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Abstract– This paper investigates optimal replenishment lot size and optimal number 

of shipments for economic production quantity (EPQ) model with rework process using 

an algebraic approach. The classic EPQ model assumes a perfect quality production for 

all items produced and a continuous issuing policy for satisfying customer‟s demand. 

However, in a real life vendor-buyer integrated-production-inventory system, a multi- 

delivery policy is commonly used in lieu of a continuous issuing policy and generation 

of defective items during a production run seems to be inevitable. A recent published 

work examined such an identical problem using mathematical modeling and differential 

calculus to derive the optimal replenishment lot size and optimal number of deliveries 

that minimizes overall production-inventory-shipment costs. This paper proposes a 

straightforward algebraic approach to replace the use of calculus on the cost function 

for determining optimal production-shipment policies. It also presents a simpler form 

for calculating the long-run average cost for such an imperfect EPQ problem. 
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1. INTRODUCTION 
 

Two fundamental questions that need to be answered by inventory controllers for 

items they routinely replenish are “when should a replenishment lot be initiated?” and 

“how many to be refilled in a lot?” in order to minimize the long-run average cost [1]. 

The economic production quantity (EPQ) model is often used by production and 

inventory managers to assist them in addressing the aforementioned issues [2]. The 

classic EPQ model assumes a continuous inventory issuing policy for satisfying product 

demand. However, in a real life vendor-buyer integrated production-inventory system, 

multiple or periodic deliveries of finished products are commonly adopted. As a result, 

another issue to be addressed is “how many shipments should a replenishment lot be 

broken down to?” so that the overall costs can be minimized. 

Goyal [3]
 
first considered an integrated inventory model for a single supplier-single 

customer problem. He proposed a method that is typically applicable to those inventory 

problems where a product is procured by a single customer from a single supplier. 

Example was given to illustrate the method proposed. Studies have since been carried 

out to address various aspects of supply chain optimization [4-8]. Banerjee [4] studied 

an integrated economic lot-size model for the purchaser and vendor. Sarker and Khan [6] 
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examined a manufacturing system that procures raw materials from suppliers in a lot 

and processes them into finished products which are then delivered to outside buyers at 

fixed points in time. A general cost model was formulated considering both raw 

materials and finished products. Using this model, a simple procedure was developed to 

determine the optimal ordering policy for raw materials as well as the manufacturing 

batch size, so that the overall costs for such a supply chain system can be minimized. 

Siajadi et al. [8] presented a methodology to obtain the joint economic lot size in the 

case where multiple buyers are demanding one type of item from a single vendor. They 

proposed a model to minimize the joint total relevant cost (JTRC) for both vendor and 

buyer(s). They also considered the two-buyer and more than two-buyer cases, and 

obtained the exact and approximate optimum solutions, respectively. 

The classic EPQ model also assumes that all items produced are of perfect quality. 

It is unrealistic, because in real-life production system, due to process deterioration and 

other various factors, generation of defective items is inevitable. Studies have been 

carried out to enhance the classic EPQ model by addressing the issue of defective items 

produced [9-13]. The nonconforming items sometimes can be reworked and repaired 

hence the overall production costs can be significantly reduced [14-22]. Jamal et al. [16] 

studied the optimal manufacturing batch size with rework process at a single-stage 

production system. Cases of rework being completed within the same production cycle, 

and rework being done after N cycles are examined. They developed mathematical 

models for each case and derived total system costs and optimal batch sizes accordingly. 

Chiu et al. [22] investigated the optimal replenishment lot size and optimal number of 

shipments for economic production quantity (EPQ) model with rework. They used the 

mathematical modeling together with the conventional derivatives on the cost function 

of the proposed system, to prove its optimality and derived the optimal replenishment 

production-shipments decisions respectively. 

A few recent papers [23-25] for instance, Grubbström and Erdem [23] and 

Cárdenas- Barrón [24], they proposed algebraic approaches for solving economic order 

quantity (EOQ) model with backlogging and EPQ model with shortages respectively, 

without reference to the use of derivatives, neither applying the first-order nor the 

second-order differentiations. This paper re-examines the EPQ model (considered by 

Chiu et al. [22]) with rework and multi-delivery policy using algebraic approach, to 

demonstrate that the optimal replenishment production-shipments policies as well as the 

long-run average system costs can all be derived without derivatives. 
 

 

2. PROBLEM STATEMENT AND MATHEMATICAL MODELLING 
 

Reexamine the EPQ model with multi-delivery policy and reworking of random 

defective items produced, solving by the use of conventional approach [22]. It assumes 

that during regular production time, there is an x portion of defective items produced 

randomly at a production rate d. All defective items are assumed to be repairable and are 

reworked at a rate P1 after the end of a production run, in each cycle. The constant 

production rate P is assumed to be larger than the sum of demand rate λ and production 

rate of defective items d. That is (P-d-λ)>0, where d=Px. 

A multi-delivery policy is considered in this study and it is also assumed that the 

finished items can only be delivered to customers if the whole lot is quality assured at 
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the end of rework. The fixed-quantity n installments of finished batch are delivered to 

customers, at a fixed interval of time during the production downtime t3 (see Figure 1). 

For the purpose of easing readability, the notation used in this paper is identical to 

that of Chiu et al [22], refer to Nomenclature listed below. 
 

 
Figure 1: On-hand inventory of perfect quality items in an EPQ 

model with a multi-shipment policy and rework [22] 

 
NOMENCLATURE: 
 

K = setup cost per production run, 

C = unit manufacturing cost, 

CR = unit rework cost, 

P1 = rate of rework, 

d = production rate of defective items, 

Q = a decision variable - production lot size to be determined for each cycle, 

h  = unit holding cost, 

h1 = holding cost for each reworked item, 

n  = decision variable, denotes the number of fixed-quantity installments of the 

finished batch to be delivered to the customers, 

K1 = fixed delivery cost per shipment, 

CT = unit delivery cost CT, 

t1 = the production uptime for the proposed EPQ model, 

t2 = time required for reworking of defective items, 

t3 = time required for delivering all quality assured finished products, 

H1 = maximum level of on-hand inventory in units when regular production process 

ends, 

H = the maximum level of on-hand inventory in units when rework process 

finishes, 

tn = a fixed interval of time between each installment of finished products 

delivered during production downtime t3, 
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T = cycle length, 

I(t) = on-hand inventory of perfect quality items at time t, 

TC(Q,n) = total production-inventory-delivery costs per cycle for the proposed 

model, 

E[TCU(Q,n)] = the long-run average costs per unit time for the proposed model. 

 

The total production-inventory-delivery costs per cycle TC(Q,n) consists of 

variable production cost, setup cost, variable rework cost, variable delivery cost, fixed 

delivery cost, variable holding cost for items reworked, holding costs during periods t1 

and t2, and holding cost for finished goods during delivery time t3 where n 

fixed-quantity installments of finished batch are delivered by request to customers at a 

fixed interval of time. Therefore, TC(Q,n) is 
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Using mathematical modeling and analysis, the long-run average costs per unit 

time for the proposed model, E[TCU(Q,n)] can be derived as follows [22]: 
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3. OPTIMAL SOLUTIONS DERIVED WITHOUT DERIVATIVES 
 

This paper employs algebraic approach instead of using the conventional 

differential calculus on the long-run average cost function E[TCU(Q,n)] for proof of its 

optimality as well as obtaining the optimal production-shipment policies. 

  Because the decision variables are Q and n, we identify that Equation (2) has terms 

for the constants, Q, Q
-1

, nQ
-1

, and Qn
-1

 as follows. 
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Where Z0, Z1, Z2, Z3, and Z4 denote the following: 
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3 1Z K               (7) 
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With further rearrangements, Equation (3) becomes 
 

     
2

1 2 1 1

0 1 2 3 4,E TCU Q n Z Q Z Q Z Q n Z nQ Z                 
   (9) 

 

        

      

      

2 2
1

0 1 2 1 2

2 2
1 1 1

3 4 3 4

1 1 1

1 2 3 4

, 2

                         ( ) 2

                         2 2

E TCU Q n Z Q Z Q Z Z Q Z

Q n Z nQ Z Z Z nQ

Q Z Q Z Q n Z Z nQ



  

  

           

    
  

      
  

  (10) 

 

     
2 2

1 1 1

0 1 2 3 4

1 2 3 4

,

                         2 2

E TCU Q n Z Q Z Q Z Q n Z nQ Z

Z Z Z Z

                

   
 (11) 

 

From Equation (11), it is noted that if the following square terms equal zero, then 

E[TCU(Q,n)] is minimized 
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Substituting Equations (5) and (6) in Equation (14), the optimal replenishment lot 

size Q* can be obtains: 
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Substituting Equation (16) in Equation (15), the optimal number of shipments is 
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It is noted that Equation (17) is identical to Equation (21) as was given in Chiu et 

al [22]. From Equation (7) it follows that the optimal cost function E[TCU(Q*,n*)] is 
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4.  NUMERICAL EXAMPLE 
 

The aforementioned results derived by algebraic approach, especially Equations 

(16) to (18) are verified in this section using the same numerical example [22]. 

Reconsider that customer demand of a product is 3,400 units per year and it can be 

produced at an annual rate of 60,000 units. During the production, there is a random 

defective rate x which follows a uniform distribution over an interval [0, 0.3]. All 

defective items produced are considered to be repairable and a rate of rework P1=2,200 

units per year. Additional parameters used here include: 
 

 

K = $20,000 per production run, 

C = $100 per item, 

CR = $60, repaired cost for each item reworked, 

K1 = $4,350 per shipment, a fixed cost,  

CT = $0.1 per item delivered, 

h = $20 per item per year, 

h1 = $40 per item reworked per unit time (year), 

h2 = $80 per item kept at the customer‟s end per unit time. 
 
 

By using Equations (17), (16), and (18), the optimal number of shipments n*=2, 

the optimal replenishment production lot size Q*=1,673, and the optimal long-run 

average cost E[TCU(Q*,n*)]=$487,617 can all be obtained. These results are verified 

and they are identical to that were given by Chiu et al [22]. 

Because the number of shipments n* only takes on integer value, one should use 

Equation (2) to determine the optimal integer value of n* first, then plug it into 

Equation (3) to form a new set of formulas (i.e. Eqs. (4) to (12)) with single variable Q, 

and determine (using Eq. (14)) the optimal Q* accordingly. 
 

 

5.  CONCLUSION 
 

This paper determines the optimal replenishment lot size and the optimal number 

of shipments for EPQ model with rework process using an algebraic approach. It shows 

that economic lot size Q*, optimal number of delivery n* and the long-run average 

production-inventory-delivery costs E[TCU(Q*,n*)] for the proposed EPQ model can 

all be derived without derivatives. 
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This paper also reveals a simpler form (i.e. Equation (18) for calculating the 

optimal cost function E[TCU(Q*,n*)]. The algebraic approach demonstrated in this 

paper, may enable practitioners or students who with little or no knowledge of calculus 

to learn or handle with ease the real-life EPQ model. 
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