectrograms of all different intervals of songs contain-
ing this word and use those as a feature, then the spectrograms
should form similar features. Fig. 1 shows some examples of the
spectrogram features of the same words. There are four words,
named A, B, C and D, and the spectrograms features are illustrated
in rows 1–4, respectively. These four words were sung by different
performers with different musical backgrounds and durations.
However, it is easy to observe that the spectrogram features of
any given sung word are similar to each other but different from
the spectrogram features of the other sung words. Note that each
spectrogram feature was derived from a mixture of a sung word
and a musical background. Therefore, it is unnecessary to filter
the background from the sung word prior to the recognition
process. The spectrogram feature can be considered as a colour
image. Using our approach, the problem of recognising sung
word with musical background is transformed into the problem of
recognising a spectrogram feature. Our recognition algorithm con-
sists of the following steps.

† Modify the time-scales of the input audio signals S to equalise
the length of different audio signals.
† Transform the input audio signals S into a spectrogram feature.
† Extract the features used to represent the spectrogram.
† Classify the features.

The results from our proposed technique will be compared with
an ASR algorithm. The details of each step are provided in the fol-
lowing section.

3.1 Spectrogram feature representation

In this paper, we applied the concept of recognising audio using a
spectrogram feature. A spectrogram feature is a visual representa-
tion of the distribution of acoustic energy across frequencies in a
time domain. The horizontal axis of a spectrogram feature typically
represents the time intervals of audio signal snapshots, while the
vertical axis represents the power spectrum of discrete frequency
steps. The strength of the power detected is represented as the inten-
sity at each time–frequency pixel.

First, the input audio signal x(n) of each sung word is sliced into a
number of small windows or frames whose size is equal to a power
of two. Each signal window is calculated by using the short-time
Fourier transform (STFT) defined as follows:

X (k) =
∑N−1

n=0

w(n)x(n) exp − 2pkn

N

( )

in which k = 0,1,…, N− 1, where k corresponds to the frequency
f (k) = kfs/N

( )
. Here fs is the sampling frequency in Hertz and w

(n) is Hamming time-window given by

w(n) = 0.54− 0.46 cos
pn

N

( )
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Fig. 1 Examples of four sung words represented in the form of spectrograms
A Word 1
B Word 2
C Word 3
D Word 4

Fig. 2 Process of computing the power spectrum of an input audio signal
and forming the spectrogram feature used in our algorithm
The power of each X(k), denoted by P(k), is computed by the fol-
lowing equation:

P(k) = 10 log10 (X (k))

Each P(k) and its time interval are plotted to form a spectrogram
feature of each sung word. Fig. 2 shows an example of creating a
spectrogram feature. This spectrogram feature is then used as the
features of the song and used in the classifying process. In this
paper, we used a neural network whose input must be in the form
of a vector as a classifier. A power spectrogram feature can be
viewed as a collection of columns of power spectrums. Therefore,
the spectrogram feature can be transformed into a vector by concat-
enating the power spectrum columns as shown in Fig. 3.

3.2 Audio Time Scale Modification (TSM)

The duration of each sung word in each song is different and
depends on both the singer and the tempo. The TSM refers to the
process of speeding up or slowing down a sound without changing
the pitch of any tonal components. We used three different TSM
algorithms to modify the time scales of the audio signals.
Variable Speed Replay or Re-sampling is simplest process to

change the duration of a digital audio clip is to re-sample it.
Re-sampling is a mathematical operation that effectively rebuilds
a continuous waveform from samples of an audio clip and then
samples that waveform again at a different rate. When the new
samples are played at the original sampling frequency, the audio
clip sounds slower or faster similar to changing the speed of an
audio tape.
Phase vocoder [57, 58] was developed mainly as a method for

compressing speech before transmission. The audio signals are
modelled by a set of parameters (e.g., the amplitude and frequencies
of the sinusoidal components of the short time segments of the
signal) that reproduce the original signal. A Phase Vocoder is a
channelised analysis and re-synthesising tool that, through several
techniques, measures and stores spectral signal data in different
J Eng, 2017, Vol. 2017, Iss. 12, pp. 634–645
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frequency bands and uses the values to modify and recreate the
signal in time domain. Most of the phase vocoder systems are var-
iations on the STFT method for analysis and re-synthesis of a
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Fig. 3 Forming the input vector of neural classifier by concatenating columns of power spectrums

Table 1 The music used in DATASET

Music genres Male singer Female singer Total

pop rock 1768 1545 3313
hard rock 978 667 1645
soft rock 2284 2100 4384
dance 1177 467 1644
hip-pop 304 160 464
soul 250 108 358
R&B 1135 652 1787
folk 297 162 459
acoustic 1288 982 2270
total 16,324
signal. A phase vocoder system based on an STFT technique can be
classified into the following main processes: (i) STFT analysis of an
input signal, (ii) Modification of parameters, and (iii) STFT synthe-
sis of the output signal. A phase vocoder can shrink or stretch a
signal in the time domain without an associated change in pitch.
This can be done at the re-synthesis phase by changing the hop
size as the new signal is rebuilt.

Waveform Similarity Overlap-and-Add (WSOLA) technique
[59, 60] operates in the time domain. The overlap-and-add
algorithm is obtained by simply cutting out smoothly windowed
chunks of the input audio signal, repositioning them to correspond-
ing time indexes in the output signal, overlapping the windows
to obtain continuity, and adding them. WSOLA is a variation
of the Fast-Fourier transform similarity in a time-scaled fashion.
The excised segments are similar to the adjacent segments. This
makes WSOLA a robust time-scaling algorithm that is able to
time scale events in the presence of noise or even competing
voices in the input audio signal.
4 Data collection

Our system takes a polyphonic music audio signal as its input. The
input signals were sampled from CD recordings of music and
included musical genres such as pop rock, hard rock, soft rock,
dance, hip-hop, Soul, R&B, folk and acoustic. The files were all
from different artists. We investigated the performance of a spectro-
gram feature constructed from audio features to solve the problem
of singing voice recognition and provide an empirical evaluation
on two datasets.

The dataset was a collection of songs randomly chosen from
English and Thai popular music CDs containing over 1500
albums. The details are listed in Table 1. The DB-THS dataset con-
sists of 31 Thai and English one-syllable sung words and greater
than or equal to two-syllable sung words and includes 19,200
total sound samples with 600 samples for each word. The 31 con-
sidered sung words are shown in Table 2. Each sung word audio
sample was selected and manually cut from the songs using the
Sony Sound Forge program. All the sample files in Table 1 were
coded in stereo at a frequency of 44.2 kHz with a bit rate of
128 kbps.
5 Experimental evaluation

This section discusses the methodology used in our proposed tech-
niques. It includes a description of the experiment setup, the method
used for comparisons, and the implementation details. All calcula-
tions were done using Matlab 2015a on a desktop computer with an
Intel Core i7-4750HQ processor and 16 GB of RAM.
This is an open access article published by the IET under the Creative
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5.1 Experimental setup

Our recognition algorithm performed the steps proposed in
Section 3. All audio signals were converted to mono and down-
sampled at a rate of 22,000 Hz. Each sung word in the dataset
was randomly divided into four groups of equal sizes. Then, three
randomly selected groups were used for training and the rest were
used for testing. Using a cross-validation procedure, the same
process was repeated 50 times with the different training and test
sets to ensure that all samples were included at least once in the
test set. The mean recognition rate was calculated based on the
average error for one run on each test set.
6 Results and discussion

In this paper, a three-layer feed-forward network was used for
classifying the sounds into the correct sung words as shown in
Table 2. A sigmoid transfer function was used in the hidden layer
and output layer. The network was trained using a scaled conjugate
gradient back-propagation function. The network consists of 31
outputs corresponding to the 31 classes in each dataset. The value
of each output is between [0; 1]. The number of hidden neurons
was adjusted to achieve the highest accuracy. Although selecting
a good learning rule can generate a good result, this paper does
not discuss the learning rules because they are not the focus of
this study.
6.1 Selecting the number of neurons in the hidden layer
of a neural network

Determining the number of neurons in the hidden layers is an
important aspect in constructing an overall neural network archi-
tecture. Though these layers do not directly interact with the
external environment, they greatly influence the final output. Both
Commons J Eng, 2017, Vol. 2017, Iss. 12, pp. 634–645
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Table 2 Dataset used in experiments

Class Singing word Time duration, s Pronounce (in Thai)

1 คน 0.65–2.95 ‘kon’
2 ความ 0.26–0.60 ‘kwarm’

3 เคย 0.33–0.62 ‘koey’
4 ใคร 0.33–0.70 ‘krai’
5 ใจ 0.44–1.38 ‘jai’
6 ฉัน 0.26–1.23 ‘chan’
7 ที่ 0.26–0.54 ‘tee’
8 เธอ 0.23–0.78 ‘ther’
9 มี 0.28–0.86 ‘mai’
10 รัก 0.18–1.48 ‘luck’
11 รู้ 0.28–0.47s ‘roo’
12 เรา 0.26–0.73 ‘raw’
13 i love you 0.65–2.95
14 love you 0.57–2.92
15 together 1.04–2.11
16 tomorrow 1.07–6.63
17 yesterday 1.81–5.39
18 without 0.76–4.90
19 today 0.81–5.90
20 the light 0.74–7.91
21 day go on 1.09–5.54
22 so far 0.77–6.39
23 so close 0.65–6.15
24 be long 0.46–4.21
25 ความรัก 0.52–3.65 ‘kwarm-luck’
26 คิดถึง 0.88–1.11 ‘kit-thun’
27 ใครสักคน 0.99–4.62 ‘krai-sak-kon’
28 ไม่เคย 0.41–1.99 ‘mai-koey’
29 ไม่มี 0.57–1.17 ‘mai-mee’
30 รักเธอ 0.47–1.93 ‘luck-ther’
31 หัวใจ 0.73–1.46 ‘hua-jai’

Fig. 4 Overall recognition accuracy using a feed-forward neural network
with varying number of Hidden Neural Unit
the number of hidden layers and the number of neurons in each of
these hidden layers must be carefully considered.
Using too few neurons in the hidden layers will result in

inadequately detecting the signals in a complicated dataset,
which is called underfitting. Underfitting refers to a model that
can neither model the training data nor generalise to new data.
An underfit machine learning model is not suitable and will be
obvious because it will have low performance on the training
data. In contrast, using too many neurons in the hidden layers
will result in detecting the signals too strongly in a complicated
dataset, which is called overfitting. Overfitting occurs when
the neural network has lots of information processing capacity
and the limited amount of information contained in the training
set is insufficient to train all the neurons in the hidden layers.
Therefore, the number of hidden neurons is a relevant factor that
affects the accuracy. However, theoretically estimating this
number is rather difficult. The criterion to select the parameter
value for the number of hidden neurons criterion was selected as
follows. Because each sample was captured from a different song
with different singers, the duration of each song is different. We
applied the Waveform Similarity Based Overlap-Add (WSOLA)
to perform TSM of the audio data for each sung word to equalise
the lengths of all samples. A duration of 1.0 s was used with a
window size of 4096 points with a 25% overlap. We examined
the results from a variety of hidden neural unit numbers, used the
same setup for each environment type. Three other features,
namely, MFCC, LPC and Matching Pursuit (MP) [61], were
tested against the spectrogram feature. The parameters of MFCC
were the following: the exponent for littering was 0.6, the
number of cepstra was 13, the number of warped spectral bands
was 40, and the highest band edge of the Mel filters was 4000 Hz.
The frequency warping scale used for filter spacing in MFCC

is the Mel scale. For MP, the signal was decomposed using a
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Gabor dictionary of 1200 atoms with dyadic scales ranging from
2 to 256 samples and translations in 0, 64, 128 and 192. For each
atom, 35 different exponentially distributed modulation frequencies
were considered. From the MP decomposition of the segment,
only the first five atoms were used. From these atoms, a four-
dimensional feature vector from the mean, standard deviations of
the modulation frequencies, and the scales of the five atoms were
formed. The classification results for the spectrogram, MP,
MFCC and LPC features using a feed-forward neural network
with 30 hidden neurons are shown in Fig. 4.

Fig. 4 shows the results from varying the number of hidden
neurons and using the same number for each sung word. As
the graphs in Fig. 4 show, the spectrogram feature achieved
93.9% accuracy, the highest accuracy among all tested features
(i.e., LPC, MFCC, MP and the spectrogram). The resulting recog-
nition rate became constant when using 25 hidden neurons unit
over a 25-unit performance at more than 93%. When the number
of hidden neurons was increased, the accuracy did not increase
much further, which may be due to the overfitting effect during
the training process. The highest recognition rate was obtained
using 30 hidden neural units, with an accuracy of 93.9%. Thus,
we chose to use 25 hidden neural units for the three-layer feed-
forward network in our experiments and used that setup to classify
all the sounds in all the experiments.

6.2 Experiments on different TSM algorithms

The durations of the sung words used in this paper were not equal.
Therefore, the size of the feature vectors was not equal either.
This study used TSM to solve this problem. TSM equalises the
duration of each sound before transforming each sound into a spec-
trographic image. Many TSM algorithms have been proposed
[59, 62, 63]. Here we applied three TSM methods, namely,
Variable Speed Replay, Phase Vocoder and WSOLA to equalise
the durations of each sound. Figs. 5A–C show different spectro-
graphic images of a sung word produced by these different TSM
algorithms (WSOLA, Phase Vocoder and Re-sampling, respective-
ly), from different durations. Eleven durations of equal size varying
from 0.4 to 1.4 s (e.g., 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
and 1.4 s) were considered. Notice that the different time scales and
intervals yield different informative details. Each input audio signal
for each sung word is sliced into several small windows or frames
using 4096 points with a 25% overlap. From the discussions in pre-
vious sections, the spectrogram feature provided the best perform-
ance. Hence, this feature was used along with a 30 hidden-neuron
feed-forward network to compare the performance of each TSM al-
gorithm. The results are shown in Fig. 6. From these results, it can
access article published by the IET under the Creative Commons
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Fig. 5 Examples of an audio signal spectrogram modified by different time-scale modification algorithms and different time intervals
A WSOLA
B Phase Vocoder
C Re-sampling

Fig. 6 Average recognition performance of different time-scale modification algorithms based on a spectrogram with a feed-forward neural network
be concluded that the WSOLA algorithm when combined with the
spectrogram feature provides the best performance among the tested
algorithms (Fig. 7).

6.3 Experiment on different sizes of windowed segment

A spectrogram can be obtained from different sizes windowed seg-
ments. The quantity of information of any sound wave represented
in spectrogram form depends on the size of window, as shown in
Fig. 8. However, predicting the most suitable window size is not
simple. To discover the suitable window size for applying to sung
words to achieve the maximum possible classification accuracy, the
following set of window sizes (64, 128, 256, 512, 1024, 2048,
4096, 8192) was tested with a neural network. Based on the spectro-
gram, using MFCC, LPC and MP with different window sizes, Fig. 9
shows the average neural classification accuracy. In these experi-
ments, the neural classifier was configured the same as discussed
in the previous section. The following window sizes were tested:
8192, 4096, 2048, 1024, 512, 256 and 128. Two adjacent
windows were overlapped by 25% of their width. Fig. 9 show the
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
recognition accuracy of different feature with different window
segment sizes (y-axis). All the experiments were used 25 hidden
neurons for the feed-forward neural network. The spectrogram fea-
tures provided the highest accuracy compared with MFCC, LPC
and MP in most of the experimental cases. For feed-forward net-
works, a large window size achieves higher accuracy than does a
small window size for all features (e.g., spectrogram, MFCC, LPC
and MP); however, when the window size is in a range from 512
to 8192, the variations in accuracy are rather narrow. At the
maximum window size of 8192, the accuracy of the feed-forward
neural network reached 99.97%. This is because a large window con-
tains more information than a small window and the sung word dur-
ation of the singing style limited singers and the types of songs.

6.4 Experiment on different sampling rates

Recording audio data at a high sampling rate infers that the audio
signal will have a higher quality than recording at a lower sampling
rate. This is rather obvious because the high sampling rate can
capture more details of the signal that may contain the most relevant
Commons J Eng, 2017, Vol. 2017, Iss. 12, pp. 634–645
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Fig. 7 Average recognition performance by a feed-forward neural network using the spectrogram, MFCC and LPC features created using the different time-
scale modification algorithms for the audio signals shown in Fig. 6

Fig. 8 Spectrogram examples obtained from different windowed segment sizes
a 64
b 128
c 256
d 512
e 1024
f 2048
g 4096
h 8192
features for recognition. Fig. 10 shows the spectrogram images
with a window size of 512 and with a 25% overlapping segment
for a sung word captured at various sampling rates. However,
J Eng, 2017, Vol. 2017, Iss. 12, pp. 634–645
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when a higher sampling rate is used, the sound file storage
requirements are unnecessarily increased. The problem here is
to find the appropriate sampling rate with respect to the specified
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Fig. 9 A comparison of recognition accuracy for different window sizes based on a 35-hidden-neuron feed-forward neural network using different features

Fig. 10 Examples of spectrogram images created using different sampling
rates
A 44,100 Hz
B 32,000 Hz
C 24,000 Hz
D 22,050 Hz
E 16,000 Hz
F 11,025 Hz
G 8000 Hz
H 7333 Hz
I 5500 Hz
accuracy. In this experiment, all audio files were coded in stereo at a
frequency of 44.2 kHz with a 128 kbps bit rate; then, they were con-
verted to mono and down-sampled to frequencies of 5500, 6000,
7333, 8000, 11,025, 16,000, 22,050, 32,000 and 44,100 Hz. The
same experimental settings used in the previous section were
deployed here.

Fig. 11 shows the accuracy resulting from different sampling
rates using the feed-forward neural network. The spectrogram
feature yields the highest accuracy except at frequencies between
22,050 and 44,100 Hz.
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
6.5 Comparison with other classification techniques

The following classification techniques are used for speech/voice
recognition or have, in the past, been used for this purpose:

† KNN
† Fishers Linear Classifier
† Linear Bayes Normal Classifier
† Naive Bayes Classifier
† Parzen Classifier
† Decision Tree

In this experiment, we used the data from Table 2. Based on our-
experimental setup, we used a window of 4096 pixels with a
25% overlap for all feature extractions. Then, we applied
WSOLA algorithms to resize the length of the spectrogram
feature to 1.0 s. We compared the overall recognition accuracy
using the spectrogram features and their combinations for the 32
classes of sung words in Table 2 with the seven classification tech-
nique shown in Fig. 12. The results of varying the classification
techniques in the graphs in Fig. 12, show that the spectrogram
feature achieved 93.9% accuracy, the highest among all the tested
classification techniques.
6.6 Comparison with the ASR algorithm

An interesting benchmark is shown in Fig. 13, we ran the same
experiments using the spectrogram features and compared our
approach with the ASR algorithm. With the ASR algorithm, we
used the HMM with the same data but with the LPC and
MFCC 13 coefficients. To compare our algorithm with the ASR
algorithm, each sung word in Table 2 was randomly divided into
four groups of equal sizes. Then, we arbitrarily selected three
groups for training and used the rest for testing. For the cross-
validation procedure, the same process was repeated 50 times
with different training and test sets, ensuring that all the samples
were included at least once in the test set. The mean recognition
rates were calculated based on the average error for one run on
each test set. For our algorithm, we used windows of 4096 to
create a spectrogram feature. A spectrogram feature was provided
to the feed-forward neural network. We used 25 hidden neurons
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Fig. 11 Average recognition accuracy from different sampling rates based on the spectrogram, MFCC and LPCC features with a feed-forward neural network

Fig. 12 Accuracy results from different classification techniques using the spec-
trogram feature on the DB-TH-ENG Dataset

Fig. 13 Overall recognition rate
for all the tests. To compare the experimental results with the ASR
algorithm, we used an HMM and the same data but with the LPC
and MFCC 13 coefficients.
The results presented Fig. 13 show the overall recognition

accuracy comparing the spectrogram features with the
feed-forward neural network to the ASR algorithm for the full
sound dataset. As shown, the spectrogram features achieved
the highest recognition rate 94.9%. This combination performs
better than the ASR algorithm for the full dataset. Therefore, it
seems likely that recognising sung words is quite different
from recognising spoken text and that the ASR regards the back-
ground instrumental accompaniment as noise, which degrades its
performance. From this section, it is clear that the spectrogram
feature in combination with a feed-forward neural network can
solve the singing voice recognition problem. Notably, the spectro-
gram feature recognises the cross-language music data listed in
Table 2 without using any method to separate the music from the
background.
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7 Conclusion

In this paper, we proposed an algorithm for singing voice
recognition from monaural polyphonic music based on spectrogram
images and a neural network classifier, an image resizing algorithm
and classification algorithms. However, a spectrogram is
also limited. The dimensions of spectrogram features are very
high and the time interval of each sung word is not equal.
Consequently, we applied image-resizing algorithms to solve
both problems. The results show that all the tested classifiers
can recognise a sung word even when it is superimposed over back-
ground music. The experiment showed that the feed-forward neural
network performed better than the ASR, achieving an accuracy rate
of 93.90%. Notably, the algorithm can recognise cross-language
music data.
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