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Abstract: In this study the authors present a novel image denoising method based on applying adaptive thresholding on partial differential
(PDEs) methods. In the proposed method the authors utilise the adaptive thresholding to blend the total variation filter with anisotropic
diffusion filter. The adaptive thresholding has a high capacity to adapt and change according to the amount of noise. More specifically, ap-
plying a hard thresholding on the higher noise areas, whereas, applying soft thresholding on the lower noise areas. Therefore, the authors can
successfully remove the noise effectively and maintain the edges of the image simultaneously. Based on the adaptation and stability of the
adaptive thresholding we can achieve; optimal noise reduction and sharp edges as well. Experimental results demonstrate that the new algo-
rithm consistently outperforms other reference methods in terms of noise removal and edges preservation, in addition to 4.7 dB gain higher
than those in the other reference algorithms.
1 Introduction

Image denosing is a major step in all of computer vision and image
processing systems. Since the noise is related to high frequencies, it
is too difficult to eliminate this noise, and at the same time maintain-
ing the significant image features (e.g. edges) [1].

Image denoising plays an important role in guaranteeing the
effectiveness and sturdiness of image processing algorithms in the
industry image process procedures, for instance; image registration,
image segmentation. For that reason image denoising is still attract-
ing a considerable attention of the researchers [2]. Several methods
have been proposed in the literature to address the problem of image
denoising, most notably; partial differential equation (PDE)
methods [3–5], transform-domain methods [6], Gaussian smooth-
ing method [7], Gabor filtering method [8], empirical Wiener
filter [9] and wavelet thresholding method [10].

In the recent decades, PDEs became an important approach of
image denoising. The strategy of PDEs-based methods is to
distort a given image with a PDE and solve this equation to get
the denoised image [11].

The oldest PDE filtering model is the linear heat equation. This
equation diffuses in one dimension which will lead to get a
smooth image, but unfortunately fails to preserve the significant
information of the image (e.g. edges).

The second-order non-linear PDE models have been proposed
to avoid this flaw of the heat equation [12]. The most popular non-
linear filtration methods that based on PDE are; total variation (TV)
and anisotropic diffusion [Perona and Malik (PM)].

Anisotropic diffusion filter has been proposed in 1990 by
Perona and Malik (PM) [3]. In anisotropic diffusion model the
rate of diffusion is controlled by edge stopping function. This
filter is useful tool for multi-scale description of images, image
segmentation, edge detection, and image enhancement. In this
filter, an anisotropic diffusion equation has been used to smooth
the degraded image. The basic idea of the anisotropic diffusion
equation is to increase smoothness within the regions attained
through pre-estimation, whilst less smoothness across edges, to
get sharper and more defined edges [11]. Nevertheless, the
serious disadvantage of anisotropic diffusion model is that the
sharp edges and fine details are not preserved well during noise
removal process. To treat this drawback Kamalaveni et al. [13] pro-
posed to use appropriate edge stopping function.

Yang et al. [14] adopted non-local means theory to improve an-
isotropic diffusion model. The authors assumed that the image
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contains an extensive amount of self-similarity. In this model, the
similarity between the region around the centre pixel and the
region outside the centre pixel has been used to give a more reason-
able description of the image.

The second popular model of PDEs-based approaches is the TV
model. This model was first proposed by Rudin et al. [5] for edge-
preserving and noise removal. In this model, the following equation
has been proposed to smooth the image and preserve the edges
and details: E(u) = � �

V
[|∇u| + l(u− u0)

2]dxdy. This model has
the potential to handle the edges and eliminate noise in a given
image. TV model is a good in terms of maintaining the edges,
however, this model can cause the staircase effect and loss the
image structure as well as texture information. To obviate these
drawbacks, Lysaker and Tai [15], proposed to combine TV mini-
misation and a fourth-order PDE filter.

So many researchers tried to combine TV filter with anisotropic
diffusion filter for image denoising in order to make full use of the
denoising advantages of these two models.

In this paper we use an adaptive thresholding (soft and hard
thresholding) to combine the TV model and anisotropic diffusion
model. The proposed adaptive thresholding has the ability to
adapt and change in each area according to the area information
(flat area or edges). More accurately, applying the hard-thresholding
to the flat areas which contain less image features and much noise,
will allow us to remove noise very effective. Whereas applying the
soft-thresholding to the areas which contain more image features
will allow us to maintain the image features such as edges.

The remainder of this paper is organised as follows. In Section 2,
we briefly describe the TV and anisotropic diffusion filters. The
proposed model is described in Section 3. The experimental
results are presented in Section 4. Some concluding remarks are
outlined in Section 5.

2 Anisotropic diffusion and total variation filters

2.1 Anisotropic diffusion filter

In last few decades, image denoising methods based on partial
differential equation have been developed extensively. One of the
most famous image denoising approach based on partial differential
equation is anisotropic diffusion model which was first proposed
by Perona and Malik [3]. In this model, the linear (heat) equation
was replaced by a non-linear diffusion equation which is
commonly used in the fields of image denoising and enhancement.
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Perona and Malik [3] adopted the diffusion coefficient which is
small while the gradient of image is large to control the diffusivity
at those locations which have a larger likelihood to be edges.
Perona–Malik filter based on the following equation:

∂f

∂t
= div(g( ∇f∣∣ ∣∣)∇f ), (1)

and the diffusivity function is given by

g( ∇f∣∣ ∣∣) = 1

1+ ( ∇f∣∣ ∣∣2/k2) , k . 0, (2)

where g( ∇f∣∣ ∣∣) is a monotone decreasing smooth function with:

lim
∇f| |�0

g( ∇f∣∣ ∣∣) = 1, (3)

fast-diffusion.
And

lim
∇f| |�1

g( ∇f∣∣ ∣∣) = 0, (4)

slow or stopped diffusion.
From (3) and (4) we can observe that the diffusion is high as

the gradient is small, which results in more smoothing in the
flat area of the image. Whereas, the diffusion will be low as the gra-
dient is large, which results in less smoothing in the edges of the
image [14].
To get reconstruction f of a degraded image f0, Weickert [16]

used the following energy function:

E(f ) =
∫ ∫

V

l(f − f0)
2 + k2ln

1

g( ∇f∣∣ ∣∣)
( )( )

dxdy, (5)

and the corresponding Euler Lagrange equation will be as follows:

−∇ · (g( ∇f∣∣ ∣∣)∇f )+ 2l(f − f0) = 0. (6)

A general expression of the anisotropic diffusion equation
which was first proposed by Perona and Malik can be written as
follows [17]:

∂u

∂t
= ∇ · (g( ∇f∣∣ ∣∣)∇f )− 2l(f − f0),

[where ∇ · (g( ∇f∣∣ ∣∣)∇f ) in V× (0, T )]

∂f

∂n
= 0 on ∂V× (0, T )

f (x, y, t)|t=0 = f0(x, y) in V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where f (x, y, t)|t=0 = f0(x, y) is the initial condition and V is an
open bounded domain in R2.
The anisotropic diffusion model has the high capacity to remove

the noise very well. Nevertheless, this model suffers from ill-posed
problem, in other words, the existence and uniqueness of the solu-
tion of (7) cannot be guaranteed, therefore, when the noise and edge
have the same gradient, formula (7) will fail to be applied for
de-noising. Hence, it is highly likely that this model can cause
Gibbs-type artefacts.

2.2 Total variation filter

In 1992 Rudin, Osher and Fatemi (ROF) proposed a successful
minimisation approach to retrieve images with sharp edges. In
this approach the L2 norm which was proposed by Tikhonov and
Arsenin [18] has been replaced by L1 norm of the gradient of f.
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To recover the original image, ROF proposed to minimise the TV
as follows:

TV(f ) =
∫ ∫

V

|∇f |dxdy, (8)

subject to

∫ ∫
V

f (x, y)dxdy =
∫ ∫

V

f0(x, y)dxdy, (9)

1

|V|
∫ ∫

V

(f (x, y)− f0(x, y))
2dxdy = s2, (10)

where f and f0 represent original and degraded images, respectively.
In (10) the additive noise n(x, y) is of zero mean and has known
variance s2. By introducing Lagrange multiplier l, the energy func-
tion of the image can be defined as:

E(f ) =
∫ ∫

V

[ ∇f∣∣ ∣∣+ l(f − f0)
2]dxdy. (11)

In this paper we will adopt the PDEs methods to solve the above
constrained variational problem.

Solutions of (8)–(10) necessarily achieve the following
Euler-Lagrange equation:

− ∇ · ∇f
∇f∣∣ ∣∣

( )
+ 2l(f − f0) = 0. (12)

By the gradient descent method, we can obtain the TV denoising
model [19]:

∂f

∂t
= ∇ · ∇f

∇f∣∣ ∣∣
( )

− 2l(f − f0)

( )
,

[where∇ · ∇f
∇f∣∣ ∣∣

( )
in (0, 1)×V],

∂f

∂n
= 0 on (0, 1)× ∂V,

f (x, y, t)|t=0 = f0(x, y) for (x, y) [ V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where f (x, y, t)|t=0 = f0(x, y) is the initial condition and V is an
open bounded domain in R2.

TV filter can effectively remove the noise without blurring image
edges, by minimising the energy functional [20]. However, this
model can cause staircase effect and therefore loss of image struc-
ture and texture information.
3 Proposed model

The greatest challenge that face image denoising algorithms is lying
in removing the noise without blurring the edges of the image. In
our proposed model, we try to address this problem by utilising
the adaptive thresholding to distinguish between flat areas and
edges. More precisely, less noise removal on the edges of the
image, and more removal in the lflat areas.
access article published by the IET under the Creative Commons
-NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)



Fig. 1 Results of denoising obtained with Rice image (standard deviation of additive white Gaussian noise = 20). From left- to right-hand side and from top to
bottom: result of [21] algorithm, result of [22] algorithm, result of [17] algorithm, and result of the new algorithm
Now let us take the following energy function of the image to
restore the original image f from the degraded image f0:

E(f ) =
∫ ∫

V

S|∇f | + (1− S) k2 · ln 1

g(|∇u|)
( )

+ l(f − f0)
2

[ ]
dxdy.

(14)

where

S = N . T1, Hard− threshoding

Otherwise Soft− thresholding

{
(15)

where N is the standard deviation/variance of noise and T1 is
selected thresholds.

In this paper the soft thresholding formulation is:

Xsoft =
sign(X )(|X | − T ) if |X | . T ,

0 if X ≤ T ,

{
(16)

and hard thresholding formulation is:

XHard =
X if |X | . T ,

0 if X ≤ T .

{
(17)
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where

X = 1

(ex)2 + f 2x + f 2y
, (18)

here ex is initial constant.
From (6) and (12) the corresponding Euler-Lagrange equation

will be:

−S∇ · ∇f
∇f∣∣ ∣∣

( )
−(1− S)∇ · (g( ∇f∣∣ ∣∣)∇f )+ 2l(f − f0 + C) = 0

][
.

(19)

By using the gradient descent method, the new model can be
expressed as follows:

∂f

∂t
= S∇ · ∇f

∇f∣∣ ∣∣
( )

+ (1− S)∇ · (g( ∇f∣∣ ∣∣)∇f )
[

− 2l(f − f0)

]

f (x, y, t)|t=0 = f0(x, y).

⎧⎪⎪⎨
⎪⎪⎩

(20)

From (20) we can expect that:

† In the region which contains more image features (such as edges
etc.), the new model will play good role to preserve the edges of the
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Fig. 2 Results of denoising obtained with Pepper image (standard deviation
of additive white Gaussian noise = 20). From left- to right-hand side and
from top to bottom: result of [21] algorithm, result of [22] algorithm,
result of [17] algorithm, and result of the new algorithm

Fig. 3 Results of denoising obtained with Lena image (variance of salt and
pepper = 0.04). From left- to right-hand side and from top to bottom: result
of [21] algorithm, result of [22] algorithm, result of [17] algorithm, and
result of the new algorithm
image, namely this model will highlight the TV model therefore S
should be close to one.
† In the flat areas of image, which contains less image features, and
much noise, the new model will highlight the role of the PM model,
hence S should be close to zero.

To solve problem (20) by using the finite difference method,
we let

P = ∇ · (g( ∇f∣∣ ∣∣)∇f ), (21)

T = ∇ · ∇f
∇f∣∣ ∣∣

( )
, (22)

Then

P = ∇ · (g( ∇f∣∣ ∣∣)∇f )
= ∂

∂x
,
∂

∂y

( )
· fx

1+ ( ∇f∣∣ ∣∣/k)( )2 , fy

1+ ( ∇f∣∣ ∣∣/k)( )2
( )

= k2
∂

∂x

fx
k2 + f 2x + f 2y

( )
+ ∂

∂y

fy
k2 + f 2x + f 2y

( )[ ]
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= k2
fxx(k

2 + f 2x + f 2y )− fx(2fxfxx + 2fyfxy)

(k2 + f 2x + f 2y )
2

+ k2
fyy(k

2 + f 2x + f 2y )− fy(2fxfxy + 2fyfyy)

(k2 + f 2x + f 2y )
2

= [k2fxx + k2fyy − f 2x fxx + f 2y fxx

− 4fxfyfxy + f 2x fyy − f 2y fyy]/
k2 + f 2x + f 2y

k

( )2

,

T = ∇ · ∇f
∇f∣∣ ∣∣

( )

= ∂

∂x
,
∂

∂y

( )
· fx���������

f 2x + f 2y
√ ,

fy���������
f 2y + f 2y

√
⎛
⎜⎝

⎞
⎟⎠

= ∂

∂x

fx���������
f 2x + f 2y

√
⎛
⎜⎝

⎞
⎟⎠+ ∂

∂y

fy���������
f 2x + f 2y

√
⎛
⎜⎝

⎞
⎟⎠

= f 2x fxx + f 2y fxx − f 2x fxx − fxfyfxy

(f 2x + f 2y )
(3/2)
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Fig. 4 Results of denoising obtained with Cameraman image (variance of salt and pepper noise = 0.04). From left- to right-hand side and from top to bottom:
result of [21] algorithm, result of [22] algorithm, result of [17] algorithm, and result of the new algorithm
+ f 2x fyy + f 2y fyy − fxfyfxy − f 2y fyy

(f 2x + f 2y )
(3/2)

= f 2x fyy − 2fxfyfxy + f 2y fxx

(f 2x + f 2y )
3
2

.

Replacing the first order derivatives by central divided differences
and the second order derivatives by forward divided differences, we
can rewrite the new model (20) as the discrete form as follows:

f n+1 − f n

Dt
= STn + (1− S)Pn − 2l(f n − f n0 ), (23)

where n = 0, 1, 2, . . . is the time level.
Introducing the space discrete sign

f n+1 − f n

Dt
= f n+1

i,j − f ni,j
Dt

,

we can further rewrite (23) as

f n+1
i,j = f ni,j + Dt[STn

i,j + (1− S)Pn
i,j − 2l(f ni,j − f n0 )]

( )
, (24)
This is an open access article published by the IET under the Creative
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where

Pn
i,j = ∇n · (g( ∇f ni,j

∣∣∣ ∣∣∣)∇f ni,j)
= [(k2(fxx)

n
i,j + k2(fyy)

n
i,j − (f 2x )

n
i,j(fxx)

n
i,j + (f 2y )

n
i,j(fxx)

n
i,j

− 4(fx)
n
i,j(fy)

n
i,j(fxy)

n
i,j + (f 2x )

n
i,j(fyy)

n
i,j

− (f 2y )
n
i,j(fyy)

n
i,j)]/

k2 + (f 2x )
n
i,j + (f 2y )

n
i,j

k

( )2

,

Tn
i,j = ∇n · ∇f ni,j

∇f ni,j
∣∣∣ ∣∣∣

⎛
⎝

⎞
⎠

= [(f 2x )
n
i,j(fyy)

n
i,j − 2(fx)

n
i,j(fy)

n
i,j(fxy)

n
i,j

+ (f 2y )
n
i,j(fxx)

n
i,j]/((f

2
x )

n
i,j + (f 2y )

n
i,j)

(3/2),

where

(fx)
n
i,j =

f ni+1,j − f ni−1,j

2Dx

= f (xi + Dx, yj, tn)− f (xi − Dx, yj, tn)

2Dx
,
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Table 1 PSNRs results for rice image corrupted by additive white Gaussian noise

Standard deviation (σ) 5 10 20 30 40 50 60

[21] model 35.87 29.33 22.84 19.16 16.53 14.57 12.95
[22] model 35.81 29.20 22.72 19.05 16.43 14.47 12.85
[17] model 36.04 29.38 22.85 19.15 16.52 14.54 12.91
new model 38.98 34.68 27.55 22.18 18.51 15.89 13.90

Table 2 PSNRs results for pepper image corrupted by additive white Gaussian noise

Standard deviation (σ) 5 10 20 30 40 50 60

[21] model 35.57 29.26 22.95 19.18 16.56 14.56 12.95
[22] model 35.54 29.16 22.78 19.04 16.43 14.46 12.81
[17] model 35.73 29.33 22.90 19.14 16.51 14.53 12.87
new model 35.75 33.29 27.36 22.13 18.42 15.88 13.84

Table 3 PSNRs results for Lena image corrupted by salt and pepper noise

Variance of the noise 0.01 0.02 0.04 0.06 0.08 0.1

[21] model 27.32 24.23 21.08 18.95 17.60 16.54
[22] model 27.29 24.19 21.04 18.91 17.56 16.49
[17] model 27.52 24.41 21.24 19.09 17.73 16.65
new model 31.13 28.83 25.47 22.70 20.98 19.51

Table 4 PSNRs results for cameraman image corrupted by salt and
pepper noise

Variance of the noise 0.01 0.02 0.04 0.06 0.08 0.1

[21] model 28.25 25.16 22.01 19.89 18.16 16.95
[22] model 28.23 25.14 21.98 19.88 18.14 16.93
[17] model 28.48 25.37 22.19 20.06 18.29 17.08
new model 30.08 28.10 25.09 22.79 20.60 19.24

Fig. 5 PSNR(dB) graph of [21] algorithm, [22] algorithm, [17] algorithm,
and result of the new algorithm for various additive white Gaussian noise
levels for Rice image

Fig. 6 PSNR(dB) graph of [21] algorithm, [22] algorithm, [17] algorithm,
and result of the new algorithm, for various additive white Gaussian noise
levels for Pepper image
(fy)
n
i,j =

f ni,j+1 − f ni,j−1

2Dy

= f (xi, yj + Dy, tn)− f (xi, yj − Dy, tn)

2Dy
,

(fxx)
n
i,j =

f ni+1,j − 2f ni,j + f ni−1,j

Dx2
,

(uyy)
n
i,j =

f ni,j+1 − 2f ni,j + f ni,j−1

Dy2
,

(fxy)
n
i,j =

f ni+1,j+1 − f ni+1,j−1

4DxDy

+−f ni−1,j+1 + f ni−1,j−1

4DxDy
.

4 Experimental results and analysis

In this section, we verify the efficiency of the proposed filer by
selecting different types of common images, and use additive
white Gaussian noise and salt and pepper noise to contaminate
these images. Then, we apply four different filters to remove
these noise as shown in Figs. 1–4, where in each figure are eluci-
dated, respectively; original frame, noisy frame, results by: [21]
J Eng, 2017, Vol. 2017, Iss. 6, pp. 246–253
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Fig. 7 PSNR(dB) graph of [21] algorithm, [22] algorithm, [17] algorithm,
and result of the new algorithm, for various salt and pepper noise levels for
Lena image

Fig. 8 PSNR (dB) graph of [21] algorithm, [22] algorithm, [17] algorithm,
and result of the new algorithm, for various salt and pepper noise levels for
Cameraman image
model, [22] model, [17] model and our new model. All of visual
quality of denoised image and peak signal to noise ratio (PSNR)
are used to assess the denosing effect and evaluate the edges pres-
ervation ability of our proposed method compare with other refer-
ence methods.

To demonstrate the performance’s superiority of our proposed
algorithm, we compare our algorithm with three related algorithms.

Figs. 1–4 show that the proposed algorithm has a very obvious
denoising effect; it does not only maintain the advantages of the
PM model, and TV model, but also overcomes the disadvantages
of the two models. Based on Figs. 1–4, we can note that our pro-
posed approach is very effective in terms of noise removal and
edge preservation as compared with other algorithms.

Owing to applying the adaptive thresholding in the proposed
algorithm, our algorithm has a high capacity to distinguish
between the image textures and the noise. Unlike the algorithms
in [17, 21, 22] which the detail structures and textures are often
misclassified as noise.

Tables 1–4, compare the PSNR results of four different
algorithms when denoising white Gaussian noise and salt and
This is an open access article published by the IET under the Creative
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pepper images with varying standard deviation and variance
ranging from s = 5− 60 and s2 = 0.01− 0.1, respectively.

The data in Tables 1–4 demonstrate that, the proposed algorithm
outperforms the algorithms in [17, 21, 22] in terms of PSNR in
all experiments. Form these tables, we can note that our proposed
algorithm has made a great improvement in the PSNR of the
other algorithms up to 4.7 dB.

Figs. 5–8 include different values of PSNR of the four models
with different noise standard deviations and variances. These
figures show that, the proposed algorithm surpass all of the refer-
ence algorithms in terms of PSNR in all the noise levels.

5 Conclusion

In this paper, a novel model of image denoising based on applying
adaptive thresholding to PDE filters has been presented. This model
has a high potential to acclimate and change according to the
amount of the noise. Accordingly, our model is able to mitigate
the noise from noisy image effectively. In the proposed algorithm,
we applied the adaptive thresholding, which showed high efficiency
at distinguishing between the heavy noise areas and slight noise
areas. Consequently, our algorithm has succeeded in preserving
the details (e.g. edges) and removing the noise efficaciously in com-
parison with the other reference methods. The work in this paper
demonstrates good denoising performance, which urges us to con-
sider developing the existing adaptive thresholding and applying it
in the future work. The experimental results with four of the most
common images and various levels of white Gaussian noise and
salt and pepper noise demonstrate that the proposed model has
achieved good and stable denoising performance in terms of both
PSNR and subjective visual quality, in addition to 4.7 dB gain
higher than those in the other reference algorithms.
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