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Abstract- This paper addresses the application of six different optimal sensor placement
(OSP) techniques in buildings. These techniques are the EFfective Independence (EFI), 
Optimal Driving Point (ODP), Non-Optimal Driving Point (NODP), Effective
Independence Driving Point Residue (EFI-DPR), Singular Value Decomposition (SVD)
and the Sensor Set Expansion (SSE) methods.  A toolbox OPTISEP is developed by the 
author for this purpose within the context of this paper. The techniques are compared among
themselves by using various criteria. The overall results show that the SSE Technique is the
best. First, the technique results in a dramatic reduction in the computational effort.
Second, it allows a civil engineer to specify a set of locations that they absolutely want to
keep in the final sensor configuration. Mozst importantly, while the sensor distribution
estimated by other techniques is mainly concentrated in a certain storey of the building, 
SSE gives a homogeneous sensor distribution throughout the building. Finally, it is shown 
that  the  technique  is  also robust against noise in the measurements.
Key Words- Optimal sensor placement, Fisher information matrix, multistory 
buildings, system identification, modal testing 

1.INTRODUCTION

 The sensor location problem is a key issue for on-orbit modal identification and 
correlation of large space structures (LSS) in aerospace industry. The Optimal Sensor 
Placement (OSP) techniques are discussed comprehensively for aerospace applications 
[1,2,3], for process industry [4], for the safe operation of nuclear reactors [5] and for 
bridges [6,7]. 

 This paper addresses the application of different OSP techniques in stiff 
buildings. As stated above, the OSP Techniques were first developed for aerospace
structures where the stiffness and the mass distributions are homogeneous throughout 
the structure. However, in reinforced concrete buildings, the stiffness and the mass 
distributions are not homogeneous [8,9]. Therefore, it is very important to investigate 
the feasibility of these techniques in the application for building type structures. 

 A TUBITAK project entitled 'Damage identification in existing buildings using 
real time system identification techniques and finite element (FE) model updating' has 
been started in 2008 at Istanbul, Turkey. Within this paper as well as the context of the 
project, a toolbox OPTISEP (OPTImal SEnsor Placement) is developed in MATLAB 
[10] by the author which can compute the optimum sensor locations according to six 
alternative OSP techniques currently used in NASA for LSS. Different techniques that 
are incorporated in the toolbox are the EFfective Independence (EFI) by Kammer [1], 
Optimal Driving Point (ODP) [11,12], Non-Optimal Driving Point (NODP) [11], 
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Effective Independence-Driving Point Residue (EFI-DPR) [11,19], the Singular Value 
Decomposition based technique (SVD-OSP) by Kim et al. [13] and the Sensor Set 
Expansion (SSE) by Kammer et al. [14]. The optimal sensor locations for a stiff 
building are determined based on the different OSP techniques in the toolbox and are 
compared with each other using various criteria in this paper.

2 .OPTIMAL SENSOR PLACEMENT TECHNIQUES

2.1  The Effective Independence Method (EFI)
 The EFI Method by Kammer [1] is used for the selection of a set of sensor 

locations from a large set for the purpose of on-orbit identification and correlation of 
LSS [15]. If the sensor output equation is as:

(1)
 the sensors can be sampled and an estimate can be calculated for the target states  by 
solving Eq.(1) as: 

(2)
 where  is the output from the sensors,  the matrix of the target modes partitioned 
to the sensor locations obtained from the FE model, and  is the vector of target modal 
coordinates. The best estimate in placing  sensors within the  candidate locations 
implies that the covariance matrix of the estimate errors will be a minimum. Within this 
context, the output  must be modified as: 

(3)
 where  is the process measurement and the vector  represents the stationary 
Gaussian white noise with variance . The covariance matrix of the estimate error can 
be expressed as: 

(4)
 where E denotes the expected value. Since , the covariance matrix can be 
simplified as: 

(5)
 where  is the Fisher Information Matrix (FIM) [16]. The best state estimate  can be 
obtained by maximizing  which results in the minimization of the covariance matrix. 
It is assumed that the measurement noise is identically and independently distributed 
random process at each sensor. The FIM can then be simplified from Eq.(5) as [1]: 

(6)
 The following eigenvalue problem is solved: 

(7)
 The eigenvalues of Ao are real and positive and the eigenvectors  are orthonormal 
resulting in the relations:
                                                 IΨΨλΨAΨ T

o
T                                           (8)
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The derivation of the fractional eigenvalue  distribution is given elsewhere [1,15]. 
The independence distribution vector  can be expressed as the diagonal of the matrix 

: 

(9)
 can then be expressed as: 

(10)
 The diagonal element that has the smallest value in the prediction matrix represents the 
degree of freedom and the corresponding sensor that has the smallest contribution to the 
identification of . This sensor location can be eliminated from the initial set of 
candidate sensors in an iterative way until the number of sensors in the initial candidate 
set equals the fixed sensor number m being used. 

2.2  Optimum Driving Point (ODP) Based Method
 In order to identify the nodal points of mode shapes, modal constants for all 

chosen modes at each degree of freedom are multiplied and the result is a coefficient 
called the ODP parameter which can be expressed as: 

(11)
 The candidate sensor locations are reduced to the number of available sensors using the 
ODP parameter. The sensor locations with the low ODP values are deleted first.

2.3  Non-Optimum driving point (NODP) based method
 This methods uses the NODP parameter technique which for each DOF within a 

specified frequency range, identifies how close that DOF is to a nodal line of any mode. 
The technique evaluates the optimum driving positions as: 

(12)
2.4  The Effective Independence-Driving Point Residue Method (EFI-DPR)
 In EFI-DPR methods [11,19], the  of all DOF is accounted such that 

the DOFs with low response are deleted first. The EFI-DPR is defined below: 
(13)

 where 

(14)
 where r is the rth target mode frequency.

2.5  Singular Value Decomposition Based Method (SVD-OSP)
 A Singular Value Decomposition (SVD) based method is proposed by Kim and 

Park [13]. The details are in Ref [13] and will not be given here for purposes of brevity.
2.6  Sensor Set Expansion Technique
The SSE technique by Kammer [14] iteratively expands an initial set of sensors 

to the desired number of sensors as opposed to the previous techniques, which reduce 
the initial candidate set of sensors to the available number of sensors. The method 
allows a test engineer to specify a set of locations that they absolutely want to keep in 
the final sensor configuration. The techniques mentioned previously in this paper do not 
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retain certain locations in the final sensor configuration. There are two different cases 
when using the technique by Kammer [14]. The case in which the initial node set 
renders target mode shapes linearly independent is explained in the Appendix. If the 
initial node set renders target mode shapes linearly dependent, the FIM becomes 
singular with rank . Let Qo be the FIM that corresponds to the initially selected set 
of triaxes,  be the set of orthonormal eigenvectors associated with the zero 
eigenvalues of  which span the  dimensional space and which are orthogonal to 
the information subspace contained in . The eigenvectors  can be used to generate 
a corresponding orthogonal projector  that can be expressed as: 

(15)
 The candidate sensor set information matrix  can then be filtered using the relation: 

(16)
 It should be noted that while  is full rank, the projected information matrix  is 
singular with rank . This matrix can be decomposed as: 

(17)
 where  represents the orthonormal eigenvectors associated with the diagonal 
dimensional matrix  containing the nonzero eigenvalues. The objective in the sensor 
set expansion technique is to remove the highest ranked node that contributes to 
from the candidate set and add it to the initial sensor set. The filtered candidate 
information matrix with the ith deleted candidate node can be written as: 

(18)
 in which 

(19)
 The filtered candidate sensor set information matrix with the ith deleted candidate node 
can be decomposed as: 

(20)
 where  and  are the nonzero eigenvalues and the corresponding eigenvectors of 

. The measure of the triaxial EFI used to delete a sensor from the candidate set and 
add it to the initial sensor set in the rank deficient case is as: 

(21)

3 . THE INSTRUMENTED SCHOOL BUILDING AND THE CANDIDATE 
SENSOR LOCATIONS

 Different OSP techniques are tested in a five storey stiff school building (Fig.1). 
The modal frequencies calculated using the FE model are given in Table 1.
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Figure  1: The instrumented school building [18].

Only four global modes can be used in damage identification as shown in Table 
1. A three DOF candidate sensor is selected at each intersection point of axes that are 
shown in Fig.1 which summed up as a total 675 DOF for the candidate sensors for the 
whole building. The goal is to to select the sensor locations that would give the best 
estimates of the 4 target modes out of the initial candidate set of 675 sensor locations.

  Table  1: Modal frequencies calculated using the FE model.
    Number Frequency (Hz)  Mode type
 1  2.62  First bending mode in the z direction 
 2  4.84  First bending mode in the x direction
 3  5.90  First torsion mode
 4  10.007 Second bending mode in the z direction 
 5-12  10.133  Local modes of the ground storey beams
 13  14.262  Local mode of the slabs
 14  14.294  Local mode of the slabs 
 15  14.324  Local mode of the slabs
 16  14.602  Local mode of the slabs
 17  15.693  Local mode of the slabs 
 18  15.754  Local mode of the slabs
 19  15.873  Local mode of the slabs
 20  15.953  Local mode of the slabs 

4  THE COMPARISON OF THE OPTIMAL SENSOR PLACEMENT 
TECHNIQUES

 The resulting sensor configurations are shown in Figs. 2 and 3. It is apparent 
that while the sensor distribution is concentrated in the roof or in a certain storey of the 
structure in the other techniques, the final sensor configuration is homogeneously 
distributed throughout the storeys in the SSE technique. This shows that the SSE is 
more suited for applications in buildings than the other techniques. The figures also 
show that the EFI and the SVD-OSP methods give exactly identical results for the 
optimal sensor configuration. This should be anticipated as these two methods are in 
fact identical. The improvement that the SVD-OSP method brings on the EFI method is 
a criterion for deleting more number of sensors at one iteration. 

The goodness of the sensor configuration estimated by the different methods can 
be compared in terms of the trace, the determinant and the condition number of the 
FIM. The determinant of the FIM is a measure of information amount in measurements. 
The condition number of the FIM is a measure of the sensor configuration estimations's 
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robustness to model errors in the mode shapes obtained from the FE method 
representation of the structure. First, the fractional eigenvalue distribution is illustrated 
in a three dimensional plot as shown in Fig. 4. Each peak in the plot shows the 
fractional contribution of each sensor location to the corresponding eigenvalue of the 
FIM. The figure demonstrates clearly that the highest fractional eigenvalue 
contributions are observed at the higher degrees of freedom.  

Fig.5 shows the determinant values of the FIM calculated using different OSP 
techniques. The results show that the best OSP techniques are the EFI, SVD-OSP and 
EFI-DPR. The sensor configurations obtained using these three methods give more 
information regarding the mode shapes compared to the ODP and NODP methods. The 
figure also shows that NODP method gives the worst sensor configuration. Fig.6 shows 
that the EFI techniques result in a sensor configuration possessing a smaller estimate 
error covariance matrix yielding better state estimates than the NODP technique as they 
have higher trace values.

  
 Figure  2: Final sensor configuration according to a) NODP (b) EFI and OSP-

SVD (c)ODP method
   
The SSE technique could not be plotted in Figs. 5 and 6 together with the other 

techniques as the philosophy of the other techniques is the reduction of the sensor set 
rather than expansion of the initial subset of sensors. A comparison is made in Table 2 
which clearly shows that the ODP and the NODP techniques should not be used in 
buildings due to dramatically low determinant values. Overall, the best result is obtained 
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from the SSE and the EFI techniques. However, if a choice has to be made between the 
EFI and SSE, SSE would always be preferable due to the fact that a more homogeneous 
sensor configuration is obtained with the SSE. Moreover, EFI tends to concentrate 
sensors at the roof level. The SSE technique also results in lower computation time than 
the EFI based techniques.

Figure  3: Final sensor configuration according to (d) EFI-DPR; (e) SSE
   

  

Figure  4: Fractional eigenvalue distribution for initial 675-DOF candidate 
sensor set and 4 target modes.
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Table  2: The condition number, the determinant and the trace obtained from 
different methods.  

  Technique Condition 
Number

 Trace Determinant  CPU Time 
[sec]

 NODP  7.61E6 4.7 1.9E 12 2.094

 EFI  2.5  9.9 29.09 2.087
 ODP  7.8 10.68 1.2E-10 0.0823
 EFI-DPR  6.7 11 22.15 2.24
 SSE  3.89 10 30.1 0.05

  

        Figure  7: MAC values according 
                    to the NODP method.

   

   

Figure  5: The Determinant of the 
FIM: NODP (solid line), EFI (dashed 
line), ODP (dashed-dotted line), EFI-
DPR (dotted line) and the SVD-OSP 
methods (thick solid line).

Figure  6: The Trace of the FIM: 
NODP(solid line), EFI (dashed line), 
ODP (dashed-dotted line), EFI-DPR 
(dotted line) and the SVD-OSP 
Methods (thick solid line).

   Figure  8: MAC values according to 
the EFI method.

Figure  9: MAC values according  to the 
ODP method.

Figure  10: MAC values according to the 
EFI-DPR method.



Evaluation of Optimal Sensor Placement Techniques 464

Figure  11: MAC values according to the SSE Technique.

Next, different OSP techniques are compared in terms of the Modal Assurance 
Criterion (MAC) values [17]. It should be noted that no system identification stage is 
involved in this study. This is an ongoing study. The effect of the sensor locations on 
the estimates of the system identification techniques is out of the scope of this paper and 
will be dealt with detail in another study.  The aim in this paper is to investigate the 
robustness of each sensor placement technique to the presence of noise in the mode 
shapes. All the analytical modes obtained from the FE model are correlated with all the 
modes contaminated with noise and the results are placed in a matrix. In particular, the 

 component of the  mode contaminated with noise for the  measurement, , 
is computed from the corresponding component of the same noise-free mode,  as: 

(22)
 where  is the standard deviation; and  is a random number in the range [-1,1]. The 
noise level is substantial in which  is  for the mode shapes. Figs. 7, 8,9, 10 and 11 
show the MAC values based on an optimal sensor configuration determined by the 
NODP, EFI, ODP, EFI-DPR and the SSE Techniques, respectively. A MAC value 
below 95  is considered rather as unsatisfactory. These results show that overall, the 
SSE technique gives the best MAC values in the presence of substantial noise.

Only the diagonal terms of the MAC are considered in the above parametric 
studies. The off-diagonal terms are just as important. Ideally, they should be as small as 
possible. Fig. 12 shows that all the techniques except for the SSE have substantially 
high off-diagonal terms in their MAC. However, this is obviously not the case with the 
SSE method which shows the best capability in discriminating between different modes 
in the presence of substantially noisy measurements. 

5. CONCLUSIONS

 In this study, several different techniques developed for the OSP in LSS are 
implemented on multi-storey buildings. The overall results show that the SSE technique 
is the best and brings four important advantages over the other techniques: First, while 
the sensor configuration estimated by the other techniques is mainly concentrated at a 
certain floor of the structure, the SSE predicts a homogeneous sensor distribution 
throughout the structure. This would be very important in FE model updating as it is not 
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possible to know the location of the damage apriori in buildings. Second, the technique 
allows an expert civil engineer to keep a set of locations in the final sensor 
configuration. Third, the SSE technique decreases the computation time. Fourth, the 
technique is very robust against the noise in the measurements. Due to these advantages, 
the SSE method for on-orbit modal identification and correlation of LSS is promising 
and is well-suited for widespread use for sensor placement decision support in building 
type structures. 

   

Figure  12: MAC Correlation matrix.
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6. APPENDIX:  SSE Technique- Case I: The initial node set renders target mode 
shapes linearly independent.

In this situation, the measure of triaxial EFI used to add a sensor is chosen as: 

(8)
 where  is the FIM that corresponds to the initially selected set of triaxes as: 

(9)
 is the target mode partition matrix that corresponds to the initially selected set of 

triaxes.  is the FIM with the ith node added to the initial triax set as: 
(10)

 where  is a k-dimensional identity matrix. This measure represents the fractional 
amount the determinant of the initial information matrix will increase, if the th
candidate node is added to the initial set. 


