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Abstract. In this study, we define a new type of partner curves called C-
partner curves and give some theorems characterizing C-partner curves.
We obtain that the rectifying planes of C-partner curves intersect along
a common line at a constant angle. We also introduce some applications
between C-partner curves and some special curves such as helices and
slant helices. We show that considering C-partner curves, a slant helix
can be constructed by another slant helix.
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1 Introduction

In 1845, French mathematician Saint-Venant introduced a question about that whether
upon the ruled surface generated by the principal normals of a curve in the three-
dimensional Euclidean space E3, another curve can exist for which the principal
normals of original curve are also its principal normals [14]. Bertrand answered
this question and show that such another curve exists if and only if a linear rela-
tionship with constant coefficients shall exists between the curvature and torsion of
original curve [2]. Later, such curve pairs have been called Bertrand partner curves
or Bertrand curves. Bertrand curves have been studied by many mathematicians
and different characterizations and applications of these curves have been introduced
[3, 6, 7, 11, 10, 13, 19].

Recently, Liu and Wang have introduced a new definition of curve pairs by origi-
nating the notion of Bertrand curve. They have called these new kind of curve pairs
as Mannheim partner curves given by the property that the principal normal vec-
tors of original curve coincide with the binormal vectors of second curve [18]. After,
Mannheim curves have been studied by some mathematicians and new properties of
these curves have been obtained [4, 9, 20].

The goal of this paper is to define a new kind of associated curve pairs and give
characterizations for these curves. For this purpose, we use an alternative frame on
original curve and define another curve by using this frame. This new curve pair is
called C-partner curves. First, we give a brief summary of curve theory and alternative
frame. In Section 3, the definition and main characterizations for C-partner curves
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are introduced. In Section 4, some applications of C-partner curves are given. It is
shown that original curve is a slant helix (or a helix) if and only if the second curve is
also a slant helix (or a helix). In the last section, some numerical examples are given.

2 Preliminaries

Let α = α(s) be a regular space curve in the Euclidean 3-space E3 and {T,N,B}
be the Frenet frame of α(s), where T,N,B are unit tangent vector field, principal
normal vector field and binormal vector field, respectively. Then the Frenet formulae
of the curve is given by

(2.1)

 T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 ,
where κ, τ are called the curvature and the torsion of the curve, respectively. From
(2.1), the unit Darboux vector W of α(s) given by the equation

(2.2) W =
1√

κ2 + τ2
(τT + κB)

is the angular velocity vector of the curve α [8]. It is obvious from (2.2) that the
Darboux vector is perpendicular to the principal normal vector fieldN . Then, defining
a unit vector field C by the cross product C = W × N makes possible to build
another orthonormal moving frame along the curve α(s). This frame is represented
by {N,C,W} and is an alternative frame to curve rather than the Frenet frame
{T,N,B}.

The derivative formulae of the alternative frame is given by

(2.3)

 N ′

C ′

W ′

 =

 0 β 0
−β 0 γ
0 −γ 0

 N
C
W

 ,
where β =

√
κ2 + τ2 and γ = κ2

κ2+τ2

(
τ
κ

)′
[17]]. Since the principal normal vector N

is common in both frames, it is possible to form a relationship between the Frenet
frame and alternative frame such as

(2.4)

{
C = −κ̄T + τ̄B,
W = τ̄T + κ̄B,

or

(2.5)

{
T = −κ̄C + τ̄W,
B = τ̄C + κ̄W,

where κ̄ = κ/β and τ̄ = τ/β.

A regular curve α is called a helix if the tangent lines of the curve make a constant
angle with a fixed direction and a helix is characterized by the property that τ

κ is
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constant [16]. If the principal normal lines of the curve make a constant angle with a
fixed direction, then the curve is called a slant helix and characterized by the equality

κ2

(κ2 + τ2)
3/2

( τ
κ

)′
= constant.

[8]. Then, the characterization of a slant helix according to alternative frame is given
as follows:

Remark 2.1. A regular curve α with curvatures β, γ is a slant helix if and only if
γ
β (s) = constant.

3 C-partner curves in E3

Associated curves defined by some special properties are the most fascinating subject
of curve theory. Bertrand partner curves and Mannheim partner curves are the well-
known examples of such curves. Two curves which, at any point, have a common
principal normal vector are called Bertrand curves. It is a well-known result that a
regular curve α in E3 is a Bertrand curve if and only if its curvature functions κ and
τ satisfy the condition aκ(s) + bτ(s) = 1, where a, b are constant real numbers [11].
Another classical characterization for Bertrand curves is that the distance between
the curves and the angle between unit tangent vectors of the curves are constants
[16].

Another kind of partner curves is Mannheim partner curves. A curve α in E3

is called Mannheim curve if there exists another curve ϑ(s) such that the principal
normal vector fields of α coincide with the binormal vector fields of ϑ(s). Then ϑ(s)
is called Mannheim partner curve of α. Although the angle between unit tangents of
Bertrand curves is constant, it is not a constant for Mannheim partner curves [9, 18].

The purpose of this section is to define a new type of partner curves by consid-
ering alternative frame and to find some characterizations for these curves related to
distance function between the corresponding points of the curves and angle function
between the rectifying planes of the curves. First, we give the following definition.

Definition 3.1. Let α = α(s) and α∗ = α∗(s∗) be two regular space curves in the
Euclidean 3-space E3 with Frenet frames {T,N,B}, {T ∗, N∗, B∗}, curvatures κ, κ∗,
torsions τ, τ∗, respectively, and let the alternative moving frames and curvatures of
curves be {N,C,W},β, γ and {N∗, C∗,W ∗}, β∗, γ∗, respectively. The curves α and
α∗ are called C-partner curves if the vector fields C and C∗ coincide, i.e., C = C∗

holds at the corresponding points of the curves.

From Definition 3.1, the parametric representation of α∗ can be given by

α∗(s) = α(s) +R(s)C(s),

where R = R(s) is the distance function between the curves α and α∗. Since the
vector fields C and C∗ are the same, we are able to give the relationship between the
alternative frames of α and α∗ such as

(3.1)

{
N∗ = cos θN − sin θW,
W ∗ = sin θN + cos θW,



C-partner curves and their applications 67

or

(3.2)

{
N = cos θN∗ + sin θW ∗,
W = − sin θN∗ + cos θW ∗.

where θ = θ(s) is the angle function between vector fields N, N∗ or W, W ∗. More-
over, from (3.1) it is clear that θ = θ(s) is the angle between the rectifying planes of
curves at the corresponding points.

Now, we give some theorems characterizing C-partner curves. Whenever we talk
about the curves α and α∗, we will assume that the curves have frames and curvatures
as given in Definition 3.1.

Theorem 3.1. Let α and α∗ be C-partner curves in E3. At the corresponding points
of the curves, the angle θ between the rectifying planes of curves is constant.

Proof. By differentiating the second equation of (3.1) with respect to the arc length
parameter s of α, we obtain

dW ∗

ds∗
ds∗

ds
= θ′ cos θN + sin θN ′ − θ′ sin θW + cos θW ′.

By using the derivative formulae given in (2.3), from the last equation we get

(3.3) −γ∗C∗ ds
∗

ds
= θ′ cos θN + (sin θβ − cos θγ)C − θ′ sin θW.

Since the curves α and α∗ are C-partner curves, from Definition 3.1, we have that
C = C∗. Thus, from (3.3), it follows{

θ′ cos θ = 0,
θ′ sin θ = 0,

which means that θ = constant. �

Theorem 3.1 gives us another geometric definition of C-partner curves. We can
define C-partner curves as curves for which at the corresponding points of curves
joined with a line, the rectifying planes intersect along this line at a constant angle.
Now, using this fact, we can give characterizations according to distance function
R = R(s).

Theorem 3.2. Let α and α∗ be C-partner curves. Then, the distance R between the
curves is constant if and only if cos θ (τ̄β′ − τ̄ ′β)+sin θ (τ̄ γ′ − τ̄ ′γ) = 0 or equivalently,(

τ̄
β

)′
β2(

τ̄
γ

)′
γ2

= constant

holds.

Proof. From Definition 3.1, the parametric representation of α∗ can be given by

α∗(s) = α(s) +R(s)C(s),
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where R = R(s) is the distance function between the curves α and α∗. Then, by
differentiating the last equation with respect to s and by using formulae (2.3), we get

T ∗
ds∗

ds
= T −RβN +R′C +RγW.

Since C = C∗ and we have θ = constant, by using equations (2.4), (2.5), (3.1) and
(3.2), from last equation we obtain the following system

(3.4)

 κ̄∗ ds
∗

ds = κ̄−R′,
τ̄ sin θ +Rβ cos θ +Rγ sin θ = 0,

τ̄∗ ds
∗

ds = τ̄ cos θ −Rβ sin θ +Rγ cos θ.

From the second equation of system (3.4), we have

R =
−τ̄ sin θ

β cos θ + γ sin θ
.

By differentiating the last equation with respect to s, we get

R′ =
sin θ cos θ (τ̄β′ − τ̄ ′β) + sin2 θ (τ̄ γ′ − τ̄ ′γ)

(β cos θ + γ sin θ)
2 .

Therefore, R = constant if and only if

cos θ (τ̄β′ − τ̄ ′β) + sin θ (τ̄ γ′ − τ̄ ′γ) = 0,

or equivalently, (
τ̄
β

)′
β2(

τ̄
γ

)′
γ2

= − tan θ = constant.

�

Theorem 3.3. Let α and α∗ be C-partner curves. Then, the distance function R
between the curves is given by

R =
γ∗τ̄ − γτ̄∗

ββ∗ − γγ∗
.

Proof. From the second equation of system (3.4), we have

Rβ = − (τ̄ +Rγ) sin θ

cos θ
.

Substituting the last equation into the third equation of the system (3.4), we get

(3.5)
τ̄ +Rγ

τ̄∗
=
ds∗

ds
cos θ.

Similarly, from the second equation of system (3.4), we have

Rγ = − τ̄ sin θ +Rβ cos θ

sin θ
.
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If we substitute the last equation into the last equation of system (3.4), we obtain

(3.6)
Rβ

τ̄∗
= −ds

∗

ds
sin θ.

Analogue to the calculations given above, if we take α = α∗ − RC∗ instead of α∗ =
α+RC and apply the same process, we have the following equations,

(3.7)
τ̄∗ −Rγ∗

τ̄
=

ds

ds∗
cos θ,

(3.8)
Rβ∗

τ̄∗
= − ds

ds∗
sin θ.

By multiplying (3.5) with (3.7) and multiplying (3.6) with (3.8) and adding the ob-
tained results, we have desired equality,

R =
γ∗τ̄ − γτ̄∗

ββ∗ − γγ∗
.

�

Now, from the theorems given above, we can give the following corollary.

Corollary 3.4. Let α and α∗ be C-partner curves. The followings are equivalent:

1. R is constant,

2. cos θ (τ̄β′ − τ̄ ′β) + sin θ (τ̄ γ′ − τ̄ ′γ) = 0,

3.
( τ̄

β )
′
β2

( τ̄
γ )
′
γ2

= constant,

4. γ∗τ̄−γτ̄∗
ββ∗−γγ∗ = constant.

4 Applications of C-partner curves

There exists a powerful contact between helices and Bertrand curves. So, many
applications related to Bertrand curves can be given. For instance, a spherical curve
α is a circle if and only if the corresponding Bertrand curves are circular helices [7].
Moreover, a Bertrand curve can be constructed from a general helix [1]. Analogue to
Bertrand curves, there are some relations between slant helices and C-partner curves.
In this section, we introduce these relations.

Theorem 4.1. Let α and α∗ be C-partner curves. Then, α is a slant helix if and
only if α∗ is a slant helix.

Proof. By using the equations (2.3) and (3.1), we have

β∗ =
〈
dN∗

ds∗ , C
∗
〉

= ds
ds∗ (cos θβ + sin θγ) ,

γ∗ = −
〈
dW∗

ds∗ , C
∗
〉

= ds
ds∗ (cos θγ − sin θβ) ,
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respectively. If we divide the last two equations to each other, we obtain

(4.1)
γ∗

β∗
=

cos θ γβ − sin θ

cos θ + sin θ γβ
.

Let now α be a slant helix. From Remark 2.1, we have γ
β = c = constant. Since θ

is constant, from (4.1) it follows

γ∗

β∗
=
c cos θ − sin θ

cos θ + c sin θ
= constant,

which means that α∗ is a slant helix.
Conversely, if α∗ is a slant helix, i.e., γ∗/β∗ = d = constant, from (4.1) we get

γ

β
=

d cos θ + sin θ

cos θ − d sin θγ
= constant,

which leads us to the result that α is a slant helix. �

As an application of C-partner curves, Theorem 4.1 shows that a slant helix can
be constructed by another slant helix. Moreover, as a result of Theorem 4.1, we can
give the following corollaries.

Corollary 4.2. Let α and α∗ be C-partner curves. If α is a helix, then α∗ is a slant
helix. If α∗ is a helix, then α is a slant helix.

Corollary 4.3. C-partner curves of a helix α form a family of slant helices.

Theorem 4.4. Let α and α∗ be C-partner curves. If one of the curves α and α∗

is a slant helix, then the distance function R and curvatures τ̄ , τ̄∗, β, β∗ satisfy the
condition

R = µ
τ̄∗

β∗
+ λ

τ̄

β
,

where µ and λ are real constants.

Proof. Since α and α∗ are C-partner curves, from Theorem 3.3, we have

(4.2) R =
γ∗τ̄ − γτ̄∗

ββ∗ − γγ∗
.

Moreover, if one of the curves α and α∗ is a slant helix, then from Theorem 4.1 we
have that other curve is also a slant helix. So, γ/β = d = constant andγ∗/β∗ = d∗ =
constant. Dividing the numerator and denominator of (4.2) with β, we obtain

R =

γ
β
∗
τ̄ − γ

β τ̄
∗

β∗ − γ
β γ
∗ .

Dividing again with β∗ and substituting γ/β = d and γ∗/β∗ = d∗ in last equality, we
get

R =

(
d

dd∗ + 1

)
τ̄∗

β∗
+

(
d∗

dd∗ + 1

)
τ̄

β
.
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Finally, by taking µ = d
dd∗+1 , λ = d∗

dd∗+1 , it follows

R = µ
τ̄∗

β∗
+ λ

τ̄

β
,

where µ, λ are constants. �

Theorem 4.5. Let one of the curves α, α∗ and α∗∗ be a slant helix. If both α∗ and
α∗∗ are C-partner curves of α, then

(4.3) c1
τ̄∗∗

β∗∗
+ c2

τ̄∗

β∗
+ c3

τ̄

β
= 0,

holds, where τ̄∗∗, β∗∗ are the curvatures of α∗∗ and c1, c2, c3 are constants.

Proof. Since both α∗ and α∗∗ are C-partner curves of α, from Definition 3.1 it is clear
that α∗∗ is also a C-partner curve of α∗. Then, from Theorem 4.1 and Theorem 4.4,
we have

(4.4) R1 = µ1
τ̄∗

β∗
+ λ1

τ̄

β
, R2 = µ2

τ̄∗∗

β∗∗
+ λ2

τ̄

β
, R3 = µ3

τ̄∗∗

β∗∗
+ λ3

τ̄∗

β∗
,

where R1, R2, R3 are distance functions between the curves α and α∗, α and α∗∗,
α∗ and α∗∗, respectively, and µi, λi (1 ≤ i ≤ 3) are constants. Since R3 = R2 −R1,
from (4.4) we have

(4.5) R3 = µ2
τ̄∗∗

β∗∗
− µ1

τ̄∗

β∗
+ (λ2 − λ1)

τ̄

β
.

From (4.4) and (4.5) it follows,

c1
τ̄∗∗

β∗∗
+ c2

τ̄∗

β∗
+ c3

τ̄

β
= 0,

where c1 = µ3 − µ2, c2 = λ3 + µ1, c3 = λ1 − λ2 are constants. �

5 Some examples

Example 5.1. (Cylindrical Helix) Consider a cylindrical helix α given by the parametriza-
tion

α1(s) =

(
cos

s√
2
, sin

s√
2
,
s√
2

)
.

Then, two C-partner curves α∗1, α
∗∗
1 for R = 2 and R = s + 1

2 are given in Figure 1
and Figure 2, respectively.
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Figure 1. Curves α1(blue) and α∗1(red). Figure 2. Curves α1(blue) and α∗∗1 (red).

Example 5.2. (Salkowski curve) Salkowski curve is a space curve with a constant
curvature κ and non-constant torsion τ [15]. Monterde has characterized them as
space curves with constant curvature κ ≡ 1 and whose normal vector makes a constant
angle with a fixed line [12]. This characterization of Monterde also gives that such
curves are slant helices. A general parametrization of a slant helix is given by

α2(s) = 1√
1+m2

(
− 1−n

4(1+2n) sin((1 + 2n)s)− 1+n
4(1−2n) sin((1− 2n)s)− 1

2 sin s,
1−n

4(1+2n) cos((1 + 2n)s) + 1+n
4(1−2n) cos((1− 2n)s) + 1

2 cos s,
1

4m cos(2ns)
)

where n = m√
1+m2

and m are constants [12]. Choosing m = 1/5 and taking R = 3

and R(s) = s
3 , we have two C-partner curves α∗2, α

∗∗
2 as given in Figure 3 and Figure

4, respectively.

Figure 3. Curves α2(blue) and α∗2(red). Figure 4. Curves α2(blue) and α∗∗2 (red).

Example 5.3. (Slant helix) In Theorem 4.1, as an application of C-partner curves,
we have obtained that a slant helix can be constructed by another slant helix. Fur-
thermore, Choi and Kim have shown that a slant helix can be constructed by a circle
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[5]. Then, it is clear that a new slant helix can be constructed by the same circle
by using principal-direction curves given in [5] and application of C-partner curves.
For this reason, let consider the following slant helix α3 constructed by the circle
δ(s) = (cos s, sin s) in [5],

α3(s) = −
(

3

2
cos
(s

2

)
+

1

6
cos

(
3s

2

)
,

3

2
sin
(s

2

)
+

1

6
sin

(
3s

2

)
,
√

3 cos
(s

2

))
.

Then, two C-partner curves α∗3, α
∗∗
3 for R = 1 and R = s are given in Figure 5 and

Figure 6, respectively.

Figure 5. Curves α3(blue) and α∗3(red). Figure 6. Curves α3(blue) and α∗∗3 (red).
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