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Abstract: Channel models, applicable to mobile ad hoc network (MANET) simulations, need to be both accurate and computationally effi-
cient. It has been shown that inaccuracies in the channel model can seriously affect various network performance measures. It is essential that
the model gives realistic time and spatial variability as the terminals move. Furthermore, the frequency selective effects from multipath propa-
gation must be realistically modelled, so that the effects of different signalling bandwidths are captured correctly. However, to meet the
necessary low-complexity constraints current commonly used channel models for network simulations are very simplified. In this study,
the authors propose a model structure that is able to capture the essence of the channel characteristics, and to cope with the constraint of
low computational complexity. The model describes the channel time and frequency variability between nodes in a MANET. It models
the large- and small-scale fading, where the correlation between the fading parameters as well as the spatial correlation is considered.
Furthermore, the study presents parameters for the proposed model based on wideband peer-to-peer channel measurements in an urban en-
vironment at 300 MHz. When analysing the link and network performance, they show that the proposed channel model describes the
channel dynamics appropriately.
Table 1 Model parameters

Description Parameter Value Unit

distance dependent n 4.15 —
G0 −4.8 dB
dref 1 M

global means mGLS
0 dB

μK −3.3 dB
mst

−66.4 dBsa

standard deviations and corr. coeff. for CA s�GLS
6.6 dB

s�K 3 dB
s�st

1.6 dB
r�GLS

�K 0.74 —
r�GLS �st

−0.39 —
r�K �st

−0.45 —
standard deviations and corr. coeff. for CB sG̃LS

3.1 dB
sK̃ 3.2 dB
ss̃t

1.4 dB
rG̃LS K̃

0.5 —
rG̃LS s̃t

−0.22 —
rK̃ s̃t

−0.18 —
correlation distances (Δd )c, LS 20.2 m

(Δd)c, K 5.5 m
(Dd)c,st

14.6 m

a Decibels relative to 1 s.
1 Introduction

Mobile ad hoc networks (MANETs) consist of mobile devices con-
nected by wireless links. The network is characterised by
peer-to-peer communication between the nodes without any centra-
lised base station. For example, MANETs are used in vehicle com-
munication applications and are under introduction for military use.
Simulations of MANETs can be very demanding from a computa-
tional point of view. A large number of nodes, which are typical for
military networks, stress the need for a channel model with low
computational complexity. If we consider that the number of
links between n nodes grows as n(n− 1)/2 (assuming reciprocal
channels), and that the link qualities need to be updated frequently
because of mobility, the simulation time may soon get unmanage-
able for large networks. Hence, traditionally, very simplistic
channel models – for example, two-ray models – have been used
to describe the radio channel between the nodes. A summary of
propagation models, used in network simulator tools, is presented
in [1, Table 1]. The network performance is, however, very depend-
ent on the dynamic behaviour of the individual links. This is a well-
known problem that has been recognised by many researchers
within the ad hoc network community, see, for example, [2–4],
to give a more realistic description of the channel dynamics, the
model must be able to generate both slow and fast fading; the
first is mainly caused by shadowing, and the latter by that different
propagation paths interfere constructively or destructively.
Furthermore, the frequency selectivity of the channel (which is
caused by multipath propagation) must be realistically modelled
so that the effects on systems with different signal bandwidths
can be investigated.
A large number of ideas have emerged on how to introduce the

variability of the channels in network simulations. For example,
in [5] a ‘double-ring with a line-of-sight (LOS) component’
model is proposed to incorporate both LOS and scattering effects
for mobile scenarios. The model exhibits the statistical properties
of a Rician fading channel and considers the small-scale fading
for such a scenario. However, the large-scale fading and the correl-
ation between the large-scale fading and other channel parameters
are not addressed. Although the autocorrelation function of the
fading envelope is derived, it is determined from the assumed
theoretical model and it is not compared with real channel realisa-
tions. In [3], a different approach is adopted and the link stability
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and availability are modelled by using a distance transition prob-
ability matrix. The underlying channel modelling considers
distance-dependent path loss, multipath and shadowing. The
dynamic channel variation is generated from a semi-Markov
smooth (SMS) mobility model. This link model will, to some
extent, incorporate spatial correlation. However, this correlation
will be determined from the SMS model and not from a certain
terrain or scenario.

In recent years, there has been extensive research on the subject
of channel modelling for vehicular ad hoc networks (VANETs). In
[6], a survey of existing channel models for different scenarios in
vehicular applications is presented. Several of these incorporate
both small- and large-scale fading. This paper points out the key
characteristics needed of channel models in VANETs and divides
access article published by the IET under the Creative Commons
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Fig. 1 Stochastic channel model structure
the existing models in three different types, tap-delay models,
ray-based models and geometry-based stochastic models. The authors
highlight that tap-delay models do not directly take into consideration
the time variations of the channel typical for vehicular scenarios.
Furthermore, ray-based models often lead to time-consuming simula-
tions, when many rays are taken into account. The authors claim
that a statistical approach is often needed to yield a representative
behaviour of the dynamics in VANETs and that it has the potential
to yield reasonable simulation times. This is one reason for why a
geometry-based stochastic channel model is often to prefer in
network analysis. In [7], a summary of existing channel modelling
and measurements especially for vehicle-to-vehicle (V2 V) applica-
tions is also presented.

In [8], the authors discuss the need of a more detailed description
of the physical layer to be used for network simulations. The
purpose is to improve the quality of the results from network simu-
lations and they claim that the basic threshold reception model in
order to simulate the carrier sense functionality and determine suc-
cessful reception is not adequate. It is especially interference
because of collisions that is difficult to take into consideration
without a more detailed description of the physical layer.
Furthermore, the NS-2 simulator that the authors refer to as not
having a proper threshold reception model is using relatively
simple channel models, that is, the simulator uses either a free-space
model, a two-ray ground reflection model or a shadowing model.
On the basis of these reasons the authors suggest network simula-
tions on bit level. To improve the quality of the network results
with reasonable computational complexity, another approach is to
develop a channel model with appropriate behaviour that provides
accurate estimates of the signal-to-noise ratio (SNR) to be used in
the network simulations.

In this paper, we propose a model structure that is able to capture
the essence of the channel characteristics and that copes with the
constraint of low computational complexity when used in
network simulations. For network performance analysis, the par-
ticular geographical location is generally not interesting, as long
as the statistical description meets the considered environment to
be used in. The proposed model is a scenario-based stochastic
channel model and it is similar to a geometry-based stochastic
channel model in the sense that the channel statistics varies over
positions. The model includes different environment-dependent
channel parameters that control the distributions as the large-scale
fading, the Rician K-factor and the delay spread. In this paper,
model parameters are exemplified for an urban peer-to-peer
scenario at 300 MHz. However, the model framework can be
used for other environments and other frequency bands as long as
the statistics for the channel parameters are available. Also results
from a deterministic channel model are possible to use for deriv-
ation of the needed channel parameters. The proposed model has
similarities with other existing models, as, for example, the one pro-
posed in [9]. However, our model also considers the correlation
between the channel parameters, and a first-order autoregressive
(AR) filter is used to maintain accurate spatial correlation during
terminal movement. We also demonstrate the behaviour of the pro-
posed stochastic channel model in terms of the statistical behaviour
of the channel parameters and by showing two typical examples of
results at link and network levels.

The remainder of this paper is organised as follows. Section 2
describes the proposed channel model structure, including the
distance-dependent path gain, large-scale and small-scale fading.
It also describes the incorporation of correlation between large-scale
parameters and the spatial correlation. Section 3 describes an
example of parameter generation based on channel measurements.
Section 4 exemplifies the impact of using the proposed channel
model, both on link level and on network level. Comparisons are
performed with measurement data and a plain two-ray ground
model. Furthermore, the statistical characteristics of the channel
parameters are examined. Finally, Section 5 concludes this paper.
This is an open access article published by the IET under the Creative
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2 Channel model

To evaluate multiple access control (MAC) solutions and routing
protocols for MANETs by use of simulations, the dynamics of
the radio channels must be properly modelled. Current channel
models for network evaluations are in their most simple form
based on the distance between transmitter and receiver (e.g. a
plain-earth model) to more thorough models with ray-tracing
wave propagation simulations for each link. The former ones do
not consider environmental effects such as fading properties,
whereas the later models, in their most sophisticated form, can
become very computationally demanding. In [10, 11], the small-
and large-scale fading have been shown to significantly affect the
performance of ad hoc networks. Furthermore, the correlation in
time, space and frequency is often important when studying
network performance. For example, when analysing the link avail-
ability in time for network protocols with fast acknowledgements,
the behaviour of the channel dynamics is of great importance.

2.1 Proposed channel model structure

To address a dynamic channel behaviour (the large- and small-scale
fading and the correlation properties), we propose the channel
model structure shown in Fig. 1; the parameters are explained
later in this section. The model is divided in three different
blocks, where each block determines one layer of the total
channel fading process.

† The first block includes the distance-dependent path gain Gd(d ),
where d is the geometrical distance between two MANET nodes.
Here, Gd(d ) is computed from an empirically developed link attenu-
ation model.
† The second block creates the large-scale channel variations. This
includes the large-scale (slow) fading GLS, which are the path gain
variations relative to Gd(d ). In addition, other large-scale para-
meters are generated to control the small-scale fading process in
the third block. Examples of such parameters are the
root-mean-square (RMS) delay spread σt and the Rician K-factor,
which are related to the coherence bandwidth and the amplitude dis-
tribution of the small-scale fading, respectively.
† The third block considers the small-scale fading process with a
Rician amplitude distribution. The small-scale variations are
created for multiple subchannels, whose mutual correlation
depends on the coherence bandwidth. Finally, the small-scale
fading process is multiplied with the large-scale fading obtained
in block two to conduct the total fading.

These three blocks constitutes the base of the model. The radio
channel in position r can be characterised by the frequency selective
transfer function as

H( f , r) =
�����
G(r)

√
Y (f , r) (1)

where G(r) (expressed in linear scale in (1)) is the link’s composite
path gain, which can be obtained from

G(r) = Gd(d)+ GLS [dB] (2)

and where f and Y( f, r) are the frequency of interest and the
complex-valued small-scale fading in position r, respectively;
the latter is described in Section 2.4. Furthermore, in (2), Gd(d ) is
Commons J Eng, 2014, Vol. 2014, Iss. 12, pp. 691–698
doi: 10.1049/joe.2014.0277



the distance-dependent path gain, see Section 2.2, and GLS is the
large-scale fading, see Section 2.3.
A similar approach to model the channel fading, with a similar

block structure, has been proposed in [9] for wireless personal
area networks for indoor use. However, we impose the small-scale
fading in the frequency-transfer function instead of adding a time-
domain component. Moreover, the incorporation of the correlation
between large-scale channel parameters differs from what is
proposed in [9].

2.2 Distance-dependent path gain

The distance-dependent path gain Gd(d ), generated in the first block
shown in Fig. 1, is modelled to be a function of the geometrical dis-
tance d as

Gd(d) = G0 − 10n log10
d

dref

( )
[dB] (3)

where G0 is the path gain at the reference distance dref and n is the
path-gain exponent.

2.3 Large-scale fading

For the large-scale channel variation, three important parameters are
modelled. The parameter GLS is the large-scale fading, K and σt are
the K-factor and the channels RMS delay spread, respectively. The
large-scale parameters are defined as

GLS
K
st

⎛⎝ ⎞⎠ =
GLS
K
st

⎛⎝ ⎞⎠+
G̃LS

K̃
s̃t

⎛⎜⎝
⎞⎟⎠+

mGLS

mK

mst

⎛⎝ ⎞⎠ (4)

All parameters in (4) are expressed in logarithmic units. The two
components (·) and (̃·) are the local mean and the superimposed
variation around the local mean, respectively. The last term
m = [mGLS

mK mst ]
T is the global mean for each channel par-

ameter and is valid for a whole scenario and can be seen as an offset
factor. The local mean (·) on the contrary varies at a quite large
spatial scale and can typically be considered constant over one
block in an urban scenario. The superimposed variation (̃·)
depends mainly on the local environment in the vicinity of the
radio nodes; its spatial scale is therefore considerably smaller.
The proposed structure in (4) is based on the findings in [12],

where it was stated that (·) and (̃·) can be considered as approxi-
mately normal distributed. By dividing each parameter’s variation
into the two separate components (·) and (̃·), we can handle the
different spatial scales of the variation more easily. Furthermore,
the analysis of the results from the urban measurements in [12]
showed that there is a dependency between the channel parameters.
To consider the correlation between the large-scale parameters,
covariance matrices are introduced. If we let �V = [ �GLS

�K �st ]
T

and Ṽ = [ G̃LS K̃ s̃t ]
T, where (·)T denotes the transpose operator,

we can generate correlated realisations of these parameters as

�V = C1/2
A x (5)

Ṽ = C1/2
B y (6)

where CA and CB are the covariance matrices for parameter vectors
�V and Ṽ, respectively, and the matrix square root is defined so that
C=C1/2C1/2. The elements of x and y are independent normal-
distributed variables with zero mean and unit variance. As x and
y are modelled as zero-mean processes, the global mean μ must
be added in (4) to obtain the correct level of the large-scale
parameters.
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On the basis of measurement analysis, Gudmundson [13]
proposed the autocorrelation properties of the large-scale fading
process to be modelled by a simple exponential function. This is at-
tractive from a computational point of view because the fading
process can be generated by filtering a white Gaussian noise
process through an AR filter. In our proposed model, we assume
that the autocorrelation functions for all large-scale parameters
can be modelled by an exponential function. Hence, for a generic

element Ṽ of the mutually correlated parameters in vector Ṽ in
(6), a sequence of spatially correlated realisations of that channel

parameter ṼF (rp), p = 1, …, P, is generated as

ṼF (rp) =
ap ṼF (r p−1)+

��������
1− a2

p

√
Ṽp , if 2 ≤ p ≤ P

Ṽp , if p = 1

⎧⎨⎩ (7)

where rp is the pth position, Ṽp is a realisation from (6) and αp is a
coefficient that determines the statistical dependency between
ṼF (rp) and ṼF (r p−1). Under the assumption of local wide-sense
stationarity, αp can be expressed as

ap = rp(Dd) (8)

where Δd = ∣rp− rp − 1∣ is the distance between two adjacent posi-
tions and ρp is an autocorrelation function that is valid within a
local area around rp. On the basis of the assumption of an exponen-
tial autocorrelation, we let

rp(Dd) =
1

c

( )−Dd/(Dd)c

(9)

where (Δd )c is the correlation distance at correlation level c. In (9),
the correlation distance is implicitly dependent on rp.

To summarise the methodology, the large-scale parameters can
be generated as follows:

(1) Generate the covariance matrices CA and CB based on para-
meters from a reference scenario.
(2) Generate the local mean values �V for GLS, K and σt according
to (5).
(3) Generate the superimposed process Ṽ, (6), and filter it accord-
ing to (7) to incorporate the spatial correlation.
(4) Determine the scenario dependent global mean value μ.
(5) Compute the combined large-scale result according to (4).

From (4), the GLS is used in (2), whereas K and σt are used in the
derivation of the small-scale fading.
2.4 Small-scale fading

In general, the small-scale fading process Y( f, r) is characterised by
its distribution and by its frequency and spatial correlation proper-
ties. In our model, we assume that Y( f, r) is Rician distributed and
that the time dispersion of the channel can be described as a super-
position of a dense multipath component (with an exponentially
decaying delay power spectrum), and a specular component. To
simplify the model, we make the approximation that the realisations
are spatially independent if ∣rp− rp − 1∣ ≥ dɛ (a certain threshold dis-
tance); if the movement is < dɛ, we assume that Y( f, rp)= Y( f,
rp − 1). In this way, the effects of static nodes are captured.

Following the modelling approach for dense multipath compo-
nents in [14–16], we let the dense multipath components have the
access article published by the IET under the Creative Commons
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delay power spectrum

Sdm(t) =
0, if t , t0

a1
b1

exp − t− t0
b1

( )
, if t ≥ t0

⎧⎨⎩ (10)

where t0 is the delay of the first arriving multipath component, b1 is
the decay constant of the power spectrum and a1 is the total dense
multipath power; for the brevity of notation, we have dropped the
explicit dependency on r in the equation. The specular component
(which is assumed to be statistically independent of the dense multi-
path components) has the delay power spectrum

Ssc(t) = a0 d(t− t0) (11)

where a0 is the power of the specular component, and again the de-
pendency on r is dropped for brevity.

The frequency autocorrelation function for the dense multipath
components ψdm(Δf ) is obtained by a Fourier transformation of
(10) as

cdm(Df ) =
a1

1+ j2pDfb1
exp(−j2pDf t0) (12)

where a1 and b1 are determined by the Rician K-factor and the delay
spread. Under the power constrain a0+ a1= 1, the parameters a0, a1
and b1 in (10)–(12) can be expressed, respectively, as

a0 =
K

K + 1
(13a)

a1 =
1

K + 1
(13b)

b1 =
st��������
1− a20

√ (13c)

Finally, with the explicit dependency on r reintroduced, we can now
write the small-scale fading process
y(rp) = [Y (f1, rp)Y (f2, rp), . . . , Y (fnf , rp)]

T at discrete frequency
points f1, f2, . . . , fnf as

y(rp) =
�����������
K(rp)

K(rp)+ 1

√
+

�����������
1

K(rp)+ 1

√
C1/2

f (rp)wp (14)

where the elements of wp are independent identically distributed
complex Gaussian stochastic variables with zero mean and unit
variance, and Cf(rp) is the frequency correlation matrix with
elements

Cf

[ ]
kl
= 1

a1
cdm(fk − fl) (15)

The two large-scale parameters K(rp) and σt (rp) that govern the
statistics of the small-scale fading are obtained from (7), and
t0(rp) is computed from the geometrical path length of the link.

2.5 Model simplifications

Modern wideband radio systems usually apply advance modulation
and coding schemes. Such systems can take advantage of multipath
propagation, and obtain diversity gains on frequency selective radio
channels. Therefore, the performance of such systems mainly
depends on the instantaneous SNR, averaged over the operating
bandwidth. Under such assumptions, it is possible to reduce the
computational complexity of the proposed model even further by
This is an open access article published by the IET under the Creative
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simplifications to be used in small-scale fading calculations and
hence reduce the complexity and simulation time, as well.

The diversity order that can be extracted by an idealised receiver
system can be approximated as m=Ws/Wcoh, where Ws and Wcoh

are the system bandwidth and the coherence bandwidth of the
channel, respectively.

Hence, m can be viewed as the number of independently fading
subchannels, which makes the frequency correlation matrix Cf in
(14) to become an identity matrix Im. Then, the instantaneous
SNR is obtained from the wideband path-gain Gwb(r), which is
computed as

Gwb(rp) = G(rp)+ 10 log10 ‖ y(rp) ‖2 [dB] (16)

where ‖·‖ denotes the Euclidean norm and G(rp) is the composite
path gain, according to (2).

3 Example of parameterisation of the model by using an
urban scenario

Parameters for the proposed model have in this paper been extracted
from a peer-to-peer measurement campaign at 300 MHz in an urban
environment; for further details and results, see [12]. However, the
model framework can be used for other environments and other fre-
quency bands as long as such channel measurements for such con-
ditions are available. The measurement campaign was conducted in
the city centre of the fifth largest city in Sweden, which with inter-
national standards is a rather small town. Fig. 2 shows an aerial
photo of the measurement area. This part of the town, which typic-
ally has three- to six-storey buildings, is rather flat but slopes gently
towards the river on the east side. The transmitter Tx and the re-
ceiver Rx were both placed on vehicles with the antenna arrays
mounted on top of each vehicle. The antenna heights were ∼1.8
and 2.1 m above the ground for the Tx and Rx, respectively. The
scenario consists of 3 different Tx locations (Tx1, Tx2, Tx3) and
from each Tx location, 25 Rx routes (Rx1–Rx25) were conducted.
During the measurements the Tx was stationary at each site,
whereas the Rx was driven along the measurement routes. The mea-
surements were performed at a centre frequency of 285 MHz with a
20 MHz wide probing signal.

On the basis of the large set of measured channel transfer func-
tions derived from the measurement campaign, the parameters of
the proposed model can be generated in accordance with Section
2, see Table 1.

We can, for example, see that the distance-dependent path-gain
exponent n for this scenario is 4.15. Furthermore, in the same
table, we show the extracted parameters for the standard deviations
and cross-correlation coefficients of our two three-dimensional
large-scale processes �V and Ṽ; that is, the local mean and the
superimposed process, respectively. From the parameters in the
table, we can compute the covariance matrices CA and CB, used
in (5) and (6), respectively, according to

CA =
s2
�GLS

r�GLS
�Ks�GLS

s�K r�GLS �st
s�GLS

s�st

r�GLS
�Ks�GLS

s�K s2
�K r�K �st

s�Ks�st

r�GLS �st
s�GLS

s�st
r�K �st

s�Ks�st
s2
�st

⎡⎢⎢⎣
⎤⎥⎥⎦ (17)

and

CB =
s2
G̃LS

rG̃LS K̃
sG̃LS

sK̃ rG̃LS s̃t
sG̃LS

ss̃t

rG̃LS K̃
sG̃LS

sK̃ s2
K̃ rK̃ s̃t

sK̃ss̃t

rG̃LS s̃t
sG̃LS

ss̃t
rK̃ s̃t

sK̃ss̃t
s2
s̃t

⎡⎢⎢⎣
⎤⎥⎥⎦ (18)

where s2
X is the variance of X and ρXY is the cross-correlation
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Fig. 2 Measurement area in the city centre of Linkoping, Sweden. Transmitter sites (crosses) and receiver routes
coefficient defined as

rXY = cov(X , Y )

sXsY

= E((X − mX ))(Y − mY ))

sXsY

(19)

in which cov(X, Y ) denotes the covariance between X and Y.
From the urban measurements, the mean value of the correlation

distance (Δd )c in (9) has been calculated for respective large-scale
channel parameter at a correlation level c = 0.5. The correlation dis-
tances are also given in Table 1.

4 Example of the channel model behaviour

In the following, we will exemplify the behaviour of the proposed
stochastic channel model. Firstly, we compare the distributions of
model-generated large-scale parameters with the parameters
derived from measurements directly. Secondly, we study the
performance on link level in an ad hoc network in terms of prob-
ability that the SNR exceeds a certain threshold, which corresponds
to the SNR requirement of a certain service. The performance
results obtained for the proposed stochastic channel model are com-
pared with the results for a simple two-ray model as well as results
Fig. 3 CDFs for the large-scale fading GLS in dB

J Eng, 2014, Vol. 2014, Iss. 12, pp. 691–698
doi: 10.1049/joe.2014.0277

This is an open
based on channel measurements. Finally, we will study the network
performance of a simulated ad hoc network in an urban environ-
ment. The proposed stochastic channel model is used to generate
the maximum data rate possible for the instantaneous channel con-
ditions of the links. Hence, different kinds of routing algorithms can
be evaluated. With this approach, the network performance in terms
of the probability of packet delivery ratio is analysed for networks
of different connectivities.
4.1 Statistical properties of the channel parameters

To verify the statistics of the modelled large-scale channel varia-
tions, we compare the cumulative distribution functions (CDFs)
of the generated channel parameters in (4) – that is, large-scale
fading GLS, Rician K-factor and RMS delay spread σt – with the
CDFs that were computed from the measured data. In Figs. 3–5,
the CDFs of the large-scale channel parameters are shown for mea-
surements and for the proposed channel model. The curves denoted
‘Measurements’ are derived from the measurements directly, con-
sidering all combinations of transmitter and receiver positions,
see [12]. The corresponding curves denoted ‘Model’ are derived
from simulations with the proposed channel model, for the same
Fig. 4 CDFs for the K-factor in dB
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Fig. 5 CDFs for the RMS delay spread σt. (Expressed as loge(σt)
distributions of the distances. In these figures, we can see that the
agreement between the CDFs for the parameters generated by the
model and the CDFs from the measured data is quite good for all
three parameters. This justifies the proposed distributions in the
second block of the model structure, see Fig. 1.

4.2 Channel model behaviour on link level in an ad hoc network

To study the link performance in a MANET, channel realisations
are obtained from the proposed channel model, and compared
with the performance obtained when directly measured channels
are used. For this purpose, a network is created from a subset of
the measurement routes [17], with the consequence that the mobil-
ity is determined from the available measurement positions. To be
specific, the node positions are the same as the Tx and Rx positions
in the measurements.

We use a link model that have two different states, that is, if the
SNR is larger than a certain SNR threshold, the link is considered to
function, otherwise to fail. Generally, the SNR threshold depends
on the specific radio communication system and service require-
ment. This is a reasonable approximation when considering a
system that utilises strong channel coding. Such a system will
have a sharp threshold behaviour, where the message error prob-
ability goes from one to a negligible level within a narrow SNR
Fig. 6 Probability that SNR exceeds a certain threshold as a function of
distance

This is an open access article published by the IET under the Creative
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range. The use of this link model is a common approach to deter-
mine link performance in network simulations [1] and is usually
needed to limit the computational time. The proposed stochastic
channel model is used to derive the probability that the SNR will
exceed the threshold for the same node movements as for the
created network based on the measured links. The probability that
the SNR exceeds the threshold is shown in Fig. 6 for the created
network with the measured links and with the proposed channel
model. In addition, the result for a simple two-ray model [18] is
included in this figure, for comparison. The two-ray model is an
example of a simple channel model, which is commonly used in
many network simulation tools. We can see that the results with
the simple two-ray model exhibit a typical threshold behaviour
with transition at a certain distance. This distance corresponds to
the SNR threshold, where the transition from acceptable link per-
formance to a not acceptable link performance appears. In contrast
to the results of the two-ray model, the probability that the SNR will
exceed the threshold for the measurements and the proposed
channel does not exhibit a distinct transition and assumes values
between zero and one for a large range of distances. Furthermore,
we can see that the overall behaviour of the probability that the
SNR will exceed the threshold derived from the proposed channel
model and the measurements have a similar variability. However,
the results with the stochastic channel model and the measurements
differ, since the results for the measurements are based on a subset
of the measurement campaign, whereas the results for the stochastic
channel model are based on the whole measurement campaign
results.

4.3 Channel model behaviour on network level

To exemplify how the choice of channel model, and its degree of
details, can affect the network performance, we have simulated a
mobile scenario with 64 nodes. In that scenario, we assume that
the nodes are moving around for 400 s in an 8 × 8 km square area
at a speed of 50 km/h. To model the movements of the nodes, we
use the random walk model in [17]. According to the mobility
model, all nodes move independently of each other and, if a node
hits the boundary of the square, it bounces back like a ball. The
user traffic is modelled as broadcast transmissions of packets. A
source is randomly selected among the 64 nodes to send one
packet. Thereafter, a new source is randomly selected and so on.
A basic time-division multiple access MAC protocol is used for
the simulations. Therefore no robustness issues have to be
addressed at the MAC layer because of packet collisions. For
such protocols, the time is divided into time slots that are
grouped into repeating frames. Each node is assigned one time
slot in each frame and the traffic in the network is kept sufficiently
low to avoid congestion in the network. To route the packets in the
network, we use the multi-point-relay (MPR) method according to
the simplified multicast forwarding framework [19], and the MPR
selection mechanisms are the optimised link state routing protocol
[20]. Both user and overhead traffic are transmitted in the network.

For the network simulations, we use an in-house developed radio
network simulator. On the basis of the channel realisation, when a
packet is sent, the SNR and the instantaneous channel capacity is
computed and used to decide whether a packet can be correctly
received in a node or not. If the experienced channel capacity is
higher than the data rate, the packet is assumed to be correctly
received. Note, that in reality no system will reach the channel cap-
acity; there will always be some implementation losses. However,
such losses are neglected in these simulations as our focus is
merely on the channel behaviour and its influence on the network
performance.

The performance is studied in terms of delivery ratio, defined as
the fraction of packets that reach the destinations. A packet that is
not reaching the destination is lost either because no route exists
or that a link deteriorates so that a transmitted packet cannot be
Commons J Eng, 2014, Vol. 2014, Iss. 12, pp. 691–698
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Fig. 7 Delivery ratio as a function of the network connectivity
received. No acknowledgments or automatic repeat request
mechanisms are used on the link level, that is, between a specific
transmitter and receiver. The delivery ratio should be high (say,
over 95%) to assure a satisfactory quality of service. The delivery
ratio is calculated for different network connectivities. As a
measure of the network connectivity, we use the number of
one-hop-neighbours any given node has in average measured at
MAC layer. The average value is taken over all the transmissions
from all the nodes during one simulation run. To obtain different
network connectivities, we adjust the output power of the nodes
in the scenario and hence different network situations are created
from a sparse to a dense network.
To illustrate how the choice of channel model, and how its degree

of details can affect the result, we compare the network perform-
ance when using different channel models. In Fig. 7, the delivery
ratio is shown as a function of the network connectivity, measured
as the average number of one-hop-neighbours. The proposed
channel model and the two-ray model are used for the network
simulations. To further investigate the effects of the channel dynam-
ics, the proposed model without small-scale fading is included as an
intermediate detailed model. Unfortunately, measurements of the
actual links are generally not possible in reality to use in the
network simulations with random movement and a large number
of the nodes, as was possible in the link level example in previous
section. For example, our scenario with 64 nodes would imply 2016
instantaneous links that are moving randomly and need to be
updated with a high rate. There are some of the reasons of why a
stochastic channel model is urgent for network simulations.
This figure shows results for the different channel models, the

two-ray model, the proposed channel model without small-scale
fading and the proposed channel model with small-scale fading,
which are models with an increasing degree of detailed channel de-
scription. In the simulations, the delivery ratio is between 90 and
100% for networks with over ten node neighbours. This is in the
critical region of acceptable performance (a critical value of deliv-
ery ratio is often near 95%). Hence, it is particularly important with
proper modelling of the channel to obtain accurate estimates of the
delivery ratio. From the simulations, we can see that the values of
the delivery ratio, for the three channel descriptions, do not differ
substantially. Furthermore, when the level of model details
increases, the delivery ratio decreases. The simple two-ray model
deceptively yields a higher delivery ratio than what the proposed
channel model gives. Additionally as can be seen, the largest differ-
ences in the results between the proposed channel model and the
two-ray ground model occur when the nodes have 30–40 neigh-
bours. This difference is a consequence of the inherent robustness
of the used broadcasting method, that is, the number of redundant
J Eng, 2014, Vol. 2014, Iss. 12, pp. 691–698
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This is an open
MPRs is reduced when the number of neighbours increases. For
these network types, the probability decreases of having an alterna-
tive route when a link disappears. This leads to a larger impact from
the fading on the delivery ratio. The overall conclusion is that the
network simulation results benefit from a more detailed channel de-
scription than the two-ray model can offer. Furthermore, the
small-scale fading needs to be incorporated in the model when ana-
lysing the network performance.

5 Conclusions

There is a need for more realistic channel models for analysis of ad
hoc network performance. The channel model must include both
large-scale and small-scale fading as an effect from the mobility
of the network terminals. In this paper, a model structure is pro-
posed that captures the essence of the channel characteristics and
copes with the constraint of low computational complexity. The
fading statistics of the model are determined by a number of para-
meters that describe the distributions of the large-scale fading, the
Rician K-factor and the delay spread. The model considers the
mutual correlation between the channel parameters and the spatial
correlation of the parameters. Examples justify that the proposed
channel model, with model parameters estimated from urban
peer-to-peer scenario at 300 MHz, models the channel dynamics
appropriately when analysing the link and network performance.
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