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Abstract- Simultaneous localization and mapping (SLAM) is the main prerequisite for 

the autonomy of a mobile robot. In this paper, we present a novel method that enhances 

the consistency of the map using stabilized corner features. The proposed method 

integrates template matching based video stabilization and Harris corner detector. 

Extracting Harris corner features from stabilized video consistently increases the 

accuracy of the localization. Data coming from a video camera and odometry are fused 

in an Extended Kalman Filter (EKF) to determine the pose of the robot and build the 

map of the environment. Simulation results validate the performance improvement 

obtained by the proposed technique. 
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1. INTRODUCTION 

 

SLAM has been one of the key research areas for autonomous mobile robots. It 

is the process of building the map of an unknown environment and determining the 

location of the robot using this map concurrently. The inception of the SLAM problem 

occured at the 1986 IEEE Robotics and Automation Conference as reported in [1]. After 

this time, probabilistic methods were incorporated into the robotics research where they 

were primarily being used in the guidance, navigation and control of robots. SLAM has 

been an active research area after the influential work of Smith et al. [2] about 

stochastic mapping. Ayache and Faugeras introduced the combination of visual work 

and navigation using stereo pairs [3]. Experimental work of Moutarlier et al. [4] 

attracted the interest of the researchers to the SLAM problem. Lowe et al. used the 

Scale Invariant Feature Transform (SIFT) algorithm in vSLAM for a mobile robot [5]. 

Davison et al. developed an EKF based monocular vSLAM in [6]. 

In this paper, we propose a performance improvement technique that extracts 

stabilized Harris corner features using template matching based stabilized video 

sequences. When a non-holonomic wheeled mobile robot (WMR) navigates in an 

unknown environment, some undesired phenomena such as vibrations on the mobile 

robot and the speed bump constructions in the environment might occur. With the 

proposed technique, these problems are eliminated, and as a result stabilized feature 

extraction is achieved. Stabilized keypoint extraction ensures both consistency in map 

building and localization of the mobile robot. 

The rest of the paper is organized as follows: In section 2, the sensor fusion 

algorithm is introduced. In section 3, mathematical model of a non-holonomic mobile 

robot is described. EKF algorithm is summarized in section 4. Stabilized feature point 
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extraction is detailed in section 5. Simulation results are presented in section 6, and 

finally, the paper is concluded in section 7. 

 

2. SENSOR FUSION ARCHITECTURE 

 

The sensor fusion architecture developed in this work is shown in Figure 1 and 

composed of several modules. Data generated by both the camera and the odometry are 

used in feature extraction (FE) and dead reckoning (DR) blocks, respectively. The 

output of FE is the observation, and the output of DR is the robot state prediction. In 

measurement prediction block, predicted states obtained from the robot model are used 

and the sensor measurement model is utilized to predict the measurements. In matching 

module, measurement predictions are subtracted from observations to calculate the 

innovation and innovation covariance. The output of the matching block is transferred 

to EKF update block to estimate the non-holonomic WMR states and build the map. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sensor fusion architecture 

 

 

3. MATHEMATICAL MODEL OF THE MOBILE ROBOT 

 

The non-holonomic WMR shown in Figure 2 includes two driving wheels and a 

back caster that are non deforming. The robot moves on the horizontal plane and the 

contact of the wheels with the ground is assumed to satisfy rolling without any skidding 

or slipping. 

 

3.1. Kinematic Model 

In the kinematic modeling of the non-holonomic WMR, orientation must be 

considered since it affects the robot movement along 𝑥 and 𝑦 directions based on the 

kinematic constraints of the system. 
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Figure 2. Non-holonomic wheeled mobile robot 

 

The kinematic model of the NWMR is described by the following equations [7]: 

 

𝑥 = 𝑣𝑐𝑜𝑠 

                                                              𝑦 = 𝑣𝑠𝑖𝑛                                                          (1) 

 = 𝑤 
 

or, can be written in a more compact form as 

 

                                                             𝒙 = 𝑓(𝒙, 𝒖)                                                        (2) 

 

where 𝒙 =  𝑥, 𝑦,  𝑇  
is the pose (position and orientation) of the centre of mass of the 

mobile robot 𝐶, with respect to world coordinate frame 𝑂, 𝒖 =  𝑣, 𝑤 𝑇  
 is the control 

input vector, where 𝑣 is the linear velocity and 𝑤 is the angular velocity of the mobile 

robot, respectively. Using Euler’s forward difference approximation for the derivative, 

the discrete form of the mobile robot kinematic model can be written as: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑇𝑣𝑐𝑜𝑠𝑘  

                                                     𝑦𝑘+1 = 𝑦𝑘 + 𝑇𝑣𝑠𝑖𝑛𝑘                                                 (3) 

𝑘+1 = 𝑘 + 𝑤𝑇 
 

or, in a more compact form as  

                                                        𝒙𝒌+𝟏 = 𝑓 𝒙𝒌, 𝒖𝒌                                                     (4) 

 

                                        𝑓 𝒙𝒌, 𝒖𝒌 =  

𝑓𝑥
𝑓𝑦
𝑓

 =  

𝑥𝑘 + 𝑇𝑣𝑐𝑜𝑠𝑘

𝑦𝑘 + 𝑇𝑣𝑠𝑖𝑛𝑘

𝑘 + 𝑤𝑇
                                      (5) 

 

where 𝑘 is the discrete time index, 𝑇 is the sampling period and 𝑓(𝒙𝒌, 𝒖𝒌) is a nonlinear 

mapping [8]. In order to implement EKF, this nonlinear system must be linearized. In 

[9], it is shown that applying the Taylor series approximation to the right-hand side of 

Eq. 2 and ignoring the higher order terms yields the following linear state-space model 

of the mobile robot: 
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                                         𝒙 𝑘 + 1 = 𝐴 𝑘 𝒙 𝑘 + 𝐵 𝑘 𝒖(𝑘)                                      (6) 

 

The state 𝐴(𝑘) and input 𝐵(𝑘) matrices are defined as follows: 

  

                            𝐴 𝑘 =

 
 
 
 
 
𝜕𝑓𝑥

𝜕𝑥𝑘

𝜕𝑓𝑥

𝜕𝑦𝑘

𝜕𝑓𝑥

𝜕𝑘
𝜕𝑓𝑦

𝜕𝑥𝑘

𝜕𝑓𝑦

𝜕𝑦𝑘

𝜕𝑓𝑦

𝜕𝑘
𝜕𝑓

𝜕𝑥𝑘

𝜕𝑓

𝜕𝑦𝑘

𝜕𝑓

𝜕𝑘 
 
 
 
 

=  
1 0 −𝑇𝑣(𝑘)𝑠𝑖𝑛𝑘

0 1    𝑇𝑣(𝑘)𝑐𝑜𝑠𝑘

0 0   𝑇

                          (7) 

 

                                       𝐵 𝑘 =

 
 
 
 
 
𝜕𝑓𝑥

𝜕𝑢𝑘

𝜕𝑓𝑥

𝜕𝑤𝑘

𝜕𝑓𝑦

𝜕𝑢𝑘

𝜕𝑓𝑦

𝜕𝑤𝑘

𝜕𝑓

𝜕𝑢𝑘

𝜕𝑓

𝜕𝑤𝑘 
 
 
 
 

=  
𝑇𝑐𝑜𝑠𝑘 0
𝑇𝑠𝑖𝑛𝑘 0

0 𝑇

                                        (8) 

 

3.2. Camera Sensor Model 

Ideal pin hole camera model is used as a measurement model. Acquired 

measurements from the camera generate the measurement vector 𝒚, 

 

                                                    𝒚 = [𝑦1𝑘, 𝑦2𝑘, … , 𝑦𝑝𝑘 ]𝑇                                               (9) 

 

where 𝑝 is the number of the features observed at a particular time index 𝑘. At the same 

time, all the observed image features build up the map of the environment. At any time 

𝑘, for one observed image feature camera model implies: 

 

                                       
𝑚𝑖𝑥

𝑚𝑖𝑦
 =  

𝑂𝑥 + 𝑓𝑐
𝑠𝑖𝑥
𝐶

𝑠𝑖𝑧
𝐶

𝑂𝑦 + 𝑓𝑐
𝑠𝑖𝑦
𝐶

𝑠𝑖𝑧
𝐶

  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑝                        (10) 

 

where 𝑓𝑐  is the focal length of the camera, (𝑂𝑥 , 𝑂𝑦) is the principal point of the image 

plane in pixels, 𝑠𝐶 = [𝑠𝑖𝑥
𝐶 , 𝑠𝑖𝑦

𝐶 , 𝑠𝑖𝑧
𝐶 ]𝑇  is the 3D location of the extracted feature with 

respect to the camera frame. 3D location of the 𝑖𝑡ℎ  
feature with respect to the world 

coordinate frame is given as [10]: 

 

                                               𝑞𝑖 =  𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 
𝑇 = 𝑟 + 𝑅𝐶

𝑊𝑠𝑖
𝐶                                         (11) 

                                       

where 𝑞𝑖  is the 3D location of the image feature in world frame, 𝑅𝐶
𝑊  is the rotation 

matrix that defines the orientation of the camera frame with respect to the world frame, 

𝑟 is the 3D translation vector from world frame to camera frame. A rotation matrix can 

be parameterized by three independent variables such as Euler angles. Due to the planar 

robot motion assumption, the orientation matrix will be just in terms of the yaw angle 

[13]: 
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                                                𝑅𝐶
𝑊 =  

𝑐𝑜𝑠 −𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0

0 0 1
                                             (12) 

In Eq. 12,   (heading angle) is taken from the estimated states of the EKF that will be 

summarized in the next section. By rearranging Eq. 11, one can calculate the 𝑠𝑖
𝐶  as: 

                                                       𝑠𝑖
𝐶 = 𝑅𝑊

𝐶 (𝑞𝑖 − 𝑟)                                                   (13) 

where 𝑅𝑊
𝐶  is simply the transpose of the rotation matrix 𝑅𝐶

𝑊 . Plugging Eq. 13 into the 

measurement model yields the extracted feature location in image plane: 

                                     
𝑚𝑖𝑥

𝑚𝑖𝑦
 =  

𝑂𝑥 + 𝑓𝑐
𝑐𝑜𝑠 𝑋𝑖−𝑟𝑥  +𝑠𝑖𝑛(𝑌𝑖−𝑟𝑦 )

𝑍𝑖−𝑟𝑧

𝑂𝑦 + 𝑓𝑐
−𝑠𝑖𝑛 𝑋𝑖−𝑟𝑥  +𝑐𝑜𝑠(𝑌𝑖−𝑟𝑦 )

𝑍𝑖−𝑟𝑧

                                 (14) 

The measurement Jacobian 𝐻𝑘   is calculated by taking the derivative of the right hand 

side of the Eq. 14 with respect to the states of the mobile robot 𝒙𝒌. Thus,  

𝐻𝑘 =  

𝜕𝑚 𝑖𝑥

𝜕𝑟𝑥

𝜕𝑚 𝑖𝑥

𝜕𝑟𝑦

𝜕𝑚 𝑖𝑥

𝜕

𝜕𝑚 𝑖𝑥

𝜕𝑋𝑖

𝜕𝑚 𝑖𝑥

𝜕𝑌𝑖

𝜕𝑚 𝑖𝑦

𝜕𝑟𝑥

𝜕𝑚 𝑖𝑦

𝜕𝑟𝑦

𝜕𝑚 𝑖𝑦

𝜕

𝜕𝑚 𝑖𝑦

𝜕𝑋𝑖

𝜕𝑚 𝑖𝑦

𝜕𝑌𝑖

            

     𝐻𝑘 =  
𝑓𝑐

𝑍𝑖−𝑟𝑧
  

−𝑐𝑜𝑠 −𝑠𝑖𝑛 −𝑠𝑖𝑛 𝑋𝑖 − 𝑟𝑥 + 𝑐𝑜𝑠(𝑌𝑖 − 𝑟𝑦) 𝑐𝑜𝑠 𝑠𝑖𝑛

𝑠𝑖𝑛 −𝑐𝑜𝑠 −𝑐𝑜𝑠 𝑋𝑖 − 𝑟𝑥 − 𝑠𝑖𝑛(𝑌𝑖 − 𝑟𝑦) −𝑠𝑖𝑛 𝑐𝑜𝑠
     (15) 

Observation and measurement prediction data are fused in EKF to calculate the 

innovation and innovation covariance. 

 

4. EXTENDED KALMAN FILTER (EKF) 

 

The mobile robot navigates in an unknown environment, without any a priori 

knowledge about the map, takes measurements to extract feature points and 

consequently localizes itself. External (camera) and internal (odometry) sensory data 

will be fused in EKF. The robot pose (𝒙) and the locations of the extracted feature 

points (𝑿𝑭) with respect to the world frame can be stacked in a new state vector as: 

𝑿 =  
𝒙
𝑿𝑭

  

where 𝒙 =  [𝑥, 𝑦, ]𝑇 defines position and orientation of the robot, and is governed by 

the following nonlinear model:  

 

𝒙𝒌+𝟏 = 𝑓 𝒙𝒌, 𝒖𝒌+𝟏, 𝑤𝑘  

                                                      𝒚𝒌+𝟏 = ℎ(𝑿𝒌+𝟏, 𝑣𝑘)                                                (16) 

where 𝑤𝑘  and 𝑣𝑘   are the process and the measurement noise, which are modeled as 

zero-mean, independent Gaussian distributions with covariance matrices 𝑄𝑘  and 𝑅𝑘 , 

respectively. 

 



 

 

366                                                C. Şahin and  M. Ünel 

 
 

The second element of 𝑿 is defined as 

                                           𝑿𝑭 =  
𝑋𝑓𝑖

𝑌𝑓𝑖
      for 𝑖 =  1,2, … , 𝑛                            (17) 

 

where 𝑿𝑭 = [𝑋𝑓𝑖 , 𝑌𝑓𝑖 ]𝑇  are the locations of the extracted features with respect to the 

world frame and added to the map at time 𝑘 . Since the positions of the extracted 

features are not changed, they remain at the same locations during the navigation; i.e. 

                                                 𝑿𝑭,𝒌+𝟏 =  
𝑋𝑓𝑖

𝑌𝑓𝑖
 
𝑘+1

= 𝑿𝑭,𝒌                                           (18) 

Linearization of Eqs. 16 and 18 with respect to 𝑿 imply new Jacobians for the process 

model [7]: 

𝐴 =  
𝐴 𝑂1

𝑂1
 𝑇 𝐼

 ,    𝐵 =  
𝐵
𝑂2

  

                                𝐻 =  

𝜕𝑚 𝑖𝑥

𝜕 𝑟𝑥 ,𝑟𝑦 ,,{𝑋𝑓𝑖 ,𝑌𝑓𝑖 }𝑖=1,…𝑛  

𝜕𝑚 𝑖𝑦

𝜕 𝑟𝑥 ,𝑟𝑦 ,,{𝑋𝑓𝑖 ,𝑌𝑓𝑖 }𝑖=1,…𝑛  

                                           (19) 

 

where 𝐴 Є 𝑅3𝑥3 , 𝑂1 Є 𝑅3𝑥2𝑛  (zero matrix), 𝐼 Є 𝑅2𝑛𝑥2𝑛  (identity matrix), 𝐵 ∈ 𝑅3𝑥2 and 

𝑂2 Є 𝑅2𝑛𝑥2 (zero matrix)  with 𝑛 being the number of features extracted at time 𝑘. With 

this framework, the following algorithm summarizes the recursions involved in 

computing the EKF [11]: 

 

                                                    𝑿𝒌+𝟏⎸𝒌 = 𝑓(𝑿𝒌, 𝒖𝒌+𝟏)                                              (20) 

                                             𝑃𝑘+1⎸𝑘 = 𝐴 
𝑘+1,𝑘𝑃𝑘𝐴 

𝑘+1,𝑘
𝑇 + 𝑄 𝑘                                        (21) 

                               𝐾𝑘+1 = 𝑃𝑘+1⎸𝑘𝐻 𝑘+1
𝑇 [𝐻 𝑘+1𝑃𝑘+1⎸𝑘𝐻 𝑘+1

𝑇 + 𝑅𝑘]−1                           (22)                                          

                                      𝑿𝒌+𝟏 = 𝑿𝒌+𝟏⎸𝒌 + 𝐾𝑘+1(𝒚𝒌+𝟏 − ℎ(𝑿𝒌+𝟏⎸𝒌))                              (23) 

                                             𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻 𝑘+1)𝑃𝑘+1⎸𝑘                                        (24) 

 

where 𝑄 𝑘  is the covariance matrix of the combined state 𝑿. To initialize the filter, 𝑿𝟎 

and 𝑃0 are set to some arbitrary random values.  

 

 

5. STABILIZED FEATURE POINT EXTRACTION 

 

Extracting feature points accurately increases the performance of vSLAM 

algorithm since they are used in EKF measurement update. It provides improvement in 

both map building and localization of the mobile robot. In this section, stabilization of 

video sequences and Harris corner detection algorithm are detailed. 

Video stabilization is one of the most crucial video processes that reduces the 

blurring level of image sequences and unwanted camera motions. Extracting point 
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features from stabilized video frames improves the consistency of the static landmarks 

and provides robust matching between corresponding points. Proposed video 

stabilization method in this work is based on a template matching that uses the sum of 

absolute differences (SAD) algorithm: 

                                          𝑆𝐴𝐷 =   𝐼1 𝑖, 𝑗 − 𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗) 

(𝑖,𝑗 )Є𝑊

                                  (25) 

where 𝐼1  and 𝐼2  are two consecutive image frames. 𝐼1(𝑖, 𝑗) and 𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗) defines 

the pixel intensity values. In 𝐼1, a window 𝑊, e.g. size of (15 x 15), is generated around 

an interest point. Meanwhile, each pixel in the second video frame is scanned by 

shifting this window along horizontal (𝑥) and vertical (𝑦) directions. Note that the 

intensity values in the second window is subtracted from those values in the first 

window. The absolute values of all these pixel intensities in 𝑊 are summed. If there is a 

correct match, the SAD function gives a near 0 value.  Thus, a similar window is 

created in the second video frame [14]. Scan process can be applied both over the entire 

image or just using a region of interest. In each subsequent video frame, SAD algorithm 

determines the camera motion relative to the previous frame. It uses this information to 

remove unwanted translational camera motions and generate a stabilized video. 

Feature extraction from consecutive images is one of the essential steps of vision 

based simultaneously localization and mapping applications. In this work, extracted 

image features are corners that are obtained via Harris corner detector. Due to space 

limitations, details about Harris corners are omitted here, and the interested reader may 

refer to [12]. 

              

6. SIMULATION RESULTS 

 

In this section, the performance of the proposed technique is verified with 

simulation results. Ramp and circular inputs are used to generate the odometry data. 

Odometry and camera outputs are fused in EKF to estimate states of the mobile robot. 

Extended Kalman filter both estimates the mobile robot states and generates the map of 

the unknown environment. Inputs for the system are summarized in Table 1. 

 

Table 1. System inputs 

Type of Input Input 
Ramp trajectory 

 

 

𝑣𝑟 =  0.3 [m/s] 

𝑤𝑟 =  0 [rad/s] 

𝑟 =  𝑣𝑟  [rad] 

𝑥𝑟 =  𝑣𝑟𝑡 [m] 

𝑦𝑟 =  0.09𝑡 + 0.7 [m] 
Circular trajectory 

 

 

 

 

 

𝑣𝑟  =  0.3 [m/s] 

𝑤𝑟 =  0.6 [rad/s] 

𝑟  =  𝑤𝑟𝑡 [rad] 

𝑥𝑟  = 𝑥0 + 5 𝑠𝑖𝑛 𝑟  [m] 

𝑦𝑟  =  𝑦0 − 5 𝑐𝑜𝑠 𝑟  [m] 

𝑥0  =  2 (𝑐𝑒𝑛𝑡𝑒𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒) [m] 
𝑦0  =  2 (𝑐𝑒𝑛𝑡𝑒𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒) [m] 
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In this table 𝑥𝑟 , 𝑦𝑟 , 𝑟  indicate the reference pose of the mobile robot and 𝑣𝑟 , 𝑤𝑟  

denote reference linear and angular velocities of the mobile robot, respectively. 

Simulation results for the ramp trajectory is depicted for 120 seconds, and 1/50 is 

chosen for sampling time both for EKF and the camera. In Figure 3 (a), (b) and (c) robot 

pose estimation is shown. According to the leftmost and center graphs, x and y positions 

of the mobile robot increase as time increases. Given the control input that is shown in 

Table 1 for ramp input, 𝑥 position coordinate of the mobile robot increases more rapidly 

than the 𝑦 coordinate position. Initial robot pose as well as the initial camera frame are 

used as the reference coordinate system and all estimates are represented with respect to 

this frame. On the rightmost graph in Figure 3, , heading angle estimation is shown. 

When mobile robot starts to navigate in the environment, it has a rotation at the 

beginning of the movement for trajectory tracking that is related to the ramp control 

input. As shown in Figure 3, the errors between reference and estimated pose states are 

less than 1%. 

 

 

(a) 

 

(b) 
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(c) 

Figure 3. x, y and  state (pose) estimations by EKF for ramp input 

 

In Figure 4 (a), (b) and (c) pose estimation of the NWMR is shown for the 

circular trajectory. The simulation for circular trajectory is performed for 30 seconds 

and 1/50 sampling time is chosen again for both EKF and the camera as in the ramp 

input. In the first and second graphs of the figure, 𝑥  and 𝑦  position estimates are 

depicted. Given constant linear and angular velocity inputs, 0.3 [m/s] and 0.6 [rad/s] 

respectively, mobile robot navigates in circular trajectory in the environment. In the 

leftmost graph, at 800 and 1300 time samples, there occurs some differences between 

reference and estimated states. The reason why these differences occur is the rapid 

increase in heading angle and hence decrease in the overlap area in consecutive image 

frames. Reduction in the overlapped area between consecutive frames gives rise 

decrease in stable feature point extraction and consequently higher noise in map 

building.  

In our vSLAM algorithm the accuracy of the mobile robot localization is highly 

dependent on the map building. Errors in these regions are approximately 8% . 

However, between 800 and 1300 time samples, the reference and the estimated states 

are very close to each other, i.e. the error rate is below 1%. This promising result is 

obtained thanks to the stabilized extracted feature points and validates the performance 

of our proposed algorithm. On the rightmost graph in Figure 4, it is seen that heading 

angle increases continuously with time. 
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(a) 

 
(b) 

 
(c) 

Figure 4. x, y and  state (pose) estimations by EKF for circular input 

 

The most prominent result of the proposed technique is the accuracy 

improvement of visual simultaneous localization and map building algorithm using 

stabilized feature point extraction. Subsequent video frames are stabilized and Harris 

corner features are extracted from stabilized video sequences. In Figure 5 (a) and (b), 
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landmark positions for ramp and circular inputs are shown. While mobile robot is 

travelling in the unknown environment with given control inputs, naturally located 

planar landmarks are extracted and used for measurement update in EKF. In vSLAM 

algorithms, generating consistent map is one of the most crucial processes to obtain 

accurate navigation results. Acquiring these naturally located features in a consistent 

way by neglecting unwanted camera motion and jitter, our technique builds a consistent 

map and improves the localization correctness as shown  in Figures 3 and 4. 

 

 
(a) 

 
(b) 

Figure 5. Landmark positions: (a) ramp trajectory, (b) circular trajectory 

 

7. CONCLUSION 

 

In this paper, we proposed a performance improvement technique for vSLAM 

problem of mobile robots. We incorporated video stabilization into vSLAM for feature 

extraction, correspondingly map building and localization. In vSLAM, the performance 

of the algorithm depends on both the accuracy of the map and localization of the robot. 

In this work, it is shown that consistent feature extraction technique both improves the 

accuracy of map building and localization of the mobile robot by neglecting unwanted 

sensor motion and the noises that are caused by the external factors. Simulation results 
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verified that EKF state estimation performance is improved thanks to the utilization of 

stabilized landmarks in measurement update.  

As a future work, we plan to suggest a new approach to vSLAM problem that 

will use vision only and eliminate some of the assumptions made in this work such as 

2D visual features and planar motion. Instead of using odometry data in EKF, we will 

estimate robot ego-motion utilizing extracted 3D visual features. 
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