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Abstract: The objective function of canonical correlation analysis (CCA) is equivalent to minimising an L2-norm distance of the paired data.
Owing to the characteristic of L2-norm, CCA is highly sensitive to noise and irrelevant features. To alleviate such problem, this study
incorporates robust feature extraction and group sparse feature selection into the framework of CCA, and proposes a feature fusion method
named robust and sparse CCA (RSCCA). In RSCCA, L2,p-norm is adopted as the distance measurement of paired data, which can alleviate
the effect of noise and irrelevant features and achieve robust performance. The experimental results show that our method outperforms CCA
and its variants for feature fusion.
1 Introduction

In real application, we are involved in dealing with high-dimensional
data which needs more storage and more computational time. Lots
of approaches are proposed to address such problem, and dimension
reduction is one of the simplest one. Most of traditional dimension
reduction methods are based on the sum of L2-norm. Owing to
excellent performance for feature fusion, canonical correlation
analysis (CCA) has been widely used to extract the discriminant
feature. By simple algebraic derivation, we find that objective
function of CCA is equivalent to minimising an L2-norm distance
of the paired data [1–4]. In [5], Kwak pointed out that the objective
function based on L2-norm will be prone to outliers, because
outliers with large norms dominate the objective function owing
to the use of L2-norm. Furthermore, CCA suffers from the fact
that each vector of mapping is a linear combination of all the
original variables, thus it cannot select the most discriminant
feature and discard these discriminant irrelevant features.
For feature selection, Nie et al. [6] proposed a robust feature

selection based on L2, 1-norm. Peng and Fan [7] proposed a
feature selection method based on L2, p-norm which can get more
sparse solution than L2, 1-norm. For multi-instance learning, Wang
et al. [8] proposed a novel class specific distance metrics which
is based on L2, 1-norm. Experiments show that the objective based
on L2, p-norm is more robust to outliers and the regularisation
based on L2, p-norm also can select the most discriminant features.
In this paper, we propose a method named robust and sparse

CCA (RSCCA) based on L2, p-norm (RSCCA) which has the
following characteristics: (i) RSCCA is much more robust to
outlier samples; (ii) RSCCA can select the most discriminant
feature; (iii) the performance of RSCCA will be more stable,
because the different column vectors of mappings are constrained
to be orthogonal.

2 Robust and SCCA

Given N pairs of samples xi, yi
{ }N

i=1, we assume that the data of

two views are both centred. Given a matrix A [ Rm×n, the
L2, p-norm is defined as

A‖ ‖2, p=
∑m
i=1

∑n
j=1

Aij

∣∣∣ ∣∣∣2( )(p/2)
⎛⎝ ⎞⎠(1/p)

(1)
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CCA aims to get a pair of mappings by maximising the correlation
of the projected data of two views. By simple algebraic operations,
the objective function can be transformed into the following
minimising problem [1, 2]

W x, W y

{ }
= argmin

W x ,W y

∑N
i=1 xiW x − yiW y

∥∥∥ ∥∥∥2∑N
i=1 xiW x

∥∥ ∥∥2 +∑N
i=1 yiW y

∥∥∥ ∥∥∥2 (2)

From (2), we know that CCA equals to minimise the L2-norm
distance of the paired data. Thus, CCA could be influenced by
outlier samples. To alleviate this problem, we adopt L2, p-norm to
measure the distance of paired data. Then, the objective function
can be written as

W = argmin
W

UW‖ ‖2, p
DW‖ ‖2, p

(3)

where U = XT −YT
[ ]

, D = XT 0
0 YT

[ ]
and W = W x

W y

[ ]
.

After getting W, we can get W x and W y by the following equation

W x = W (1:dx, :);
W y = W (dx + 1:d, :) (4)

where dx denotes the dimension of xi and d denotes the dimension
of ui.

As we all know, the vector of mapping of CCA is combination of
all features which contains discriminant irrelevant features. To
discard these discriminant irrelevant features, we add a regulari-
sation term R(W ) into the objective function of RSCCA. Many
studies show that an L2, p-norm could lead to the sparsest solution
[7]. Thus, we adopt L2, p-norm to regularise W. Then, the objective
function of RSCCA can be written as

W = argmin
W

UW‖ ‖2, p + b W‖ ‖2, p
DW‖ ‖2, p

=
˜UW

∥∥ ∥∥
2, p

DW‖ ‖2, p
(5)

where Ũ = U
bI

[ ]
.

From the definition of U, we know that the ith row of UW
denotes WT

x xi −WT
y yi (i ≤ N ). If i > N, UW denotes the
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Fig. 1 Value of the objective function versus the iteration on CENAPRMI
dataset

Table 1 Recognition rates (%) and their corresponding dimension

Method CCA OCCA SCCA RSCCA

N = 100 78.82 (21) 87.72 (34) 84.32 (138) 89.08 (29)
N = 200 85.66 (23) 90.54 (44) 88.18 (138) 91.90 (26)
N = 300 87.72 (24) 92.02 (43) 89.58 (137) 93.16 (35)
(i− N )th row of W. In RSCCA, we adopt L2, p as the distance
measurement. From above, we know that L2, p can get more
sparse solution than L2, 1-norm. From the computation of (3), we
know that it is computed by giving a weight for each row. Thus,
minimising (3) equals with minimising the weighted paired data
of two views or the row of W by which the weight of outliers
and the noise feature will be 0. Therefore, the performance of
RSCCA gets more robust than CCA and its variants.

As we all know, it is hard to solve the objective function which is
based on L2, p-norm. In [8], Wang et al. proposed an efficient
iterative algorithm to solve the objective function based on
L2, 1-norm. Inspired by such algorithm, we propose an algorithm
to optimise our objective function. Then, we introduce three
intermediate variables into our objective function and it can be
transformed into

min
W ,A,B, S

tr WTŨ
T
AAŨW

{ }
s.t tr WTDTBS

{ } = 1

(6)

A and B denote two diagonal matrixes where their ith diagonal
elements are, respectively, defined as

aii =
1

‖Ũ iW‖1−p/2
2

bii =
1

‖DiW‖1−p/2
2

(7)

S is defined as follows

S = D1W
( )T
D1W

∥∥ ∥∥1−p/2

2

,
D2W
( )T
D2W

∥∥ ∥∥1−p/2

2

, . . . ,
DcW
( )T
DcW‖ ‖1−p/2

2

[ ]T

(8)

Fixed A, B, S and W can be calculated using Lagrange method.
Then, the Lagrangian of (6) is

L W( ) = tr WTŨ
T
AAŨW

{ }
− l tr WTDTBS

{ }− 1
( )

(9)

dL

dW
= 2Ũ

T
AAŨW − lDTBS = 0 (10)

Then, W can be got by the following equation

W = Ũ
T
AAŨ

( )−11

2
lDTBS (11)

We can calculate l using the following equation

l =
tr WTŨ

T
AAŨW

{ }
tr WTDTBS
{ } (12)

Fixed W, A, B, l and S can be easily computed using (7), (8) and
(12).

Research show that orthogonal projective system is more robust
to noises [9, 10]. Thus, in RSCCA, we constrain that the different
columns of mappings are orthogonal. Therefore, the objective
function can be written as

W = argmin
W

˜UW
∥∥ ∥∥

2, p

DW‖ ‖2, p
s.t. WTW = I

(13)

After getting W, we compute the orthogonal mapping W by
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Gram–Schmidt orthonormalisation. As we all know, the matrix
W̃ by Gram–Schmidt orthonormalisation equates to W̃ = WR.
Thus, we know that W is also sparse after Gram–Schmidt ortho-
normalisation. Then, W x and W y can be got using (4). The whole
algorithm of our RSCCA is given in Algorithm 1.

Algorithm 1: Framework of RSCCA

Input: The sets of two views {xi, yi}
N
i=1;

The initial mapping W, the initial value of objective function
J0;

The maximal iteration times maxIter;
Output: W x, W y

1: Construct Ũ and D;

2: for each i [ [1, maxIter] do
3: Compute the value of objective function l using (12);
4: if J (W )− J0

∣∣ ∣∣ , 1e− 3& (i = 1) then

5: break;
6: else
7: J0 � l;
8: end if
9: Compute A and B using (7);
10: Compute S using (8);
11: Compute W using (11);
12: end for
13: Compute the orthogonal mapping W by Schmidt

orthogonalisation;
14: Compute W x and W y by (4);
15: return W x, W y.

3 Experiments and analyses

During the experiments, we select CENPAMI dataset to evaluate
our RSCCA. As we all know, the letter images of CENPAMI
dataset are not totally aligned. Therefore, there are parts of
samples that are illegible and hardly distinguished in CENPAMI
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dataset. To some extent, these samples can be viewed as outliers.
Considering the dimension of features, we just select ‘GAB’ and
‘LEG’ features. Besides CCA, orthogonal regularised CCA
(OCCA) [10] and sparse CCA [11] are also selected for compari-
son. The parameters of OCCA and sparse CCA are set by the
same way of the corresponding refers. N(N = 100, 200, 300)
samples from each class are selected as train samples, the remaining
samples for testing ones. During the experiments, we set p = 0.9,
b = 0.01. After getting mappings, the data can be embedded into
lower-dimensional space. We construct the combined feature as
follows (which is a common strategy [10] for CCA):

Z = WT
x x

WT
y y

[ ]
. 1 nearest neighbour (1NN) classifier is employed

to classify the combined data. Each experiment is repeated ten
times, and Table 1 reports the average recognition rates where the
best performances are highlighted in bold.
From this table, our method performs better than the other

methods. Thus, we conclude that RSCCA is more robust than the
other three methods. In Fig. 1, we draw the values of the objective
function during iterations which show that our optimised algorithm
can be converged quickly.

4 Conclusion

In this paper, we proposed a method named RSCCA-based
L2, p-norm for feature fusion. Furthermore, we propose an algorithm
to optimise our objective function. Experimental results show
RSCCA has better performance than CCA and its variants.
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