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SUMMARY

This study aims at investigating the impact and feasibility of charging taxis with toll fee in the pricing zone
when designing congestion pricing scheme. A bi-level programming model is developed to compare the
maximum social welfares before and after the congestion charge is imposed on taxis. The lower level is a
combined network equilibrium model formulated as a variational inequality program, which considers the
logit-based mode split, route choice, elastic demand, and vacant taxi distributions. The upper level is to
maximize the social welfare when toll rates vary. The bi-level problem can be solved by the genetic
algorithm, whereas the lower level is solved by the block Gauss–Seidel decomposition approach together
with the method of successive averages and diagonalization algorithm. An application with numerical
examples is conducted to demonstrate the effectiveness of the proposed model and algorithm and to reveal
some interesting findings. Copyright © 2014 John Wiley & Sons, Ltd.

KEY WORDS: taxis; road pricing; social optimum; bi-level programming

1. INTRODUCTION

Since Pigou first proposed the concept of congestion pricing in 1920 [1], abundant studies have been
focused on different aspects of this subject, such as optimal toll rate, minimum toll revenue, equity
effects, selection of charging locations, and public acceptance [2–8].
However, little attention in the literature has been paid to modeling the effects of charging taxi on

social welfare within the context of the competition of multiple modes. It is a non-negligible issue
when designing the road pricing policies, because taxis have accounted for higher and higher percent-
age of the overall traffic demand in urban area over years. And taxi always operates on the street
searching for the next customer even when it is vacant; thus, its impact on the traffic congestion is
consistent. Especially for metropolitan area such as Hong Kong, taxis contribute as high as 50–60%
of the traffic [9, 10]. In recent years, taxis in Hong Kong have served more than one million passengers
each day [11, 12]. In London, there are about 55,998 taxis cruising in the road network, which is
equivalent to eight taxis per thousand inhabitants on average [13]. Because of the high demand of taxi
in the urban area, whether charging taxis or not in road pricing zone could significantly change the
composition of the traffic as well as the traffic flow distribution in a network, so that leads to different
system performances.
Many studies have been focused on the taxi services and market regulations. Yang and Wong [14]

made an initial attempt to model taxi services in a road network with a given customer OD demand
pattern. This model simultaneously described occupied and vacant taxi movements in a steady state
of equilibrium considering the effects of taxi fleet size. As an extension to the work of Yang and Wong
[14], Wong et al. [15] incorporated congestion effects and demand elasticity into the model and
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reformulated the problem as a bi-level programming formulation. Wong et al. [16] further extended the
work of Yang and Wong [14] and Wong et al. [15] to the case of multi-user, multiple taxi modes
(normal, luxury, and restricted area taxis), and customer hierarchical logit-based modal choice for a
given OD demand pattern. The distance-based and congestion-based taxi fare charging mechanisms
are also introduced in addition to the existing taxi services.
Yang et al. [17] analyzed the nature of demand–supply equilibrium for taxi services in a regulated

market including competitive and monopoly market. Yang et al. [10] then extended this model by taking
account of congestion externalities due to both taxi and normal vehicle movements. Yang and Yang [12]
proposed a bilateral searching and meeting function to describe the equilibrium properties of taxi market.
However, few of previous studies have concentrated on the effect of congestion charge on taxi. King

and Peters [18] examined the impact of road pricing on the route choice and travel time of taxi trips
between lower Manhattan and LaGuardia airport in Queens in the USA. It is concluded that, for
passengers, usage of toll road for taxi represents a cost greater than the benefit, unless one has extremely
high value of time (VOT) (about $170 per hour). It is worth noting that the work of King and Peters [18]
considered the impacts of charging taxis on occupied taxis only. The impacts of the toll scheme on other
modes in the system and the overall performance of the system were not investigated.
The equilibrium of multi-modal network has also been widely explored over the past 30 years [19–22].

The asymmetric interactions among different modes are usually taken into considerations, and the logit-
based model is commonly adopted to describe the mode choice behavior. Considering the performance of
the whole system with multiple traffic modes, there will be two effects when toll is imposed on taxis. The
first effect is positive: Because an optimized toll scheme can effectively internalized the external cost of
taxis, so that reduces the congestion cost caused by the selfish-routing behavior of taxis. The second effect
is negative: Because increasing the cost of taking taxi will encourage the use of private car, a less efficient
mode with higher operating cost compared with taxi or public transit. Therefore, the overall effect of
charging taxi on the social welfare is not yet clear.
This paper compares the maximum social welfares obtained before and after toll is imposed on

taxi by considering multi-modal and variable demands. A bi-level model is introduced where the
lower level is a combined network equilibrium model (CNEM) that involves logit-based mode split,
route choice, elastic demand, and vacant taxi distributions and the upper level aims at social welfare
maximization. Because the interactions of network flows are asymmetric, the lower level is formu-
lated as an equivalent variational inequality (VI) program. The numerical example indicates that
given a certain level of bus service, whether to charge taxis mainly relies on the ratio of operating
cost of private car to that of taxi. The threshold of the ratio is 9 (which can hardly be reached in
the real world) in the numerical example based on realistic data settings. So far, as the ratio is lower
than the threshold value, charging taxis always outweighs exempting them from the toll in terms of
the maximum social welfare. And when the ratio is lower than the threshold, the ratio between the
maximum social welfares of charging and not charging the taxi decreases with the taxi fare levels
but does not affect much by the taxi fleet size, while the conclusion that charging taxis gains higher
maximum social welfare still holds.
In the next section, the CNEM is developed. Section 3 constructs a VI formulation for the CNEM.

Section 4 presents the upper-level social welfare maximization problem. Section 5 introduces the
block Gauss–Seidel decomposition method together with the method of successive averages and diagonal-
ization algorithm to solve the CNEM, while the bi-level programming model is solved by the genetic
algorithm (GA). In Section 6, a numerical example is provided to illustrate the effectiveness of the
methodology proposed, and some interesting findings are highlighted. Conclusions and future expansions
are given in Section 7.

2. THE COMBINED NETWORK EQUILIBRIUM MODEL

2.1. Preliminaries

Consider a road network G(V,A) where V is the set of nodes and A is the set of links. A is the set of toll
links, A⊆A. Let R and S be the sets of origin and destination nodes. In the following, the superscripts
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“p,” “b,” “o,” and “v” indicate private car, bus, occupied taxi, and vacant taxi, respectively. The traffic
flow is composed by all of them in the road network. Additionally, m ∈M = (p,b,o) represents the
combination of private car, occupied taxi, and bus mode.
Let qrs be the total demand between OD pair r ∈R and s ∈ S. We then have

qrs ¼ qprs þ qbrs þ qors; r ∈ R; s ∈ S (1)

where qprs, q
b
rs, and qors are the traffic demands of private car, bus, and occupied taxi from origin r∈R to

destination s∈ S, respectively. Furthermore, for the taxi mode, we have the following trip end equations

Oo
r ¼ ∑

s∈S
qors; r ∈ R (2)

Do
s ¼ ∑

r∈R
qors; s ∈ S (3)

where Oo
r and Do

s are the demands for taxi mode from origin zone r∈R and to destination zone s∈ S,
respectively.

2.2. Generalized costs

2.2.1. Generalized costs of the private car and taxi mode
Let cpa, c

o
a, and c

v
a be the generalized costs on link a∈A for private car, occupied taxi, and vacant taxi, re-

spectively. And all of them are assumed to be a linear function of link length da, link travel time ta, and toll
ya (if toll is charged). Let b

p and bv be the operating costs per unit distance for private car and taxi.Without
loss of generality, we assume bp> bv. Additionally,bo0,b

o
1, andb

o
2 represent the preliminary flag-fall charge

per ride and the mileage-based and delay-based1 taxi fares that are charged to customers who take taxi.
Then, we have the following cost structures if taxis are tolled in the road pricing zone [10,16].

cpa ¼ λta xað Þ þ bpda þ ya; a ∈ A (4)

coa ¼ λta xað Þ þ bo1da þ bo2 ta xað Þ � t0a
� �þ ya; a ∈ A (5)

cva ¼ λvta xað Þ þ bvda þ ya; a ∈ A (6)

where λ is the VOT for users taking private car or taxi while λv is for taxi drivers. ta(xa) is the travel time and
is supposed to be an increasing function of total flow xa on link a∈A. t0a is the free flow travel time. Note that
if taxis are exempt from the congestion charge, there are no tolls for them but private cars still have to pay.
The total generalized costs for private car and taxi on route k ∈Krs between origin r ∈R and

destination s ∈ S are presented as follows:

Cp
rs;k ¼ ∑

a∈A
cpaδ

rs
a;k; r ∈ R; s ∈ S; k ∈ Krs (7)

Co
rs;k ¼ ∑

a∈A
coaδ

rs
a;k þ bo0 þ λowWo

r ; r ∈ R; s ∈ S; k ∈ Krs (8)

1Delay-based taxi fare is an additional fee that customers have to pay when taxis are subject to congestion.
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Cv
sr;k ¼ ∑

a∈A
cvaδ

sr
a;k; r ∈ R; s ∈ S; k ∈Ksr (9)

whereWo
r is an endogenous variable that denotes the customer waiting time for taxi at zone r. λow is the

value of customer waiting time. Note that in practice, the taxi cost is not strictly linearly proportional to
the travel distance because of the fixed flag-fall charge for the first two or three kilometers. Yet as the
travel distance increases, the linear approximation becomes more accurate. Thus, for simplicity, we
directly used the linear assumption as made by Yang et al. [10] and Wong et al. [16].
According to Wong et al. [15], we can specify the expected customer waiting time as a function of

the cruising vacant taxi hours and the area of the zone.

Wo
r ¼ η

Zr

Nv
rw

v
r

; r ∈ R (10)

where Zr is the area of zone r ∈R and η is a model parameter that is common to all zones. wv
r is the

waiting/searching time of vacant taxi in zone r. Nv
r is the number of vacant taxis meeting customers

in zone r per hour. It is noteworthy that at equilibrium, we have Nv
r ¼ Oo

r . Thus, Equation (10) can
be represented as follows:

Wo
r ¼ η

Zr

Oo
rw

v
r

; r ∈ R (11)

2.2.2. Generalized cost of the bus mode
It is generally known that dedicated bus lanes are now common in many metropolises. And this kind of
lanes can only be used by busses and thus can facilitate faster movement of busses. In this paper, we
suppose that dedicated bus lanes are available in the network, and hence, there is no interaction
between bus and private car or taxi.
Also, for each OD pair, it is assumed that there is one bus line [23]. Therefore, the generalized costs of

bus passengers between origin r ∈R and destination s ∈ S (denoted as Cb
rs) can be described as follows:

Cb
rs ¼ λbTrs þ ζGrs qbrs

� �þ λbwWb
rs þ τ; r ∈ R; s ∈ S (12)

where Trs is the bus travel time. With the assumptions described earlier as well as the given bus schedule
and frequency, Trs is constant here. λb is the VOT for bus passengers. Grs qbrs

� �
is the crowding discom-

fort experienced by bus passengers, which is an increasing function of the number of travelers choosing
the bus. ζ is the unit cost of discomfort.Wb

rs is the waiting time of bus passengers, and we specify it as
Wb

rs ¼ α
Frs
, where Frs is the bus frequency. Generally, the value of α is set to 0.5 when the passenger ar-

rival is assumed to be a uniform random distribution and the bus headway is constant. λbw is the waiting
time value of bus passenger. τ is the bus fare.
Furthermore, the total flow on each link a ∈A can be obtained through the following equation:

xa ¼ ∑
r∈R;s∈S

∑
k∈Krs

f prs;k þ f ors;k

� �
δrsak þ ∑

s∈S;r∈R
∑

k∈Ksr

f vsr;kδ
sr
ak; a ∈ A (13)

where f prs;k and f ors;k are the flow on route k ∈Krs for private car and occupied taxi, respectively. f vsr;k is
vacant taxi flow on route k ∈Ksr, where Krs and Ksr are the sets of paths between zone r ∈R and zone
s ∈ S. δrsak and δ

sr
ak are link-route indicator variables which are 1 if route k between OD pair r ∈R and s ∈ S

uses link a, and 0 otherwise.
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2.3. Taxi service time constraint

We assume that there are N cruising taxis that operate in the network, and in one unit period (1 h)
operations of taxis, the total taxi service time consists of occupied time (denoted as TO) and empty
time (denoted as TV). In a stationary state, the total taxi occupied time is equal to the taxi hours that
complete all the customer demands qors and thus is given by

TO ¼ ∑
r∈R

∑
s∈S

qorshrs; r ∈ R; s ∈ S (14)

where hrs is the average travel time from origin r ∈R to destination s ∈ S, and can be represented as

hrs ¼
∑

k∈Krs

f ors;k∑
a∈A

taδrsa;k

� �
∑

k∈Krs

f ors;k
[16]. The total empty time of taxis is composed of moving times from zone

s ∈ S to zone r ∈R and waiting/searching times in the zones. Thus, it can be computed by

TV ¼ ∑
s∈S

∑
r∈R

qvsr hsr þ wv
r

� �
; r ∈ R; s ∈ S (15)

where qvsr is the number of vacant taxis traveling from zone s ∈ S to zone r ∈R to search for customers.
Therefore, the following constraint should be satisfied within 1-h period [14].

∑
r∈R

∑
s∈S

qorshrs þ ∑
s∈S

∑
r∈R

qvsr hsr þ wv
r

� � ¼ N (16)

where N is the taxi fleet size.

2.4. Traffic assignment

It is assumed that the route choices of all travelers including private car, bus passenger (although for
each OD pair there is one bus line), occupied taxi, and vacant taxi follow user equilibrium. And we
further suppose that the routes of occupied taxi are determined by the customers taking the taxi.
At equilibrium, the following conditions have to be satisfied.

Cm
rs;k ¼ umrs; if f mrs;k > 0; r ∈ R; s ∈ S; k ∈ Krs;m ∈M (17)

Cm
rs;k≥umrs; if f mrs;k ¼ 0; r ∈ R; s ∈ S; k ∈ Krs;m ∈M (18)

and

Cv
sr;k ¼ uvsr; if f vsr;k > 0; r ∈ R; s ∈ S; k ∈ Ksr (19)

Cv
sr;k≥uvsr; if f vsr;k ¼ 0; r ∈ R; s ∈ S; k ∈ Ksr (20)

where umrs and uvsr are the minimum generalized costs for mode m ∈M and vacant taxi between origin
r ∈R and destination s ∈ S, respectively.

2.5. Logit mode split

We propose the following logit-based mode choice function, which is able to give the proportion of
trips taken by the mode m ∈M between origin r ∈R and destination s ∈ S at equilibrium.
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Pm
rs ¼

exp �β umrs � φmrs
� �� 	

∑
i∈M

exp �β uirs � φirs
� �� 	; r ∈ R; s ∈ S;m ∈M (21)

Then, we have the number of travelers who take mode m as follows:

qmrs ¼
exp �β umrs � φmrs

� �� 	
∑
i∈M

exp �β uirs � φirs
� �� 	qrs; r ∈ R; s ∈ S;m ∈M (22)

Here, φmrs represents the attraction of mode m for travelers between origin r∈R and destination s∈ S. β
is the dispersion coefficient. From this function, we can see that the number of travelers for each mode is
proportional to the attraction and inversely proportional to the minimum generalized cost.

2.6. Vacant taxi distributions

In addition to private car and occupied taxi, vacant taxi also contributes significantly to the traffic
congestion, because there are always considerable amount of vacant taxis searching for customers on
the limited road space. Vacant taxi drivers may change their initial destinations and paths if the toll is
imposed on taxi. In this section, the following logit model is proposed to describe the vacant taxi
behaviors on the road network [14]. As in the paper of Yang andWong [14], here, we suppose that every
taxi driver attempts to spend the minimal expected search time in meeting customer and the expected
search time is a random variable that is identically distributed with a Gumbel density function.

Pr=s ¼
exp �σ uvsr þ λvwv

r

� �� 	
∑
i∈R

exp �σ uvsi þ λvwv
i

� �� 	; s ∈ S; r ∈ R (23)

where Pr/s is the probability that vacant taxi departs from zone s∈S and meets the customer in zone r∈R. σ
is a non-negative parameter reflecting the degree of uncertainty for taxi drivers on customer demand and taxi
services of the whole market.
And, in a steady state of equilibrium, every customer is eventually able to take a taxi after

waiting and searching, and all occupied taxis will become available when passengers arrive at
destinations [15]. Thus, we have

∑
r∈R

qvsr ¼ Do
s ; s ∈ S (24)

∑
s∈S

qvsr ¼ ∑
s∈S

Do
s •Pr=s ¼ Oo

r ; r ∈ R (25)

2.7. Elastic demand

A demand function is presented here to describe the elasticity of the OD demands.

qrs ¼ Drs ursð Þ; r ∈ R; s ∈ R (26)

where qrs is the total demand between origin r ∈R and destination s ∈ S, which is supposed to be a
continuously and strictly decreasing function of users’ minimum perceived generalized costs urs.
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urs ¼ �1
β
ln ∑

m∈M
exp �β umrs � φmrs

� �� 	
 �
; r∈R; s∈R (27)

Correspondingly, urs ¼ D�1
rs qrsð Þ is the inverse demand function.

3. AN EQUIVALENT VARIATIONAL INEQUALITY PROGRAM

Note that the interactions of network flows are asymmetric because of the delay-based taxi charge. Namely,

∂cpa
∂xoa

≠
∂coa
∂xpa

(28)

where ∂cpa
∂xoa

and ∂coa
∂xpa

are given by

∂cpa
∂xoa

¼ λ
∂ta xað Þ
∂xoa

(29)

∂coa
∂xpa

¼ λ
∂ta xað Þ
∂xpa

þ bo2
∂ta xað Þ
∂xpa

(30)

Thus, a VI program is formulated in this section, which is equivalent to the aforementioned CNEM.
The feasible regionΩ of our VI formulation is stated later, and related dual variables are also provided in

the brackets:

∑
s∈S

qvsr ¼ Oo
r ; r ∈ R; erð Þ (31)

∑
r∈R

qvsr ¼ Do
s ; s ∈ S; asð Þ (32)

qrs ¼ ∑
m∈M

qmrs; r ∈ R; s ∈ S; γrsð Þ (33)

∑
k∈Krs

f mrs;k ¼ qmrs; r ∈ R; s ∈ S;m ∈M; umrs
� �

(34)

∑
k∈Ksr

f vsr;k ¼ qvsr; s ∈ S; r ∈ R; uvsr
� �

(35)

f mrs;k≥0; r ∈ R; s ∈ S;m ∈M; k ∈ Krs; χmrs;k
� �

(36)

f vsr;k ≥ 0; r ∈ R; s ∈ S; k ∈ Ksr; χvsr;k
� �

(37)

qmrs ≥ 0; qvsr ≥ 0; r ∈ R; s ∈ S;m ∈M (38)

Constraints (31) and (32) are the conservation conditions of flow for vacant taxis. Equation (33) is
the conservation equation for total demand. Equations (34) and (35) show that the sum of all path flows
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for private car, bus, occupied taxi, and vacant taxi should be equal to their demands, respectively.
Equations (36), (37), and (38) are the non-negativity constraints on path flows and demands, respectively.
With the feasible region described earlier, the VI problem can be stated as follows. Find (f m;�rs;k,f

v;�
sr;k,q

�
rs,q

m;�
rs )

∈Ω, which satisfies

X
r∈R;s∈S

X
m∈M

X
k∈Krs

Cm
rs;k f �ð Þ f mrs;k � f m;

�
rs;k

� �
þ

X
s∈S;r∈R

X
k∈Ksr

Cv
sr;k f �ð Þ f vsr;k � f v;

�
sr;k

� �
�

X
r∈R;s∈S

D�1
rs q�rs
� �

qrs � q�rs
� �

þ
X

r∈R;s∈S

X
m∈M

1
β
ln
qm;

�
rs

qrs
� φmrs

� �
qmrs � qm;

�
rs

� �þ X
s∈S;r∈R

1
σ
lnqv;

�
sr qvsr � qv;

�
sr

� �
≥0

(39)

where Cm
rs;k and C

v
sr;k, r∈R, s∈S, m∈M, k∈Krs are defined by Equations (7)–(9).

Proposition. The optimality conditions of the proposed VI program are equivalent to the CNEM in Section 2.

Proof. The KKT (Karush-Kuhn-Tucker) conditions of the VI formulation (39) are given later.

f mrs;k : Cm
rs;k � umrs � χmrs;k ¼ 0; r ∈ R; s ∈ S;m ∈M; k ∈ Krs (40)

f vsr;k : Cv
sr;k � uvsr � χvsr;k ¼ 0; r ∈ R; s∈ S; k ∈ Ksr (41)

qmrs :
1
β
ln
qmrs
qrs

� φmrs þ umrs � γrs ¼ 0; r ∈ R; s ∈ S (42)

qvsr :
1
σ
ln qvsr þ uvsr þ er þ as ¼ 0; r ∈ R; s ∈ S (43)

qrs : �D�1
rs qrsð Þ þ γrs ¼ 0; r ∈ R; s ∈ S (44)

The complementarity conditions are

f mrs;k•χ
m
rs;k ¼ 0; r ∈ R; s ∈ S;m ∈M; k ∈ Krs (45)

f vsr;k•χ
v
sr;k ¼ 0; r ∈ R; s ∈ S; k ∈ Ksr (46)

χmrs;k≥0; r ∈ R; s ∈ S;m ∈M; k ∈ Krs (47)

χvsr;k≥0; r∈R; s∈S; k∈Ksr (48)

From Equations (45) and (47), we have χmrs;k ¼ 0, if f mrs;k > 0. Then, from Equation (40), we
can obtain that Cm

rs;k ¼ umrs. And if f mrs;k ¼ 0, χmrs;k ≥0, then Cm
rs;k ≥ umrs. Therefore, we have the

following conditions:
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Cm
rs;k ¼ umrs; if f mrs;k > 0; r∈R; s∈S; k∈Krs;m∈M (49)

Cm
rs;k≥umrs; if f mrs;k ¼ 0; r∈R; s∈S; k∈Krs;m∈M (50)

which implies that the route choices of private car, bus commuters, and occupied taxi follow user
equilibrium. Similarly, we can demonstrate that the route choice of vacant taxi also satisfies the
user equilibrium condition by utilizing Equations (46), (48), and (41).
From Equation (42), we have

qmrs
qrs

¼ exp β φmrs � umrs þ γrs
� �� 	

; r∈R; s∈S;m∈M (51)

Taking the sum of m in both sides gives rise to

exp βγrsð Þ ¼ 1X
m∈M

exp β φmrs � umrs
� �� 	; r∈R; s∈S

(52)

Substituting Equation (52) into Equation (51) leads to

qmrs ¼
exp �β umrs � φmrs

� �� 	X
i∈M

exp �β uirs � φirs
� �� 	qrs; r∈R; s∈S (53)

which is consistent with the logit-based mode split model, Equation (22).
From Equation (52), we have that

γrs ¼ �1
β
ln

X
m∈M

exp �β umrs � φmrs
� �� 	( )

; r∈R; s∈S (54)

Substituting Equation (54) into Equation (44) gives rise to

D�1
rs qrsð Þ ¼ �1

β
ln

X
m∈M

exp �β umrs � φmrs
� �� 	( )

; r∈R; s∈S (55)

which indicates that the elastic demand function defined in Section 2.7 is satisfied.
Equation (43) can be rewritten as follows:

qvsr ¼ exp �σ uvsr þ as þ er
� �� 	

; r∈R; s∈S (56)
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Substituting Equation (56) into Equation (32), we have

exp �σasð Þ ¼ Do
s

∑
r∈R

exp �σ uvsr þ er
� �� 	; s∈S (57)

Substituting Equation (57) into Equation (56) leads to

qvsr ¼
exp �σ uvsr þ er

� �� 	
∑
i∈R

exp �σ uvsi þ ei
� �� 	Do

s ; r∈R; s∈S (58)

Comparing Equation (58) with the logit-based vacant taxi distribution model (23), we know that
λvwv

r is associated with er. Similar to Wong et al. [15], we can calculate taxi waiting/searching time
wv
r through Equations (16), (31), (32), and (56) (For details, one can see Wong et al. [15]).
Because the constraints (31) to (38) are non-negative and linear and the continuous formulation (39)

has the region of non-negative flows and OD demands, we can conclude that at least one solution to the
VI program exists (Wong et al. [16]).

4. SOCIAL WELFARE MAXIMIZATION

The upper level aims to derive the optimal congestion tolls under which the social welfare is maxi-
mized. Note that social welfare is expressed as the total willingness to pay of the travelers minus the
total social cost.

maxSW yð Þ ¼
∑

r∈R;s∈S
∫qrs yð Þ
0 D�1

rs wð Þdw� ∑
a∈A

λta xað Þ þ bpdað Þxpa yð Þ� ∑
r∈R;s∈S

Cb
rs′q

b
rs yð Þ � ∑

a∈A
λta xað Þxoa yð Þ

� ∑
r∈R;s∈S

λowqors yð ÞWo
r yð Þ � ∑

a∈A
λvta xað Þxva yð Þ þ bvda xoa yð Þ þ xva yð ÞÞ� 	� ∑

s∈S;r∈R
λvqvsr yð Þwv

r yð Þ
" (59)

s.t.

ymin
a ≤ya≤ymax

a ; a∈A (60)

where the revenue of tolls, fares that customers pay taxis, and bus fares are not involved in the social
costs, because these costs imply only a transfer within the system. Cb

rs′ is expressed as Cb
rs′ ¼ λbTrs þ

ζGrs qbrs
� �þ λbwWb

rs. x
p
a yð Þ, xoa yð Þ, and xva yð Þ denote the flows on link a ∈A for private car, occupied taxi,

and vacant taxi, respectively. ymin
a and ymax

a are the upper bound and lower bound of the toll on linka∈A.
Note that travel time ta(xa), link flows xpa yð Þ, xoa yð Þ, and xva yð Þ, demand matrices qrs(y), qbrs yð Þ, qors yð Þ, and
qvsr yð Þ, customer waiting time Wo

r yð Þ, and taxi waiting/searching time wv
r yð Þ, a ∈A, r ∈R, s ∈ S are

derived from solving the lower-level problem.

5. SOLUTION ALGORITHM

The block Gauss–Seidel decomposition approach together with the method of successive averages and
diagonalization algorithm is developed to solve the VI formulation (39). One can refer to Florian et al.
[24] and Wong et al. [16] for details. The algorithm follows the procedure later.

Step 0. Initialization. Let the iteration number l= 0. Select an initial feasible solution f m lð Þ
rs;k , f

v lð Þ
sr;k, r ∈R,

s ∈ S, m ∈M, k ∈Krs.
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Step 1. Computation of generalized costs. Compute the generalized costsCp lð Þ
rs;k,C

b lð Þ
rs;k, andC

v lð Þ
sr;k, and then

obtain the minimum generalized costs up lð Þ
rs , ub lð Þ

rs , and uv lð Þ
sr , r∈R, s∈ S, k∈Krs. Compute the demands for

taxi from origin zone r∈R and to destination zone s∈ S, that is,Oo
r andD

o
s through f

o lð Þ
rs;k and Equations (2)

and (3). Therefore, we can find the vacant taxi distribution qv lð Þ
sr and taxi waiting/searching time wv lð Þ

r by
solving the doubly constrained gravity model Equation (56) subject to Equations (31), (32), and (38).

Customer waiting timeWo lð Þ
r , generalized cost of occupied taxi Co lð Þ

rs;k , and its minimization uo lð Þ
rs can then

be computed through Equations (11), (5), and (8).

Step 2. Computation of demand matrices. Compute total demand q lð Þ
rs according to elastic demand

function Equation (26) and use the logit-based mode choice model, that is, Equation (22) to find
demand matrices for private car qp lð Þ

rs , bus qb lð Þ
rs , and occupied taxi qo lð Þ

rs , r∈R, s∈ S, based on the
minimum generalized costs obtained in step 1.

Step 3. Network equilibrium assignment. After obtaining the demand matrices qm lð Þ
rs and qv lð Þ

sr , r∈R,
s∈ S,m∈M, apply diagonalization algorithm to the following fixed demand network equilibrium prob-

lem to compute the auxiliary path flows Hm lð Þ
rs;k and Hv lð Þ

sr;k, r∈R, s∈ S, k∈Krs, m∈M.

∑
r∈R;s∈S

∑
m∈M

∑
k∈Krs

Cm
rs;k f �ð Þ f mrs;k � f m;*rs;k

� �
þ ∑

s∈S;r∈R
∑

k∈Ksr

Cv
sr;k f �ð Þ f vsr;k � f v;*sr;k

� �
≥0

subject to Equations (34–37).

Step 4. Method of successive averages. Utilize the following equations to find the path flow pattern
of next iteration.

f m lþ1ð Þ
rs;k ¼ f m lð Þ

rs;k þ 1
lþ 1

Hm lð Þ
rs;k � f m lð Þ

rs;k

� �
; r ∈ R; s ∈ S; k ∈Krs;m ∈M

f v lþ1ð Þ
sr;k ¼ f v lð Þ

sr;k þ
1

lþ 1
Hv lð Þ

sr;k � f v lð Þ
sr;k

� �
; r ∈ R; s ∈ S; k ∈ Krs

Step 5. Convergence test. If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

r∈R;s∈S
∑

k∈Krs

∑
m∈M

f m lþ1ð Þ
rs;k � f m lð Þ

rs;k

� �2
þ ∑
s∈S;r∈R

∑
k∈Ksr

f v lþ1ð Þ
sr;k � f v lð Þ

sr;k

� �2
s

∑
r∈R;s∈S

∑
k∈Krs

∑
m∈M

f m lð Þ
rs;k þ ∑

s∈S;r∈R
∑

k∈Ksr

f v lð Þ
sr;k

< ε, then

go to step 6; otherwise, set l= l+1 and return to step1.

Step 6. Computation of final results. Compute the final generalized costsCm lþ1ð Þ
rs;k andCv lþ1ð Þ

sr;k , and demand

matrices qm lþ1ð Þ
rs and qv lþ1ð Þ

sr according to the final path flows f m lþ1ð Þ
rs;k and f v lþ1ð Þ

sr;k , m∈M, r∈R, s∈ S, k∈Krs.
It is worth noting that this bi-level problem is non-convex; thus, heuristic algorithms have to be

considered to obtain a relatively good solution. The sensitivity analysis-based method would be a
highly efficient solution algorithm to solve the bi-level programming problems when the first-order
derivatives are easy to be obtained from the lower-level problem (Yang and Bell [25]). In this paper,
however, to solve the sensitivities from the VI program Equation (39) is very difficult in view of the
complexity of the formulation. Compared with some other algorithms such as projection-based
algorithm, descent algorithm, or penalty function approach, GA would still be a straightforward and
effective method to solve the bi-level problem, which has been proven in many existing literatures
(Liu et al. [26]). Thus, in this paper, the GA is adopted for its simplicity and effectiveness.
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6. NUMERICAL EXAMPLE

In this section, we provide a numerical example solved by the proposed algorithm. Consider a road
network depicted in Figure 1 with four OD pairs, six nodes, and 14 links. The bus lines are 1-2-4-6,
1-3-4, 5-6, and 5-3-4, respectively, which are represented as dotted lines in Figure 1. We assume that
the travel time function for each link follows the traditional BPR (Bureau of Public Roads) function

ta xað Þ ¼ t0a 1þ 0:15
xpa þ xoa þ xva

Ca

� �
4


 �
; a ∈ A (61)

where the free flow travel time t0a and link capacityCa as well as link length da, a ∈A, are given in Table 1.
The negative exponential demand function is

qrs ¼ qrs exp �κrsursð Þ; r ∈ R; s ∈ S (62)

where qrs is the potential demand for each OD pair and κrs is a elasticity parameter that represents the
sensitivity of demand to generalized costs. Let q16 = 4000 veh/h, q14 = 3000 veh/h, q56 = 4000 veh/h, and

1 2

65

3 4

1

2

5

6

11

12

3

4

8

7

10

9

13

14

Figure 1. The network.

Table I. Link free flow, capacity and length.

Link Star node End node t0a (h) Ca (veh/h) da (km)

1 1 2 0.03 1200 2
2 2 1 0.03 1200 2
3 1 3 0.03 1200 2
4 3 1 0.03 1200 2
5 3 4 0.04 1200 3
6 4 3 0.04 1000 3
7 2 4 0.02 1800 1
8 4 2 0.02 1800 1
9 3 5 0.03 1200 2
10 5 3 0.03 1200 2
11 5 6 0.04 1200 3
12 6 5 0.04 1200 3
13 4 6 0.04 1200 3
14 6 4 0.04 1200 3
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= 3000 veh/h, respectively. Also, let κ16= κ14= κ56= κ54 = 0.03. Similar to Huang [27], the following
passenger crowding discomfort function is specified

Grs qbrs
� � ¼ θ1 qbrs

� �
2 þ θ2qbrs; r ∈ R; s ∈ S (63)

where θ1 and θ2 are positive parameters. In this numerical example, let θ1 and θ2 be 0.001 and 0.0001,
respectively. Furthermore, the bus frequency and bus travel time are shown in Table 2. Other parameters
are set next:bp=3$/km,bo0 = 10$,b

o
1 = 2$/km,bo2 = 30$/h, b

v=1.5$/km, λ=60$/h, λv=40$/h, λow=120$/h,
λb=30$/h, λbw=60$/h, N=2000, φp16 = 2, φ

b
16 = 1, φ

o
16 = 5, φ

p
14 = 2, φ

b
14 = 1, φ

o
14 = 5, φ

p
56 = 2, φ

b
56 = 1, φ

o
56 = 5,

φp54 = 2, φ
b
54 = 1, φ

o
54 = 5, β =0.06, σ=0.2, ηZr=10, r∈R, ζ =0.01, τ =2.

Figure 2 displays the maximum social welfare of charging and not charging taxi versus the number
of iterations, where the execution time is 25min. It can be observed in Figure 2 that there is an increase
(8%) in the maximum social welfare as congestion toll is imposed on taxi, where the maximum social
welfare is 1.60 × 105$ for charging taxi and 1.48 × 105$ for not charging it. This can be explained by
the fact that without the toll, every taxi behaves selfishly when making the route choice, which causes
efficiency loss.
Tables 3–5 as well as Figure 3 compares the performances between charging and not charging taxi

for the congestion toll. We observe that the private car demand and bus demand increase by 445 and
176, respectively, after taxi is tolled, while the taxi demand decreases by 1467. This is because part of
the demand shifts from taxi to private car and bus due to the congestion fee. The total demand
decreases by 846 (7.9%), which is considerably affected by the charge on taxi.
Figure 4 portrays the change of the ratio of maximum social welfares (denoted as ρ) with the ratio of

operating cost per unit distance for private car to that for taxi (bp/bv, denoted as ω) when preliminary
flag-fall charge bo0 is 10 and taxi fleet size N is 2000. As we can see from the figure, that ρ decreases
with ω. The reason is that when toll is imposed on taxi, part of travelers will divert from taxi to private
car, leading to a higher social cost because of the higher operating cost of private car. Thus, the greater
the ω, the higher the social cost for charging taxi, and hence, the less the ratio of maximum social

Table II. Bus travel time and frequency.

Origin Destination Travel time Trs (h) Bus frequency Frs (veh/h)

1 6 0.3 10
1 4 0.2 10
5 6 0.15 10
5 4 0.2 10
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Figure 2. Maximum social welfare of charging and not charging taxi versus the number of iterations.
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welfares. It is also worth noting that as ω increases further beyond 9 (although it unlikely happens in
real life), ρ will be less than 1, implying that the maximum social welfare for charging taxis will be less
than that for not charging them.
Figure 5 depicts the change of ρ against preliminary flag-fall charge per ride, as ω equals 2 and N

equals 2000. It can be seen in this figure that initially, ρ decreases dramatically with the preliminary
flag-fall charge. This is because the demand for taxi decreases with the flag-fall charge, resulting in
the decrease of the total external cost caused by taxis, so as ρ. Moreover, ρ tends to be steady and ap-
proach to 1 as the initial flag-fall charge exceeds 25$, because now the cost of taking taxi is too high
and the taxi demand is too low to affect the system performance.
Figure 6 shows that ρ does not change much with respect to the taxi fleet size. This is because of

the two opposite effects of raising the taxi fleet size on ρ. On the one hand, as taxi fleet size grows,

Table III. The OD matrix of private car when charging taxi (not charging taxi).

6 4 ∑
s∈S

qprs

1 448 (318) 731 (590) 1179 (908)
5 1303 (1180) 570 (519) 1873 (1699)
∑
r∈R

qprs 1751 (1498) 1301 (1109) 3052 (2607)

Table IV. The OD matrix of taxi when charging taxi (not charging taxi).

6 4 ∑
s∈S

qors

1 375 (833) 514 (864) 889 (1697)
5 828 (1078) 459 (868) 1287 (1946)
∑
r∈R

qors 1203 (1911) 973 (1732) 2176 (3643)

Table V. The OD matrix of bus when charging taxi (not charging taxi).

6 4 ∑
s∈S

qbrs

1 1288 (1233) 1070 (1030) 2358 (2263)
5 1201 (1185) 1107 (1042) 2308 (2227)
∑
r∈R

qbrs 2489 (2418) 2177 (2072) 4666 (4490)
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Figure 3. The optimal toll when charging taxi (not charging taxi).
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Figure 4. Ratio of maximum social welfare for charging taxi to that for not charging taxi versus ratio of operating
cost per unit distance for private car to that for taxi.
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Figure 5. Ratio of maximum social welfare for charging taxi to that for not charging taxi against preliminary
flag-fall charge per ride.
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Figure 6. Ratio of maximum social welfare for charging taxi to that for not charging taxi against taxi fleet size.
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taxi service quality is improved and thus more travelers will be attracted to take taxi. Therefore,
when charging taxi, the number of travelers shifting from taxi to private car will increase, resulting
in a larger ρ. On the other hand, as taxi fleet size grows, the taxi waiting/searching time increases
after taxi is tolled, which leads to the social welfare decrease. As a result, the value of ρ tends to be
steady when taxi fleet size varies.
From all the previous discussions, we have the conclusion that, in this case, charging taxi is always a

better choice as long as the operating cost of private car is not far beyond that of the taxi (not greater
than nine times).

7. CONCLUSIONS

A mathematical model was presented to address the issue that whether or not taxis should pay the
congestion charge in pricing zone. The model is developed as a bi-level programming problem where
the lower level is formulated as a VI program, with the logit-based mode split, route choice, elastic demand,
and vacant taxi distributions. The upper level aims to maximize the social welfare. The bi-level model is
solved by GA, whereas the lower-level sub-problem is solved by the block Gauss–Seidel decomposition
approach together with the method of successive averages and diagonalization algorithm.
The results of the numerical example indicated that whether taxis should be charged in pricing

zone is mainly dependent on the ratio of operating costs for private car to that for taxi. Generally
(when the operating cost of the private car is not extremely higher than that of the taxi), charging
taxis for the congestion fee is always a better choice in terms of the maximum social welfare. This
can be explained by the fact that as taxis are charged as well as the private cars, the external cost
of the system is fully internalized, which outweighs the benefit from encouraging the usage of taxi
mode by not charging them.
This study offers a useful methodology when designing congestion pricing schemes for multiple

traffic modes for decision-makers. Real transportation networks and traffic data will be tested in the
future instead of the synthetic one used in the current study.

8. NOTATION

The list of symbols used in the paper:

N set of nodes
A set of links
A set of toll links, A⊆A
R set of origin zones
S set of destination zones
qrs total demand between zone r ∈R and zone s ∈ S
qprs demand of private car from origin r ∈R to destination s ∈ S
qbrs demand of bus from origin r ∈R to destination s ∈ S
qors demand of taxi from origin r ∈R to destination s ∈ S
Oo

r demand for taxi mode from origin zone r ∈R
Do

s demand for taxi mode to destination zone s ∈ S
qvsr number of vacant taxis traveling from zone s ∈ S to zone r ∈R
xa flow on link a ∈A
δrsak link-route indicator variable, which is equal to 1 if route k between OD

pair r ∈R and s ∈ S uses link a, and 0 otherwise
Krs set of paths between zone r ∈R and zone s ∈ S
cpa generalized cost on link a ∈A for private car
coa generalized cost on link a ∈A for occupied taxi
cva generalized cost on link a ∈A for vacant taxi
f mrs;k flow on route k ∈Krs for mode m ∈M between zone r ∈R and zone s ∈ S
f vsr;k vacant taxi flow on route k ∈Krs between zone s ∈ S and zone r ∈R
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Cm
rs;k generalized cost for mode m ∈M on route k ∈Krs from zone r ∈R to zone s ∈ S

Cv
sr;k generalized cost for vacant taxi on route k ∈Krs from zone r ∈R to zone s ∈ S

ta(xa) travel time on link a ∈A
t0a free flow travel time on link a ∈A
λ VOT for users taking private car or taxi
λv VOT for taxi drivers
λb VOT for bus passengers
λow value of customer waiting time
λbw value of bus passenger waiting time
bp operating cost per unit distance for private car
bo0 preliminary flag-fall charge per ride
bo1 mileage-based taxi charge
bo2 delay-based taxi charge
Wo

r customer waiting time for taxi at zone r
bv operating cost per unit distance for taxi
da length of link a ∈A
wv
r waiting/searching time of vacant taxi in zone r

Zr the area of zone r ∈R
η a model parameter that is identical to all zones
Trs bus travel time from origin r ∈R to destination s ∈ S
Wb

rs waiting time of bus passengers between zone r ∈R and zone s ∈ S
Grs qbrs

� �
crowding discomfort experienced by passengers

ζ the unit cost of discomfort
Frs bus frequency between zone r ∈R and zone s ∈ S
τ bus fare
N taxi fleet size
Pm
rs proportion of trips taken by mode m ∈M from zone r ∈R to zone s ∈ S

φmrs attraction of mode m ∈M between zone r ∈R and zone s ∈ S
β dispersion coefficient
Pr/s probability that vacant taxi departs from zone s ∈ S and meets the customer in zone r ∈R.
σ non-negative parameter reflecting the degree of uncertainty for taxi drivers

on customer demand and taxi services of the whole market
hrs average travel time from origin r ∈R to destination s ∈ S
as Lagrange multiplier related to taxi demand constraint at destination zone s ∈ S
er Lagrange multiplier related to taxi demand constraint at origin zone r ∈R
γrs Lagrange multiplier related to conservation equation of total demand from

zone r ∈R to zone s ∈ S
χmrs;k Lagrange multiplier related to the flow non-negativity constraint from zone

r ∈R to zone s ∈ S for mode m ∈M on route k ∈Krs

χvsr;k Lagrange multiplier related to the flow non-negativity constraint from zone
s ∈ S to zone r ∈R for vacant taxi on route k ∈Ksr

urs users’ minimum perceived generalized costs between zone r ∈R and zone s ∈ S
umrs minimal generalized costs for mode m ∈M between zone r ∈R and zone s ∈ S
uvsr minimal generalized costs for vacant taxi between zone r ∈R and zone s ∈ S
ya toll charge on link a∈A
ymax
a upper bound of toll rate for link a∈A
ymin
a lower bound of toll rate for link a∈A
ε acceptable error in the block Gauss–Seidel decomposition method
Ca capacity of link a ∈A
qrs potential total demand between zone r ∈R and zone s ∈ S
κrs elasticity parameter between zone r ∈R and zone s ∈ S, representing the

sensitivity of demand to the minimum generalized costs
Drs(urs) demand function between zone r ∈R and zone s ∈ S
D�1

rs qrsð Þ inverse of demand function
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