Complex Finsler spaces with (v, |3])-metric
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Abstract. The present paper deals with the differential geometry of a
complex Finsler space endowed with (v, | 5])-metric, where « is a cubic-root
metric and § is a differential (1,0)-form. Expressions for the fundamental
metric tensor, complex angular metric tensor, their inverses, Chern-Finsler
connection, holomorphic curvature and Euler-Lagrange equations are ob-
tained.
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1 Introduction

In 1979, M. Matsumoto [9], introduced the concept of cubic metric on a differentiable
manifold with the local coordinates x%, defined by L(z,y) = (aijk(x)yiyjyk)%, where
a;j(x) are components of a symmetric tensor field of (0, 3)-type depending upon the
position x alone. The Finsler space with a cubic metric is called a cubic Finsler space.
There are some papers related to the cubic Finsler space [6, 12, 13] etc. In 2011, T.
N. Pandey and V. K. Chaubey [11] introduced the concept of (v, §)-metric, where 7
is a cubic-root metric and J is a 1-form metric defined by v = {/ai;r(x)yiy/y* and
B = b;(x)y* respectively. N. Aldea and G. Munteanu [3] introduced a complex Finsler
space with Randers metric following the ideas from real case [4, 5, 8, 14] in 2009.
The authors of the current paper [7] studied a complex Randers space with metric
L =a+¢€p| +k@,e7k # 0.

The aim of the present paper is to introduce and study a complex Finsler space with
the fundamental function, F(v,|8]) on the lines of the Finsler space with («,|g])
metric as studied by N. Aldea and G. Munteanu [3], such that

(1'1) F(Zvn) :'7(’2’77)+|ﬁ|(zv77)7
where

1) v = {ag

18(z,m)| = 1/ B(2,m)B(z,n) with B(z,n) = bi(z)n".
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In this paper we determine the fundamental metric tensor (it’s inverse and deter-
minant), the complex angular metric tensor (it’s inverse and determinant), Chern-
Finsler connection coefficients, holomorphic curvature and Euler-Lagrange equations
for the complex Finsler space (M, F') with (v, |8])-metric.

2 Preliminaries

Let M be a complex manifold of dimension n and (zk)k:17.__7n be complex coordi-
nates in a local chart. The complexified tangent bundle T M splits into holomor-
phic tangent bundle 7'M and anti holomorphic tangent bundle T M, i.e. TcM =
T'M&T"M. The holomorphic tangent bundle T' M is itself a complex manifold with
local coordinates v = (2*,7*) in a chart, which changes by the following rules

1k
w0z j

1k __ Ik
(2.1) 2" = 2" (z2), =57

Further, To(T' M) decomposes as a sum of holomorphic and anti holomorphic tan-
gent bundles T, (1" M) and T(%(T' M) respectively. A natural local frame {9/02",9/02'%}
for T) (T' M) changes according to the rules obtained from Jacobi matrix of (3). Since
the changing rule of /92" contains the second order partial derivatives, the concept
of complex non-linear connection(c.n.c.) was introduced.

Let V(T'M) C T'(T'M) be the vertical bundle spanned by {0/dn*}. The com-
plex non-linear connection(c.n.c.) determines a supplementary complex subbundle to
V(T'M) in T'(T'M), ie. T"(T'M) = H(T'M) @ V(T'M), called the horizontal bun-
dle. Tt determines an adapted frame {ﬁ = % - N,za%j}, where Ng(z, 7n) are the
coefficients of the (c.n.c.) [1, 2, 10].

A complex Finsler metric F' on complex manifold M is a continuous function
F:T'M — R* satisfying following conditions [10]

1. L= F?issmooth on 7'M \ {0};
2. F(z,m) > 0, the equality holds if and only if = 0;

3. F(z, ) =|AF(z,n), for Ve C,

9°L
onioni

4. the Hermitian matrix (g;7(z,7)) where gz = is postive definite on

7'M\ {0}.

Let us write L = F2. Then, the pair (M, F) is called a complex Finsler space.
A Hermitian connection of (1,0) type named the Chern-Finsler Connection [1] has a
special meaning in a complex Finsler space. Notationally, it is DI'N = (Lj & 0, C]’: 0 0),
where

C )
(2 2) NI;: gmiaglm i — mi(sgjm _ aN,g i miagjﬁ
’ J

920 ik T T T i Tk T 9 Tk
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The holomorphic curvature [1, 10] of the complex Finsler space (M, F) in the direction
n is
(2.3 5 (201) = T3 GROG TN )

. F\z, 1 _L2(Z,7’]) X5 X)X X)s
where G is the N-lift of the complex Finsler metric tensor g, defined by G = g,7 dz'®
dzl + 95 on* ® 07’ and R is the curvature of Chern-Finsler connection. Locally,

2 .
(2.4) kp(z,n) = 72 jknjﬂk,
where
S

Consider a C* curve c(t), t € R on a complex manifold M and (2*(t), n*(t) = dz*/dt)
be its extension on T'M. The Euler-Lagrange equations with respect to a complex
Lagrangian L = F? [2, 10] are given by

oL d (0L
(2.6) BiL)= = — = (ani) =0,

where L is considered along the curve c¢(t) on 7M. The solutions of the Euler-
Lagrange equations are the extremal curves with respect to the arc length.

3 Complex Finsler space with (v, |5])-metric

Differentiating (1.2) partially with respect to ' and 7”7 and using the symmetry of
a5k in its indices, we obtain

Oy _ a Oy _ 2ay 9|B| _ Bb; 9|8| _ Bby

(3.1) o0 = ByZ awP 337 ot 20B] awp . 2[B]
' &y _ ap _ Amay  9%p] _ biby
antonp 372 9y5 2 Ontomd 418]°

where a; = % ﬁj ﬁk, ap = al%nl ﬁk and a;p = 2alﬁﬁk.

The function L = F? depends on z and 7 because of v = y(z,7) and || = |B(z,1)|.
Also, v and (8 are homogeneous with respect to n, i.e. v(z,An) = |A\|v(z,n) and
B(z,An) = AB(z,1), for ¥ X € C. Therefore, L(z, A\n) = AXL(z,n), for V A € C.

From the homogeneity property, we have the following

oy ;, 1 9B, 1
2 = = 1ot — 218l
(3.2) o =37 2IBI

(3.3) L=F?=(y+]|8)*
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On differentiating (3.3) partially with respect to v and |5| respectively, we have
(3.4) Ly =2F = Lig|, Lyy =2 = Lyjg = Ligig)-

Again differentiating (3.3) partially with respect to n' and 7’ respectively, we get

9L 2F  FB OL _AF = FG

35 i = = st b = o = .
35 T e T 3N T N T e T 32 T g

Using (3.4), we conclude following relations

YLy + [BILig) = 2L, YLy + |BIL1g] = Ly, 7Ly 5 + |BIL1s118) = Ly

(3.6)
V2 Loy + 2918 Ly ) + |BI*Lig) 5 = 2L.

The fundamental metric tensor g;5 of the complex Randers space (M, F) is given by

0L
3.7 == —
( ) g’Lj anzaﬁj
_ oy 9y 0|8 | 08| Oy
Y o' aﬁ] ~18] on 8ﬁ] i 8ﬁj
2 2
Lo asas oy, o8

[8118] ani ﬁ ’Yaniaﬁj 18] 8niaﬁj’

o) o) 9? ok
where Ly = G2, Lig) = a1, Loy = 5%, Lisiis) = 31
Using (3.1) and (3.4) in (3.7), we have

_ 9*L  _
and Ly g1 = a7a15 = Lily

2F 4 1
95 = 73%; — o5+ [BDaia; + 5 (F +[B])bib;
3y 9y 24|
(3.8) 1
——(Ba;b= + 2Bba=).
+ gy eity + 200eg)
If we assume pg = SLTVQ = % and pg = s“gl‘ = TF\’ (3.5)gives
(3.9) (Baibs + QBbiaj) = L77z‘ﬁj - @|ﬁ|2bi17 - Qﬂaiaj.
Po ko Po Ho

Substituting (3.9) in (3.8), we obtain

2F 8F R

(3.10) 95 = 37726%5 - 9—ry5aia;-+ 203

1
biby + EYALLE

This leads to

Theorem 3.1. The fundamental metric tensor of a complex Finsler space (M, F)
with (v, |B|)-metric is given by (3.10).

Next, we have the following proposition [4] given by D. Bao, S. S. Chern and Z.
Shen:
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Proposition 3.2. Suppose B

1. (Qﬁ) is a nonsingular n x n_complex matriz with inverse (Q7%),

2. C; and C; = C;,i=1,2,3,..,n are complex numbers,

3.Ct = jSCJf. and its conjugates, C*> = C'C; = 67'0;-; Hyz = Qs+ CZ-C;-.
Then,

(i) det(H;z) = (1+ Cz)det(Q =),

(zz) whenever 1+C? ;ﬁ 0 the matmx (H,7) is invertible and in this case its inverse is
Q]z q: 1ic2 CM/C

We use the Proposition 3.2 to find the inverse and determinant of the fundamental
metric tensor. (3.10) may be written as

2F 4 3’}/2 3*}/2
(3.11) 95 = W {aij 3 o3 @iy + 4|ﬂ|b117+ LR
Assuming Q 5 = a;; and C; = ﬁ&, and applying Proposition 3.2, we find Q” =
¥, C = \ﬁ - 702 = 7Where (a”) is the Hermitian inverse of (a ﬁ). Since 1 —C? =

% # 0, the matrix H;; = a
and det(Hz) = %det(aﬁ).

Now, assuming QG =

.. . . . o = ipd
G %aia; is invertible with the inverse H7* = a/* + "W—Q

a;— #aiajf and C; = IBI 7b; and applying Proposition 3.2,

we obtain Qﬁ =alt + @ and C' = , / (bl B ) where b = aﬂlr Therefore

e = g (IbIP + 55), where | = . Sk 1+ CF = g8 # 0, wher

o = 4|8y + 373 ||b]|* + 3|8)2, the inverse of Hz=a;5— ﬁaia]f—i— ili;lbilﬁ exists and is
i —. =, i—j 2 . a0 - — 3

given by HY' = o/* + LF- — °1- (bl + 57773) (bg + %) and det(Hy;) = g5 det(az;).

Finally we set Qij = a; — %aiaj + i’%;‘bibj and C; = \/%%m. In view of the

ij
Proposition 3.2, Qﬁ =alt + %—T — % (bi + %) <b7—|— ﬂ—ﬁ;) and

» 3y n 32 (L BN (5, B\ -
(3.12) Ci = 1/LF2{aﬂ+ T, b+ i~ b3+? B

From (3.5), we get

(3.13) {“J_'i”j = 30’ + 700, = 358+ 15 07, b = B+ gt o
n'ni = 25y + FIB| 7T, = 7V+F|ﬂ|-

Using (3.13) in (3.12), we have

I I B 67 By’

Therefore C2 =1+ %ﬁf Since 1+ C? #0, Hij =a
is invertible with the inverse

(3.15) HI = 7' + Ayl + BV + C(B67 + Bbin),

A g 3 3 =
7~ 3,3 0i05 T g1 0iby + T E;
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where
A = UBle®=2v0°— 1230 —9y|B|" +4]8°0 p _ _37° (4Fo+34|B))
(3.16) - 7o (AFo+71B[%) T T e (@Rl
’ O — _3(4Fo+39|8]) 1670

o(4Fo+v[B]%)

Also, the determinant of H is

(4Fo +~|8?)

(3.17) det(H) = =5

det(a,z).

From (3.11), 97 = 2F sz the inverse of the fundamental metric tensor is given by

=, 3fy
3.18 ji = 2L gt
(3.18) 9= 55
where H7' is given by (3.15).
Also, the determinant of the fundamental metric tensor is given by

(3.19) det(gﬁ) = (??’YFQ‘) det(Hﬁ),

where det(H3) is given by (3.17). Thus, we have

Theorem 3.3. The inverse and determinant of the fundamental metric tensor of
a complex Finsler space (M, F) with (v, |B8|)-metric are given by (3.18) and (3.19)
respectively.

Next, we define the complex angular metric tensor of the complex Finsler space
(M, F) with (v, |B|)-metric as

o 0°F
iy aniaﬁj
. Oy Oy oy 9|B|  0|B| Iy
(3'20) -t ani afj v181 (anz aﬁj ani Tj

0181 216| 0%y %15
+F|B|B|a77 63 F’Ya Zaj—"_ﬂﬁania]’

d*F _ 0’F o’F
where F, = awFlﬁI a|g|’ iy = vz Flsiisl = ape and Fyis) = 50518 = Flsiy-

On differentiating F' partially with respect to v and |3| respectively, we have
(3.21) Fy=1=Fg), Fyy =0=Fy5 = Flgig-

On substituting (3.1) and (3.21) in (3.20), we obtain

1 1
.22 k-f- =5 7}7,.*. 71)2[)77
(3.22) 7= 3pMi + g0
where
(323) h.f. = a.=

ij ij 393 .43
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To find out the inverse of the complex angular metric tensor, we will apply Propo-
o, . 2 .
sition 3.2. From (3.22), kﬁ = # {aﬁ — %aia;.—l— %bzb;} Assuming Qﬁ =aq

i7

- 2 ~ . Ji — gt i — 1 7'
and C; 755 and applying Proposition 3.2, we get @ alt, C 75
and C? = % Since 1 — C? = % # 0, the matrix Hz = a5 — ﬁaiajf is in-

vertible with the inverse H/' = o/'t 4 ”;T and det(H;) = 3det(a;;). Taking

Q7 = a7 — gysaia; and C; = /13:3b;, Proposition 3.2 gives Qit = al't + 7’7—?
and C = ’/Iﬁ\ (bZ + ﬂ" ) Therefore C? = 4‘[5' <||bH + l’Bl ) Since 1 + C? # 0,
the inverse of Hz = a;5 — %aia;- + i’%;‘bilﬁ exists and is given by
- = i 348 7
(3.24) K = gt 4 1T _v( B’ > (b] ﬂz)
v g o Y
and
o
3.25 det(Hz) = ———det(a).
( ) € ( 7,]) 12|,8|')/ € (al])
Since k;; = 1 5, the inverse of the angular metric tensor k7 is given by
(3.26) k' = 3y2H7,

where Hi' is given by (3.24).
Also, the determinant of the angular metric tensor k7 is

g

(3.27) detllg) = yomyariyg)

det(a,z).

Thus, we have

Theorem 3.4. The inverse and determinant of the compler angular metric tensor
of a complex Finsler space (M, F) with (v, |8])- metric are given by (3.26) and (3.27)
respectively.

4 Connection coefficients and curvature

The Chern-Finsler connection coefficients (c.n.c.) of a complex Finsler space (M, F')
with (v, |8])- metric is defined by

CF —
, Ogim .0n
i mi m l mi m
(4.1) Nj= g™ S

Differentiating (3.5) with respect to 27, we have

o, 1 28] Oa;x 0T z k lfl
92 218] (372 e ”

. _m ~’m F ilm , i=l O o a7 G—
42 (37 + )+l M”” TR =R
+7mabi iy PObm B }

28] 0=1" 5] 91 2/3\5| fw
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Substituting (3.18) and (4.2) in (4.1), we have

CF 372 . . L . R
(4.3) Nj4F|B|{a + An'n™ + B0 + (BU'™ + Bb n)}
2|IB|8 plk p —l k 10 p 4aj %
<A (G gt s st +Fgte) (55 +

4 Oa T 8 8“ Tk b Ob

F pim p—l - P‘ p=l—k ~“m YYp p

+ (372 9z 11 9’y5a 9z TN +2|6| 923"
0 D))

1Bl 9z~ 2B|3| "0m

Next, we consider the following complex Cartan tensors [2]

09+ 0Oqg.+ 0q .~
(4.4) o = 29m _ %m0y 99n OB
J onk oy on* ~ 0|B| on*

Differentiating (3.10) with respect to n* and using (3.1) in (4.4), we have

1 B 2(F
(45) Cjﬁk = W {Bb — (+|6|)ak} ajﬁ

Telh 33

4
+ W (572 +10|3> — 16\ﬂ|7) apajaz

(BIBI — F?) bibby

4Fﬁ|ﬁ|
9F|1ﬁ\ {25 (F'+|BI) beajag, + §(2F+7)akajbg+25akahbj}

1 { 1 (18] — F)

1
+ o arbjby + ————>bybja; + —b a-lk}.
3Fy | 28] R T T pip] R T gy R

Also, the vertical coefficients of Chern- Finsler connections are defined as

) G
(4.6) Cir = g™ ég;) =g" jmk-
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Substituting (3.18) and (4.5) in (4.6), we obtain

i 3% [ R i iph i=h | Bph i
(4.7) = % {ah + Ani" + Bbb + (8" + BbPy )}

1 (8 2(F + |8

4
a7y 7 (57% +10|I> ~ 16/6]) axa;a;
2
9Fllﬁ| (2/3 (F +18]) brasag, + §(2F+’7)akajbﬁ+25akahbj>

2 1
s Lo+ s+ 7 |

This leads to

Theorem 4.1. The coefficients of Chern - Finsler connection, complex Cartan ten-
sors and the vertical coefficients of Chern-Finsler connections of a complex Finsler
space (M, F) with (v,|8])-metric are given by (4.3), (4.5)and (4.7) respectively.

The holomorphic curvature (in the direction of 7) of the complex Finsler space
(M, F) with (v, |8])- metric is defined by (2.4).
CF

Substituting values of g,; and N} from (3.10) and (4.3) in (2.5), we have

(48) Ry =-

390 f2F o 8F o F 1S\
R S TR T A S
x {aP' + An'mP + Bb'P + C(Bb! ”—s—ﬁbpn)}

28| dagsr ., . 0Obs ob 4 by
) { <B| ST T+ By t) (ap+5>

32 0zk 0zk 18]
4 -
+F( dasp ;g 8  OawT . )

342 02k T 9v5 gk

by Ob v B Oy B, Obs h
+F<2|/5|82’“"+|6|82’“ 35 0" )}”

Thus, we have

Theorem 4.2. The holomorphic curvature of a complex Finsler space (M, F) with
(v, |8])-metric is given by (2.4) together with (4.8).
5 Euler-Lagrange equations

The Lagrangian L given by (3.3), L = F? = (v + |3])? depends on the parameter
t € R by means of z*(t) and 7*(t) and their conjugates. Differentiating (3.3) with
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respect to t, we have

dL. 9L , OLdn' OL_, OL dnp’
(5.1) — = o) - + =7 — )
dt 0z ont dt 0z ot dt
Since, L is homogeneous of degree one in n‘, g 77LZ n® = L, on differentiating with respect
to t, we get
dL d (0L\ , OLdn
(5.2) oS () 228
dt  dt \ont on dt

But E;(L) = 0, implies % (gnL,) = gﬁ along the extrmal curve ¢(t) on T'M. There-

fore (5.2) gives

dL _ 0L ;0L dy
at oz T apiat

(5.3)

By conjugation (as t and L are real valued functions), we have

dL 9L _, 9L dif

dat oz o dt

(5.4)

Adding (5.3) and (5.4) and using in (5.1), we conclude %& = 0, which further implies
%. This leads to

Theorem 5.1. For the complex Finsler space (M, F) with (v,|B])-metric, 4 =0 =

48 along an extremal curve c(t) on T'M.

Now, we derive the Euler-Lagrange equations for L = F? = (v + |3|)2.
Differentiating L with respect to z* and 7’ respectively, we have

oL _ . Oy 916 _ Oy , 9If|
(5:5) 92~ P TG =2 e T s
oL Al 98| oy, 918

. - =L -+ L - =2F . - ).
(5.6) o "o + Lig| oy o + oy

Further differentiation of (5.6) with respect to ¢t implies
d (oL _,dF (o  ol8
dt\omi) T dt \ont = oni
d(oy\  d(ol8
2F< — - — - .
=2 () + i (o
In view of theorem 5.1, (5.7) gives

& (5) - {5 (5) + 5 (3D}

(5.7)
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Now,
ol 1 dv? Oy
(5.9) Ei(y) = 32 Ei(y?) + 32 dt oy
1 1 d|p| 0|8
5.10 E; = E;(18)? :
(5.10) 18 = g3 B8 + 15 5

respectively. For the Lagrangian L = F? = (v + |3|)?, (2.6) gives
(5.11) Ei(L) = 2F{Ei(y) + Ei(|8))} = 0.
Substituting values of E;(v) and F;(|8]) from (5.9) and (5.10) in (5.11), we obtain

dv? Oy d|B| 0B
- 21 2 220 =
(5.12) 20BIE:(y") + 37" El|B1%) + 61815 5,7 + 67 i =0

Thus, we have

Theorem 5.2. The Euler-Lagrange equations of the complex Finsler space (M, F)
with (v, |B|)-metric are given by (5.12).
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