
Highly efficient parallel direct solver for solving dense complex matrix equations from

method of moments

Yan Chen, Zhongchao Lin, Yu Zhang, Daniel García Doñoro

School of Electronic Engineering, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071,
People’s Republic of China
E-mail: zclin@xidian.edu.cn

Published in The Journal of Engineering; Received on 1st March 2017; Accepted on 3rd March 2017

Abstract: Based on the vectorised and cache optimised kernel, a parallel lower upper decomposition with a novel communication avoiding pivot-
ing scheme is developed to solve dense complex matrix equations generated by the method of moments. The fine-grain data rearrangement and
assembler instructions are adopted to reduce memory accessing times and improve CPU cache utilisation, which also facilitate vectorisation of the
code. Through grouping processes in a binary tree, a parallel pivoting scheme is designed to optimise the communication pattern and thus reduces
the solving time of the proposed solver. Two large electromagnetic radiation problems are solved on two supercomputers, respectively, and the
numerical results demonstrate that the proposed method outperforms those in open source and commercial libraries.
1 Introduction

Nowadays more complex structures and higher working frequencies
make the analysis of electromagnetic characteristics using pure nu-
merical techniques, such as method of moments (MoM), a chal-
lenge. Parallel computing is a useful tool to extend the problem
scale and reduce the computation time. Working on this approach,
authors have been developing during the last years their own MoM
being able to solve electromagnetic problem up to about 1.0 million
unknowns (dense matrix) by using a direct lower upper (LU) solver
[1], and the parallel scale was expanded to 4096 CPU cores with
parallel efficiency higher than 60% [2]. LU decomposition provided
by Scalable Linear Algebra Package [3] (ScaLAPACK) is
employed to solve the linear system.
The efficiency of the ScaLAPACK depends on efficient imple-

mentations of the BLAS [4] (routines performing basic vector
and matrix operations, such as matrix–matrix multiply) and the
BLACS [4] (routines create a linear algebra oriented message
passing interface). Although Intel Math Kernel Library (MKL)
[5] provides a high-performance BLAS library, it does not always
perform efficiently, especially on non-Intel CPU platform. To
obtain a better performance for large-scale parallel MoM simula-
tions, one needs to improve calculating speed of BLAS and
reduce the communication time in LU decomposition. Therefore,
a novel LU decomposition scheme based on communication avoid-
ing LU [6] is proposed in this study to reduce the number and
amount of message exchange.
On the other hand, modern microprocessors include multiple

levels of cache and vector units that can operate on multiple
data with a single instruction, or single instruction multiple data
units as we know. It is thus important to use these vector instruc-
tions in order to achieve optimal hardware usage efficiency.
Therefore, a vectorisation and cache optimised BLAS
(VCOBLAS) is proposed in this study. By adopting some micro-
optimisation methods, the VCOBLAS greatly improve the rate of
vectorisation (MMX/SSE/AVX Instruction) and cache (L1/L2
Level) usage. In practical, the VCOBLAS determines the real
utilisation of each CPU’s peak computing capability, while the
novel LU decomposition scheme determines the scalability
when many CPU cores are used. Numerical results indicate that
the proposed solver can achieve a higher performance compared
with both the open source ScaLAPACK and commercial
Intel MKL.
J Eng, 2017, Vol. 2017, Iss. 4, pp. 69–71
doi: 10.1049/joe.2017.0069

This is an open
2 Novel LU decomposition scheme

Parallel LU solver is used in the factorisation of a dense matrix of
MoM by repeatedly factorising block columns. The main difference
between the ScaLAPACK LU algorithm and our novel LU algo-
rithm resides on the way that the column panel is decomposed, so
only the panel factorisation is considered. The panel column
matrix, represented as A, according to the two-dimensional (2D)
block cyclic data distribution scheme [3], is distributed on Pr pro-
cesses. For simplicity, we assume that Pr = 4, as shown in Fig. 1.
The novel panel factorisation scheme can be described by three
steps in detail. The first step performs the decomposition of each
of the submatrices A0, A1, A2 and A3 using partial pivoting and
four pivoting rows are obtained. This decomposition process is
done independently in each message passing interface (MPI) pro-
cesses without any interaction between them. Thus, this step is
called local decomposition. Then the second step combines the
local pivoting rows pair to pair using a recursive scheme. Both
local decomposition and combination steps are called iteratively
until only one block of pivoting rows is obtained. Once the local
decomposition is done, the final pivoting rows are obtained and a
factorisation without pivoting is performed. The main innovation of
parallel communication avoiding algorithm for the LU factorisation
(CALU) is the fact that it adopts a new pivoting strategy that is
similar to the reduction algorithm or tournament pivoting, and thus
leads to the reduction of the number and amount of the inter-message.

3 Vectorisation and cache optimised BLAS

The kernel function or hotspot in LU solver is the matrix–matrix
multiplication operation, which can be performed by the subroutine
ZGEMM in BLAS. MKL provides an optimised BLAS library
which can exploit the advantage of Intel CPU. We certainly
develop our own ZGEMM codes running on multiple CPU plat-
forms. The original open source ZGEMM routine are tested on a
computer equipped with 2 Intel Xeon E5-2690-v2 CPUs (2.2–
2.6 GHz) and 64 GB memory. The running characteristics of ori-
ginal ZGEMM, obtained by Intel Vtune Amplifier tool, are listed
in Table 1. In the table, ‘Peak Perf.’ indicates the peak performance
of the machine. ‘Real Perf.’ indicates the real performance the codes
could exploit. ‘AVX Vect.’ is the ratio of AVX-256 Instruction vec-
torisation of the code. The parameters clock cycle per instruction
(CPI), last level cache miss (LLCM) and memory read/write rate
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Table 1 Running characteristics of original ZGEMM

Real
Perf.

Peak Perf. AVX
Vect.

CPI LLCM Mem.
read

Mem.
write

44Gflops 498Gflops 0.0% 0.78 97.88% 45 GB/s 1 GB/s

Fig. 2 Micro-optimisation of ZGEMM

Fig. 3 Performance of ZGEMM on one computer

Table 2 Running characteristics of MKL and our own ZGEMM

Real Perf. AVX
Vect.

CPI LLCM Mem.
read

Mem.
write

MKL 471Gflops 67% 0.36 87% 5.1 GB/s 3.7 GB/s
our 465Gflops 63% 0.41 81% 5.3 GB/s 3.6 GB/s

Fig. 1 Column factorisation in the novel LU decomposition scheme

Fig. 4 2D radiation pattern and parallel efficiency
a 2D radiation pattern
b Parallel efficiency

Table 3 Comparison of ScaLAPACK and our own LU factorisation

CPU cores 2400 7200 9600 12,000 20,480 30,720

our LU 12438.6 4642.2 3594.1 2926.1 2025.5 1443.3
ScaLAPACK 13160.1 5250.4 4086.4 3435.3 2475.3 1756.5
speed-up 1.124 1.153 1.176 1.208 1.222 1.217
(Mem. Read/Write) are also listed. By using some tricks (i.e. block,
pack) rearrangement data as tile storage [7], the number of times for
CPU to access memory is greatly reduced and thus the cache util-
isation increases. By usage of CPU registers and assembly instruc-
tion [7], the AVX-256 (on Intel platform) vectorisation is achieved
manually. A brief diagram of all these ‘tricks’ and the typical values
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
of the blocks are shown in Fig. 2. The optimising results are listed in
Fig. 3 and Table 2. One can see that the optimised code is about 11
times faster than the original one. Compared with MKL, our code
has a slight disadvantage, but it can achieve a very high perform-
ance on non-Intel CPU platform.

4 Results

Two computational platforms are used here. The first one is the
Sunway BlueLight MPP, a Chinese petaflop homegrown supercom-
puter. The total number of compute nodes on the system is 8704
connected by a 40 Gbps InfiniBand QDR network. Each compute
node is equipped with a home-grown processor (SW1600 16
Cores 975 MH, non-Intel CPU). The second one is the
MilkyWay-2 (Tianhe-2), which has 16,000 compute nodes. Each
compute node is equipped with two Intel Xeon E5-2600 processors
and three Intel Xeon Phi accelerators. All compute nodes are con-
nected by a homemade 150 Gbps network.

A phased array with main beam pointing to the tail of an airplane
is simulated using MoM with higher order basis functions on
Sunway BlueLight MPP. The operation frequency of the array is
1.0 GHz given a total number of unknowns of 259,128. The simu-
lation model is shown in Fig 4a. As the Intel MKL is unavailable on
the homegrown platform, ScaLAPACK is selected as a reasonable
alternative. The computing time consumed by the proposed LU
solver and open source ScaLAPACK using 2400–30,720 CPU
cores is shown in Table 3. According to the table, one can see
that the proposed LU solver is about 10–20% faster than the
ScaLAPACK. Parallel efficiency determines that the scalability
with the number of CPU cores increase, and is calculated by
h = Tr/Tp

()
/ P/Pr

()× 100%, where Tr is the reference
time when Pr CPU cores are used, and Tp is the computation
time when P CPU cores are used. Parallel efficiency evaluated
according to the simulation time is shown in Fig. 4b. The parallel
scale overcomes 30,000 CPU cores with a parallel efficiency
higher than 65% (reference: 2400 cores). The comparison
between gains results given by proposed LU solver and the
ScaLAPACK for the azimuth cut is shown in Fig. 4a where a
very good agreement is appreciated.

Furthermore, the radiation pattern of the microstrip array with
1984 elements shown in Fig. 5a is calculated to present the per-
formance improvement and the parallel efficiency of the proposed
LU solver. The dimensions of the full array are 5.898 × 0.549 m
and the operation frequency is 3.1 GHz, given a number of
Commons J Eng, 2017, Vol. 2017, Iss. 4, pp. 69–71
doi: 10.1049/joe.2017.0069

Fig. 5 Radiation pattern of the array and parallel efficiency
a Radiation pattern of the array
b Parallel efficiency

Table 4 Simulation time (unit: s) and parallel efficiency

CPU
cores

600 1200 2400 3600 4800 7200 9600 12,000

our LU 5841.5 3187.4 1641.4 1146.6 902.1 633.6 515.4 434.9
MKL 6473.7 3562.3 1849.1 1360.7 1124.7 812.1 671.2 571.9
speed-up 1.108 1.118 1.127 1.187 1.247 1.282 1.302 1.315
unknowns 275,918. The amplitude at the feed of the array is
designed by a −30 dB Taylor distribution both along length and
width. The 2D gain patterns are also given in Fig. 5. The computing
time listed in Table 4 indicates the improvement of the proposed LU
solver by 10–30% against the Intel MKL and that the more the CPU
cores are used, the better performance is improved. The parallel ef-
ficiency is evaluated according to Table 4 and shown in Fig. 5b (ref-
erence: 600 cores). It is worth noting that the Intel MKL obtain a
much worse scalability when more CPU cores are used on
MilkyWay-2 supercomputer; we will determine the cause in a
future article.
J Eng, 2017, Vol. 2017, Iss. 4, pp. 69–71
doi: 10.1049/joe.2017.0069

This is an open
5 Conclusion

In this study, a highly efficient LU solver is presented to help MoM
for solving large electromagnetic problems. The own ZGEMM is
about 11 times faster than the original one. The proposed LU
solver is about 10% faster than the traditional LU solver. Both on
the two platforms, a high parallel efficiency can be achieved.

6 Acknowledgments

This work was supported by the National High Technology
Research and Development Program of China (863 Program)
(2014AA01A302), the program for New Century Excellent
Talents in University of China (NCET-13-0949).

7 References

[1] Zhang Y., Sarkar T.K., Taylor M.C., ET AL.: ‘Solving MoM problems
with million level unknowns using a parallel out-of-core solver on a
high performance cluster’. IEEE Antennas and Propagation Society
Int. Symp., 2009

[2] Zhang Y., Lin Z., Zhao X., ET AL.: ‘Performance of a massively parallel
higher-order method of moments code using thousands of CPUs and
its applications’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp.
6317–6324

[3] Blackford L.S., Choi J., Cleary A., ET AL.: ‘ScaLAPACK: a portable
linear algebra library for distributed memory computers – design
issues and performance’. Proc. of the 1996 ACM/IEEE Conf. on
Supercomputing, 1996

[4] Dongarra J.J., Duff I.S., Sorensen D.C., ET AL.: ‘Numerical linear algebra
on high-performance’ (Tsinghua University Press, Beijing, 2011)

[5] Intel Copyright, Developer Reference for Intel Math Kernel Library
2017-C, Intel Corporation. Available at https://software.intel.com/en-
us/mkl-reference-manual-for-c, 2016

[6] Grigori L., Demmel J.W., Xiang H.: ‘Communication avoiding
Gaussian elimination’. Proc. of the 2008 ACM/IEEE Conf. on
Supercomputing, 2008

[7] Goto K., Geijn R.: ‘Anatomy of high-performance matrix multiplica-
tion’, ACM Trans. Math. Softw., 2008, 34, (3), pp. 1–25
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c

	1 Introduction
	2 Novel LU decomposition scheme
	3 Vectorisation and cache optimised BLAS
	4 Results
	5 Conclusion
	6 Acknowledgments

