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SUMMARY

The use of traffic sensors to acquire real-time traffic information for intelligent transportation systems is
becoming increasingly common. It is a challenge to determine where these sensors should be located to
maximize the benefit of their use. This paper aims to illuminate the interaction of the sensor location
problem (SLP) and its influencing factors, and to reveal the influencing mechanisms between those factors
and the optimal sensor numbers. Firstly, we sum up the factors that influence the SLP for freeway corridors
in detail and present the mathematical formulation of each factor. Then, given the parameters, which are
derived from those influencing factors, the maximum integration value model (MIVM) and simplified
MIVM are proposed for addressing the SLP. Finally, a real world case study, in which the simplified MIVM
is used, is presented to illustrate how these factors influence the optimal sensor numbers and the maximum
integration value, and also leads to the typical influencing patterns of those factors for freeway corridors.
The results of the case study also demonstrate the effectiveness of themodel and problem solving scheme.What
is more, the suggestions for using the findings hereof in practical applications are put forward. Copyright ©
2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Congestion and oversaturated roads pose significant problems and create delays in every major
city in the world. An important goal of intelligent transportation systems (ITS) is to build and
extend traffic sensor networks to improve transportation systems’ observability, productivity,
and efficiency [1].
Intelligent transportation systems are considered as the best solution for improving the utility

of transportation resources. An important function of ITS is real-time traffic information collec-
tion, which is performed using various types of traffic sensors, including traffic counting sensors
and traffic speed sensors [2]. Sensor technologies (e.g., loop detectors, surveillance cameras, ra-
dio frequency identification, microwave sensors, and magnetic sensors) have been widely used on
highway networks and urban arterial roads to estimate real-time traffic conditions and provide
valuable information to both private individuals and public agencies. The effectiveness of ITS
depends not only on the accuracy of the traffic information but also on the coverage of data
collection over the transportation network [3].
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Real-time traffic information enables road users to choose routes with less congestion, and enables
traffic managers to respond promptly to congestion patterns and select control strategies efficiently [4].
Whether the traffic information collected by sensor technologies reflects real-time traffic conditions
accurately depends mostly on the distribution and density of the traffic sensors. To obtain adequate
traffic information, the density of traffic sensors should be high enough to cover the entire transporta-
tion network. If sensors are densely deployed over a transportation network and all of them collect
real-time traffic data around their locations, the traffic status of the whole network can be obtained
from the sensor data using some feasible algorithm. In addition, abnormal traffic states (e.g., traffic
accidents and traffic jams) can be detected [4].
However, implementing these sensor technologies usually requires large investments. Therefore, the

number and locations of sensors should be optimized to balance the required investments with the
demand for traffic information. Considering the rapid development of ITS in modern cities, it is easy
to see conflicts arising between the requirement for a certain density of fixed traffic sensors and budget
limitations [2]. An important observation is that more traffic information can be obtained accurately,
and the number of sensors can be significantly reduced if traffic sensors are installed rationally and
their locations are selected effectively. It is important to find methods to work out a rational layout
of traffic sensors that meets the requirements of ITS for reasonable investments [2]. Therefore, it is cru-
cial to address the sensor location problem (SLP).
Just knowing the number of required sensors and the covered links of freeway network is not

sufficient to solve the SLP. The patterns and mechanisms that some factors influence the optimal
SLP solution need to be studied. These patterns and mechanisms include whether a link should have
sensors installed, how many sensors a link requires, what are the best locations for these sensors,
and how sensor layout strategies should be changedwhen changes occur in the traffic conditions (e.g., traffic
volume, traffic control, or construction conditions). Many researchers have made contributions to the
solution of the SLP and have proposed theoretical methods for optimizing sensor number and loca-
tions for freeway corridors [1,5–13]. These theoretical methods for optimizing SLP can be classified
into two categories: count-based methods and speed-based methods. Count-based methods mainly
address those applications, such as origin–destination (O–D) estimation [1,3,14,15], freeway bottle-
neck identification [13], and freeway incident detection [5]. Travel time estimates [6–12] always re-
quire data from speed-based methods.
Based on the traffic volume information estimated from sensor data, an O–Dmatrix of the transportation

network can be calculated. A majority of researchers in this field use graph theory to obtain O–D matrix.
They transform the SLP into a problem of graph theory and apply graph theories to obtain a solution
[1,16]. The transportation network is modeled as a directed graph with vertices representing intersec-
tions and directed edges between the vertices representing roads. The traffic flow over the roads is
described by a network flow function on the edges of the graph. Hence, the goal of the problem is
to find the smallest subset of edges such that knowledge of the flow along them uniquely determines
the flow everywhere on the graph. Speed-based methods are mostly applied to estimating travel time.
In general, the traffic sensors (such as loop detectors and microwave detectors) that are used to
measure vehicle speeds can also be used to estimate the traffic volume.
Graph theory based methods can solve problems for specific applications (O–D estimation and

travel time estimation), but they have some intrinsic problems. First, there are many assumptions in
graph theory. In addition, the solution process only identifies the smallest subset of edges. The edges
on which sensors should be installed can be obtained, but the optimal sensor locations on edges
(e.g., the middle, the front end, or somewhere else) cannot be determined. In a freeway network,
the weights at different locations (e.g., on a ramp or a bridge) may be different; hence, it is nec-
essary to consider the weights of different locations, which is an influencing factor in the SLP.
Second, as these sensor technologies become more reliable and cost-effective, the demand for
travel information is also growing. More than one sensor (note that if there are several sensors
in a section of an edge, they are considered to be one sensor here) will be located on an edge.
The optimal location of each sensor on an edge should therefore be determined.
However, there has been very little research on the factors that influence the SLP [2,17,18], espe-

cially for freeway corridors, and it can be difficult to see how these factors influence the optimal sensor
number and locations. It can therefore be difficult to design a strategy to address the situation that
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arises when a factor changes. Leow et al. [17] proposed a novel method for the solution of the SLP.
They identified some influencing factors (IFs), such as the cost of sensors, the level of service of the road,
and the annual cost of congestion. They determined the optimal sensor spacing for a freeway, but they did
not discuss how those factors influence their results. Hong and Fukuda [18] studied the influence of
different sensor locations on the accuracy of traffic state estimation by using a velocity-based cell
transmission model. They tested their method on a segment of the Tokyo Metropolitan Highway during
rush hours. Li and Jia [2] discussed the principles of sensor layout, some of which can be treated as IFs of
the SLP, but they did not develop any models to analyze those factors thoroughly.

1.1. Purpose and organization

The purpose of this paper is to fill these gaps. An analysis of IFs of the SLP for freeway and a
transformation of those factors into model parameters with mathematical formulations will be
presented. This paper also presents the use of a maximal integration value model (MIVM) [19]
to analyze how those factors influence the optimal sensor locations and presents some strategies
for SLP solution when those parameters are changed. Furthermore, the paper will illuminate the in-
teraction of the SLP and its IFs, and analyze the influencing patterns of those factors intuitively.
According to the distribution and trend of the optimal sensor numbers with different value of each
factor, the paper also reveals the influencing mechanisms between those factors and the optimal
sensor numbers.
This paper is organized as follows. In Section 2, the primary IFs are summed up and the model

parameters are formulized. In Section 3, the MIVM and its simplified model are described, and the
corresponding algorithms of those models are also proposed. Section 4 focuses on the sensitivity analysis
of the model parameters and shows how these factors influence the optimal sensor numbers and the
maximum integration value by using a numerical example. Conclusions are presented in Section 5.

2. INFLUENCING FACTORS AND THEIR MATHEMATICAL FORMULATIONS

2.1. Sensor location problem influencing factors

There are many factors (such as traffic information, sensor types, sensor locations, sensor cost, etc.)
that may influence the optimal SLP solution. It can be divided into three categories of those IFs.
The first category of IFs is those related to the road. These include the sensor layout cost and sensor

locations in the road. The layout cost mainly refers to the project cost of installing sensors, such as the
expenses of setting up a pole or cutting pavement and the cost associated with closing traffic lanes.
Perhaps sensors are placed in the same road, but the characteristics of the sensor locations may not be
the same. Hence, different sensor locations should not be treated equally. The second category of IFs is
those related to the sensors. Different types of sensors will result in different optimal layout schemes
for the SLP. The third category of IFs are those related to the investment, which should be regarded as
optional factors. If the budget is adequate, the SLP solution will not be influenced by the amount of the
investment. Otherwise, it may be necessary to rethink the layout strategy and seek another scheme whose
cost is within the limit of the allowable investment. The inner portion of Figure 1 shows the IFs and their
relationships with the SLP.

2.1.1. Sensor layout cost
The sensor layout cost will influence the investment required for the project. When a sensor is
installed, a pole or portal frame is set up to fix the sensor (such as a microwave sensor or camera)
or the pavement is cut to embed the sensor (such as a loop sensor or magnetic sensor). Installing a
traffic sensor usually requires a traffic lane closure. The time required for the lane closure may be
varied. However, all sensor installations need funds (to set up poles or cut the pavement) and other
costs (associated with lane closures). Table I shows estimates of the cost associated with sensor installation
of different types for a typical intersection application [20]. The installation costs (layout costs) of different
types of sensors are different (fifth column in Table I).
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2.1.2. Locations of sensors
The importance of sensor locations along a road may be different. Figure 2 shows a one-way road in a
freeway corridor with point A near a ramp and point B in the middle. The traffic data derived from
point A and point B at a fixed interval (e.g., 30 s, 1min, 5min, 10min, etc.) can be considered a time
series over a certain period (e.g., a week, a day, an hour, etc.). Defining VoA(t) and VoB(t) as the traffic
volume time series at locations A and B, respectively, at time t, we have the following:

VoA tð Þ ¼ VolA t � kτð Þf g; k is 0; 1;…;Nf g (1)

VoB tð Þ ¼ VolB t � kτð Þf g; k is 0; 1;…;Nf g (2)

where τ is the sampling interval, N is the sampling number during a certain period, VolA(t) and VolB(t)
are the traffic volumes at point A and point B at time t.
Correlation coefficient (CC) reflects the linear degree of correlation between two time series. The

stronger the linear correlation is (or the larger the CC is), the more the two time series are a colinear
representation. Here, we define the spatial correlation function (SCF) of two time series (VoA(t) and
VoB(t)) at locations A and B as follows:

SCF dA;B
� � ¼ corr VoA tð Þ;VoB tð Þð Þ (3)

where dA,B is the distance between locations A and B, corr is the CC of the two time series, that is

corr VoA;VoBð Þ ¼
∑
N

i¼1
VoAi � VoA
� �

VoBi � VoB
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
VoAi � VoA
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
VoBi � VoB
� �2s (4)

The difficulty of the installation at locations A and B may be different, which leads to different
sensor layout costs. The location factor will certainly influence the SLP solution, so it is analyzed as
one of the IFs.

Information Credibility Function

Integration C
ost

MIVM
parameters

SLP IFs

Figure 1. Influencing factors and their relationships with the sensor location problem.
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2.1.3. Cost of sensors
Because sensor technologies continue to become more reliable and cost-effective, the demand for
sensors is growing rapidly. Thousands of sensors are used in freeway networks for rapid development
of ITS, and investments in traffic sensors and related facilities are growing accordingly. Furthermore,
the sensor prices have not been reduced sufficiently. It is therefore necessary to consider the
influencing factor of sensor cost. The cost of a sensor includes the sensor price (the device cost)
and the maintenance cost over the sensor’s lifetime. Table I also shows the device costs and the
annual maintenance costs of different sensor types (third and sixth column in Table I), which are di-
rectly related to the investment required.

2.1.4. Benefits of sensors
The traffic information derived from sensors is significant for decision-making by managers and
travelers, and it can also be used by traffic planning departments. When a sensor is placed in a road,
it should provide some benefits. The benefits may be evident or implicit. Moreover, the importance
of traffic information for ITS shows that traffic information must provide some value, just as traffic
sensors must. The benefits provided by a sensor are referred to as the whole value realized in its
lifetime. Some IFs may be related to the benefits provided by a sensor. These factors include the type
of traffic information (e.g., traffic volume and traffic speed), the sensor locations (e.g., ramps,
bridges, and road bends) and the lifetime of the sensor (e.g., 5, 7, and 10 years). The benefits of a
sensor can be classified into two categories. The first category includes the direct benefits associated
with the information type, sensor location, and lifetime. Direct benefits can be calibrated with respect
to the reduction in congestion cost for the one-way road where the sensor is located. The other
category includes the external benefits related to fuel savings, reductions in vehicle emissions and
noise, and other external cost savings.

2.1.5. Accuracy of sensors
Like many other information technologies, most sensors are subject to performance disruptions
because of technology flaws, system errors, adverse weather conditions, or intentional sabotage. Such
failures may substantially impair traffic network coverage and surveillance effectiveness [4]. Table II
shows the error rates associated with sensor devices in freeway field tests. In Table II, the error rates for
both traffic counts and speed are presented. Table II also shows that the accuracy of sensor will change
by sensor type (first column in Table II), mounting location (second column in Table II), and traffic

Table II. Error rates of sensor devices in freeway field tests.

Sensor Mounting Count (%) Speed (%) Evaluation organization

Inductive loop (Saw-cut) Under pavement 2 5–10 TTI
Magnetic (3M microloop) Pavement 2.5 1.4–4.8 MNDOT
Magnetic (3M microloop) Bridge 1.2 1.8 MNDOT
Active Infrared (Autosense II) Overhead 0.7 5.8 MNDOT
Microwave Radar (RTMS) Overhead 2 7.9 MNDOT
Ultrasonic (TC 30) Overhead 2 / MNDOT
Passive Acoustic (SAS-I) Sidefire 8–16 4.8–6.3 MNDOT
Video (Autoscope solo) Overhead 5 2.5–7 MNDOT
Video (Autoscope solo) Sidefire 2.1–3.5 0.8–3.1 TTI

TTI, Texas Transportation Institute; MNDOT, Minnesota Department of Transportation.
Data from literature in [20], page 74-75;.

Figure 2. Sketch map of different location in a one-way road (point A is near the ramp, point B is in the middle).
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information type (third and fourth columns in Table II). Based on the data from literature in [20], it can
also be concluded that for different locations (pavements, ramps, or bridges), the accuracy of a sensor
for the same traffic parameter will be different. The accuracy of sensors will influence the optimal sen-
sor locations and should be treated as an SLP influencing factor.

2.1.6. Investment
In the optimization problem, even though the investment changes, the optimal sensor number, and
locations are fixed only if the IFs of roads and sensors are fixed. However, in an actual field project,
the sensor number is constrained by the investment. In general, the investment consists of two main
components. The first component is the fixed investment, which refers to the sensor cost and the layout
cost (Table I, third and fifth columns). After all the sensor devices are installed, the second component
of the investment is the annual maintenance cost (Table I, sixth column).

2.2. Mathematical formulations of sensor location problem influencing factors

Some IFs are qualitative. To build a mathematical model, some qualitative factors need to be
transformed into quantitative factors. As shown in the outer part of Figure 1, the quantitative factors
used as model parameters are given based on the SLP IFs. In Figure 1, the information credibility
function (ICF) represents the location factors. The integration cost includes the layout cost and the
sensor cost, and it represents the whole cost of a sensor. The traffic information value is derived from
the sensor benefit factor and can be calibrated by estimating the direct benefits and external benefits.
The last two model parameters, the accuracy and the budget, are derived from the sensor accuracy
factor and investment factor.

2.2.1. Information credibility function
Traffic information is derived from those fixed sensors and it will be not balanced in the whole road
network. In this paper, the ICF is proposed to represent the spatial distribution of traffic information
derived from fixed sensors. In Figure 3, the value of a road’s ICF at point x represents the credibility
or believability of traffic information at that point. The value of the road ICF at sensor locations is
larger than at other locations, that is, the traffic information is more believable at sensor locations than
at places with no sensors.
A sensor can fully reflect (without considering the accuracy of the sensor) the traffic information

of the point where the sensor is located. For a point p near a sensor location i, specifically, at a certain
distance dp from the sensor, because of the continuity and relativity of traffic information, the
sensor at location i can reflect the traffic information credibility at location i with a degree close
to 1 and at point p with a degree of f(dp) (0≤ f(dp)≤ 1). Therefore, throughout the whole domain,
f(dp) can be regarded as the credibility that a sensor represents the traffic information at a
distance dp from the sensor.
Depending on the sensor locations, each sensor has its own sensor ICF. A sensor ICF can be

described by f(dp) and it is defined as follows:

ICFsensor ¼ f xð Þ x∈ �∞;þ∞ð Þ (5)

One-way road

road ICF

Figure 3. Sketch map of road information credibility function.
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where f(x) is a type of function and x is the distance from the sensor. Because of the directivity of
distance along a road, the distance x is positive if the direction away from the sensor is on the right-hand
side along the one-way road; otherwise, the distance x is negative.
Using Equation (3), a general relationship between SCF and distance can be established using an

SCF scatter diagram (Figure 7). Through some function-fitting algorithms, sensor ICF can be
calibrated as follows:

f xð Þ ¼ fitt SCF d1ð Þ; SCF d2ð Þ; …; SCF dkð Þð Þ (6)

where SCF(d1), SCF(d2), …, SCF(dk) are the SCF values with distances of d1, d2, …, dk in the SCF
scatter diagram; fitt is a type of fitting function of the SCF scatter diagram; and f(x) is the sensor ICF.

2.2.2. Integration cost
Given the types of sensors and roads for the SLP, the integration cost of a sensor can be calibrated
using the following formula:

C ið Þ ¼ Cl ið Þ þ Cd ið Þ þ Tl � Cm ið Þ (7)

where C(i) is the integration cost of a sensor at location i; Cl(i) is the layout cost of a sensor at location
i, including the installation cost and the cost associated with the lane closure; Cd(i) is the device cost,
which is the price of a sensor; Cm(i) is the annual maintenance cost of a sensor; and Tl is the lifetime of
a sensor in years (a constant).

2.2.3. Traffic information value
The traffic information value refers to direct benefits and external benefits provided by a sensor and can
be calculated using the following formula.

V ið Þ ¼ Bd ið Þ þ Be ið Þ (8)

where V(i) is the traffic information value of the sensor at location i; Bd(i) are the direct benefits of the
sensor at location i; and Be(i) are the external benefits of the sensor at location i. Bd(i) can be estimated
using the following formula:

Bd ið Þ ¼ Tl � Ty � Tp � Cc � Qd ið Þ (9)

where Tl is the lifetime of the sensor in years (a constant); Ty is the days in a year, in days/year (a constant);
Tp is the peak hours per day, in hours/day (a constant); Cc is the average congestion cost per hour for one
vehicle, which is related to the local average hourly wage, in units/hour/vehicle (a constant); and Qd(i) is
the number of vehicles that do not encounter congestion at the sensor location i, the value of which can be
determined from simulation or a field traffic survey. Similarly, Be(i) can be estimated using the following
formula:

Be ið Þ ¼ Tl � Ty � Tp � Ce � Qd ið Þ (10)

where Ce is the external cost because of the reduced traffic congestion per hour for one vehicle. This
mainly pertains to fuel savings, reduced emissions, and noise. Ce can be calculated as described in a
related research report or estimated from expert evaluation. The other variables are the same as in
Equation (9).

2.2.4. Accuracy
We denote the accuracy of the sensor at location i by q(i). This accuracy can easily be got from related
reports or product specifications (such as those given in Table II).
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2.2.5. Budget
As the number of sensors located in the road increases, the demand of investment increases as well.
Denote IM as the required investment and n as the number of the required sensors, and then
the following formula can be given:

IM ¼ ∑
n

i¼1
C ið Þ (11)

In this paper, the fixed investment is used for convenience. Making use of the fixed investment, every
required sensor can be located. The new formula of investment can then be expressed as follows:

IM ¼ ∑
n

i¼1
Cl ið Þ þ Cd ið Þð Þ (12)

To demonstrate the influence of the fixed investment on optimal sensor locations easily, we presume
that the layout and device costs of every sensor are equal (such are the facts mostly). Cl and Cd denote
the layout cost and device cost respectively, then

IM nð Þ ¼ n Cl þ Cdð Þ (13)

As Figure 4 shows, the line IM(n) represents the relationship between the fixed investment required
and the number of sensors required. Denote B as the budget (a constant), then there will be two
conditions.

Condition 1: B > IM nð Þ point p1; Figure 4ð Þ or B ¼ IM nð Þ point p0; Figure 4ð Þ: (14) (14)

Condition 2: B < IM nð Þ point p2; Figure 4ð Þ: (15) (15)

For condition 1, the budget is adequate, all the required sensors can be placed, and the global
optimization of the SLP can be achieved.

Figure 4. Relationship between budget and fixed investment.
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For condition 2, the budget is limited, and we cannot place all the required sensors. Therefore, two
strategies should be considered. The first strategy is a global optimization that locates the sensors at
optimal locations based on the existing budget. The second strategy is a local optimization that located
a certain number of sensors to maximize benefits. If more funds are invested later, the first strategy will
work. The layout scheme for first strategy is developed by the way of using the current budget to select
some sensor locations (the sensors at those locations should have maximum integration value over
other possible locations) from among the optimal locations, which are identified by the model used
to select sensor locations. The remaining locations will be selected according to the subsequent budget
as it become available. However, if there were no subsequent investment, the second strategy should
work and new optimal sensor locations should be determined by some methods

3. MODEL AND ALGORITHM

3.1. Maximum integration value model formulation and algorithm

Based on our prior work [19], the MIVM was selected to analyze the IFs for the SLP.
Sensors are placed densely and spaced equidistantly in a one-way road of freeway corridors, and the

location of each sensor is recorded as i (i= 1,2,…,n). Taking location 1 as the origin, and a 0–1
program model for the SLP can be established as follows:

max z ¼ total Value� total Cost ¼ ∑
n

i¼1
Xi � q ið Þ � V ið Þ � ∫aiþai� f i x� xið Þdx

∫þ∞
�∞f i x� xið Þdx

 !
� ∑

n

i¼1
XiC ið Þ (16)

s:t:

xi ¼ i� 1ð Þd
d ¼ L= n� 1ð Þ
Xi ¼ 0 or 1

8><
>: (17)

where z is the optimization target, which is the integration value of all the located sensors, namely, the
traffic information value of all located sensors minus the integration cost; q(i), V(i), and C(i) are the
accuracy, the traffic information value, and the integration cost of the sensor at location i, respectively;
xi is the coordinate of location i along the one-way road, where xi+1�xi = d; fi is the sensor ICF at
location i; Xi is 0 or 1, 1 a sensor is located at location i, 0 indicating that there is not a sensor at that
location; ai- and ai+ are the coordinates of the crossover point of fi and fi-, fi+, where a1- = 0, an+ = L;
fi-, fi+ are the sensor ICF at location i� and location i+, which are the adjacent front location
with Xi+ = 1 and the rear location with Xi- = 1 at location i when Xi =1; and L is the length of
the one-way road (Figure 5).
Figure 5 shows the coordinates of ai-, ai+, xi, xi-, and xi+. The MIVM selects the maximum value

from among those sensor ICFs as the final value of the road ICF at the superposition regions.
As described in [19], a reasonable initial placement distance d (to obtain high precision, d should be as

short as possible, e.g., 10–50m) will be set. Given d, the number of sensors n can be obtained as follows:

Road ICF

road

Figure 5. Sketch map of the coordinates of ai-, ai+, xi, xi-, and xi+.
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n ¼ L=d þ 1 (18)

A directed graph D (Figure 6) is designed to solve the MIVM. As shown in Figure 6, the vertices
(v1, v2, …, vi, …, vn) of the directed graph are the index of sensor locations (1, 2, …, i, …, n). We
let eij denote the edge from vi to vj and let wij denote the weight of eij, then the weight wij of eij is given
by the following formula.

wij ¼
C ið Þ þ C jð Þ

2
� �V ið Þ � q ið Þ � ∫aijxi f i x� xið Þdx

∫þ∞
0 f i x� xið Þdx

þ V jð Þ � q jð Þ �
∫xjaij f j x� xj

� �
dx

∫0�∞f j x� xj
� �

dx

�
i < j

M i≥j

8><
>: (19)

where M is a sufficiently large real number; aij is the coordinate of the crossover point of fi and fj; and
the other parameters are the same as in Equation (16).
The physical meaning of wij is the opposite number of the integration value from location i to location

j. The aim of the MIVM is to find the maximum integration value (zm) from location 1 to location n. The
shortest path from location 1 to location n for graph D represents the opposite number of zm. Therefore,
the optimal sensor locations on the graph D can be obtained via the shortest path whose vertices are the
optimal locations according to the MIVM. Denote Ω as the solution set of the MIVM, and Ω is
equivalent to the vertices of the shortest path through graph D. Then, the maximum integration value
is given by the following equation:

zm ¼ � ∑
i;j∈Ω

wij (20)

3.2. Simplified maximum integration value model and corresponding algorithm

To simplify the SLP and make it easy to analyze the influencing pattern of each factor, it is assumed
that the values of each model parameter, such as ICF, integration cost, traffic information value, and
accuracy, are equal at all locations. Denote f(x), C, V, and q as the four parameters, respectively,
and for i= 1, 2, …, n, we have the following:

f i xð Þ ¼ f xð Þ (21)

C ið Þ ¼ C (22)

V ið Þ ¼ V (23)

q ið Þ ¼ q (24)

One-way road

Figure 6. Directed graph D (wij(i= 1,2,…,n and j = 1,2,…,n) are the weights of the edges in graph D).
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Actually, the values of each parameter at different locations for the SLP are always close. Generally,
the same types of sensors will be selected for studying the SLP on a single freeway. And the charac-
teristic of the traffic information at different locations along the same road will be similar. Hence, the
simplified MIVM described earlier has the practical meaning.
Denote Iij as the integration value between location i and location j, for 1≤ i< j≤ n, the following

formula can be obtained:

Iij ¼ q ið Þ � V ið Þ � ∫aijxi f i x� xið Þdx
∫þ∞
�∞f i x� xið Þdx

þ q jð Þ � V jð Þ �
∫xjaij f j x� xj

� �
dx

∫þ∞
�∞f j x� xj

� �
dx

� 1
2
� C ið Þ þ C jð Þð Þ

¼ qV
�∫aij�xi

0 f xð Þdx
∫þ∞
�∞f xð Þdx

þ
∫0aij�xj

f xð Þdx
∫þ∞
�∞f xð Þdx

Þ � C¼
qV ∫aij�xi

aij�xj
f xð Þdx

∫þ∞
�∞f xð Þdx

� C

(25)

Specially, if f(x) is symmetric about the vertical axis, then aij will be halfway between location i and
location j, that is, aij= (xi+ xj)/2. We denote the distance between location i and location j by dij,
namely, dij= xj-xi. Then, for 1≤ i< j≤ n, Iij will be the following:

Iij ¼
qV ∫dij=2�dij=2f xð Þdx

∫þ∞
�∞f xð Þdx

� C ¼ qV ∫dij=20 f xð Þdx
∫þ∞
0 f xð Þdx

� C (26)

When n sensors are densely and equidistantly placed in the one-way road (when n = 1, the sensor
will be located in the middle of the road), then d= L/(n-1) = xi+1-xi. We let d0 denote the distance be-
tween xi and ai,i+1 (the coordinates of the crossover point of fi and fi+1), and I0 denote the integration
value between location i and location i+ 1, then d0 = ai,i+1-xi. For i= 1, 2, …, n, based on Equations
(25) and (26), I0 will be the following:

I0 ¼ Ii;iþ1 ¼

qV ∫d0d0�df xð Þdx
∫þ∞
�∞f xð Þdx

� C f is not symmetrical

qV ∫d=20 f xð Þdx
∫þ∞
0 f xð Þdx

� C f is symmetrical

8>>>>><
>>>>>:

(27)

It can be concluded that the integration value between two adjacent sensors (location i and location
i+ 1) will be equal. Then, the simplified MIVM will be the following formulations.

For n= 1:

z nð Þ ¼

qV ∫L=2�L=2f xð Þdx
∫þ∞
�∞f xð Þdx

� C f is not symmetrical

qV ∫L=20 f xð Þdx
∫þ∞
0 f xð Þdx

� C f is symmetrical

8>>>>><
>>>>>:

(28) (28)

For n> 1:
z nð Þ ¼ n� 1ð ÞI0 � C 0ð Þ

2
þ C nð Þ

2

� �

¼
n� 1ð ÞqV ∫

d0
d0�df xð Þdx

∫þ∞
�∞f xð Þdx

� nC f is not symmetrical

n� 1ð ÞqV ∫
d=2
0 f xð Þdx

∫þ∞
0 f xð Þdx

� nC f is symmetrical

8>>>>><
>>>>>:

(29) (29)
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4. A NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS

4.1. A numerical example

The urban expressway of the second Ring-road in Beijing (an important freeway corridor in Beijing)
was selected as the object for SLP optimization and sensitivity analysis using the simplified MIVM;
meanwhile, the magnetic sensors were selected as the sensor type. The length of this urban expressway
is 33 km (L= 33). The traffic volume data was used to calibrate the sensor ICF. The simplified MIVM
parameters of f(x), C, V, and q are calibrated as follows.

4.1.1. Sensor information credibility function
The sensor ICF for the urban expressway is calibrated by the field date for 49 current traffic sensors (the
index of each sensor is recorded as i and i=1, 2, …, 49) on the second Ring-road of Beijing, between
April 14 and April 18, 2008 [19]. The sampling interval is 2min. Based on Equations (1)–(3), the
SCF of sensor i and sensor j, SCFi,j (i=1,2,…,49 and j=1,2,…,49) is obtained. As shown in Figure 7,
based on the distance between sensor i and sensor j (dij), the scatter diagram of SCF and the distance are
obtained by averaging the SCFi,js over their distance dij in a unit interval, namely, dij ∈ [l, l+1) (l=0, 1,
…, L-1). The fitting curve in Figure 7 illustrates the functional relation of SCF and the distance x. It is a
negative exponent curve, namely, y = e-kx (where k is the coefficient of the negative exponent curve and
k≥ 0). Based on available field data, we obtain k=0.1592. From Equation (6), we have f(x) =fitt
(SCFs) = e-0.1592x. For |corr(VoA(t), VoB(t)| = |corr(VoB(t), VoA(t))|, we have SCFi,j=SCFj,i. The sensor
ICF is formulated as f(x) = e-0.1592|x| x∈ (�∞, +∞).

4.1.2. Integration cost
The urban expressway described in the numerical example has four lanes in each direction on average (one
sensor is required for a lane, thus four sensors are required for a one-way road section). According to
Table I, the layout cost is estimated as Cl=¥1000, the device cost is estimated as Cd=¥1000, and the an-
nual maintenance cost is estimated as Cm=¥500. We have C=4� (Cl+Cd+Tl�Cm) = ¥20 000.

4.1.3. Traffic information value
The sensor lifetime Tl is estimated as 6 years, and the number of days can be taken as 365. The
hourly congestion cost and the external cost per vehicle are estimated as ¥8 and ¥2, respectively.
There are four peak hours in a day in common. The number of vehicles that do not encounter
congestion is assumed to be 170. We have: Tl = 6, Ty = 365, Tp = 4, Cc = 8, Ce = 2, and Qd = 170.
According to Equations (8)–(10), the traffic information value is calculated as follows:
V = 6� 365� 4� (8 + 2)� 170 = ¥14 892 000.

y = e-0.1592x

R² = 0.944
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Figure 7. Scatter diagram of spatial correlation function and the distance and its fitting curve.
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4.1.4. Accuracy
Based on the research data given in Table II, q is estimated as 95%.

4.2. Sensitivity analysis

According to Equation (29) and the calibration results described earlier, the following formulas can be
obtained:

z nð Þ ¼ total Value� total Cost ¼ n� 1ð ÞqV ∫
d=2
0 f xð Þdx

∫þ∞
0 f xð Þdx

� nC ¼ n� 1ð ÞqV ∫
L=2 n�1ð Þ
0 e�kxdx

∫þ∞
0 e�kxdx

� nC

¼ n� 1ð ÞqV�1� e
�

kL

2 n� 1ð Þ�� nC

(30)

Substituting L= 33, k= 0.1592, V= 14 892 000, C= 20 000 and q = 95% into Equation (30) yields
the curve of z(n) (Figure 8).
As Figure 8 shows, the optimal sensor number is obtained for this example. When n= 50, the

maximum z is obtained, and z(50) = 3.5� 107 (¥). Because the second Ring-road in Beijing is
circular, the first location and the last location are at the same place. The actual number of required
sensors is therefore 49. The optimal sensor spacing for the second Ring-road in Beijing can be
calibrated based on Equation (21), which yields a spacing of d = 33/49 = 0.6735 km.
Next, the sensitivity analysis that how z(n) changes when one of those parameters changes is

studied. By changing the values of the parameters, a series of curves of z(n) versus n can be obtained.
Figure 9 shows the curves of z(n) with the model parameters changing. The dotted curves in Figure 9
are based on the estimations of the numerical example. The sensitivity analysis of each parameter is
shown as follows.

4.2.1. Sensor information credibility function
Figure 9(a) shows the curves of z(n) with values of the ICF coefficient k from 0.04 to 0.22, and Δk=0.02.
From Figure 9(a), it can be concluded that along with k increasing, both of the optimal sensor number
and the maximum integration value increase. The effect of the ICF coefficient k influencing the integration
value is elaborated next. Figure 10 shows three sensor ICFs for different k values. For the same distance
(d0 in Figure 10), the larger k is, the smaller the sensor ICF is. The relationship between SCF and the
optimal sensor number can be derived from Equations (3)–(6) and (30). The smaller the spatial correlation
coefficient of one kind of traffic flow parameters is, the more traffic sensors will be required to implement

Figure 8. Curve of z(n) and n and its optimal sensor number.
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the maximum integration value. For freeway ramps, bridge entrances and exits, and road bends, the traffic
parameters will change more dramatically; therefore, the SCF for those locations will be smaller than
other locations, but k will be larger. Furthermore, according to the trend of optimal sensor number
illustrated in Figure 9(a), more sensors should be placed to acquire sufficient traffic information.

4.2.2. Integration cost
Figure 9(b) was drawn by varying the parameter C from 3500 to 30 500 with ΔC= 3000. From the
trend of optimal sensor number, it can be concluded that the integration cost has a great influence
on the optimal sensor number. When sensors with high integration cost are selected for the SLP, the
optimal sensor number and the maximum integration value decrease. This shows that it is necessary
to reduce the integration cost by using well-developed sensor technologies. In practice, it will be better
to employ traffic sensors that are low in cost and easy to install, presuming that they provide the same
function and accuracy.

Figure 9. Curves of z(n) with the model parameters changing ((a) sensor information credibility function; (b)
integration cost; (c) traffic information value; (d) accuracy).

Figure 10. Different sensor ICFs with coefficient k changing (0< k3< k2< k1).
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4.2.3. Traffic information value
Based on the estimations of the model parameters in the numerical example, if the traffic information
value V changes from 1.1� 107 to 2.0� 107, with ΔV= 106, the curves of z(n) and n will be those
shown in Figure 9(c). Unlike parameter C, a change in the traffic information value has less
influence on the optimal sensor number, but it can easily affect the integration value. Therefore, after
placing the sensors, the best way to improve the integration value z(n) without placing new sensors is
to enhance the effectiveness and efficiency of traffic information derived from those sensors. In
addition, making use of data fusion techniques will be significant in improving the accuracy and
utilization rate of traffic information. In this way, traffic congestion will be eased, and congestion costs,
emissions, fuel consumption, and noise will all be reduced.

4.2.4. Accuracy
Similarly, curves of z(n) for q from 0.82 to 1 with Δq = 0.02 are shown in Figure 9(d). The parameter of
q mainly influences the integration value. If the accuracy of a sensor increases, more integration values
can be obtained, which is what we want to achieve. The parameter of q has less influence on the
optimal sensor number. Using some data fusion algorithms to increase q can not only increase the
integration value but also keep the SLP close to the optimal state.

4.2.5. Budget
Figure 11 illustrates the variation of IM(n) as n increases. Making use of the estimation of C and
Equation (13), the formula for IM(n) is IM(n) = 8000n. As shown in Figure 11, na is the optimal
sensor number for the numerical example, namely, na = 49. The investment for the example is
IM(na) = 8000� 49 = 392 000 (¥). If the budget is not less than IM(na) (Ba, Bb in Figure 11), the
optimal sensor number and locations will not change. On the contrary, if the budget is less than
IM(na) (Bc in Figure 11), the maximum number of the placed sensors will be nc. In that case, the
layout strategy should refer to the analyses described in subsection 2.2.5.

4.3. Discussion

Figure 8 gives the optimal sensor number of the second Ring-road in Beijing based on the simplified
MIVM. Then, the optimal sensor locations and spacing for this freeway corridor will be also figured
out. Compared with traditional methods, the method proposed in this paper will be superior to some
graph theory-based methods, which cannot address the optimal sensor locations and spacing. More-
over, there is limited literature to address the IFs for the SLP, especially to reveal the influencing mech-
anisms of those factors. Based on the distribution and trend of those optimal sensor numbers with
model parameters changing (Figure 9), we can see clearly how those factors influence the optimal

Figure 11. Demand of fixed investment IM(n) for the numerical example.

25FACTORS THAT INFLUENCE THE SLP

Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2015; 49:10–28
DOI: 10.1002/atr



SLP. As the ICF coefficient k increases, both of the optimal sensor number and maximum integration
value increases (Figure 9(a)). The coefficient k will be larger in the locations of freeway ramps, bridge
entrances and exits, and road bends. More sensors will be required in those places. The integration cost
C will have a great influence on the optimal SLP (Figure 9(b)), but the influencing patterns of traffic
information value V and accuracy q will be similar (Figure 9(c) and (d)). Hence, to develop and select
sensors with lower cost and more accuracy will be necessary when we deploy them in road networks.
Furthermore, a large traffic information value will result in a large value of z(n), then it is sensible to
improve the accuracy and utilization rate of traffic information. The investment is an optional factor
that will influence the optimal SLP. As Figure 11 shows, whether the number and locations of the
placed sensors of a project change is related to the relationship between the investment and the budget.

5. CONCLUSIONS

This paper addresses the comprehensive analysis of the factors that influence the SLP for freeway corri-
dors. Six factors are identified as important to the optimal sensor number and locations. The mathematical
formulations of the model parameters derived from those six IFs are also presented for MIVM. The
simplified MIVM is applied to analyze the relationship between the integration value z(n) and the sensor
number n, which is related to those IFs. This model is a universal method for solving the traffic SLP, and it
can be applied in different situations for different sensor types and traffic information types. A numerical
example is presented to analyze how those factors influence the optimal sensor number and locations for
the SLP of a freeway corridor. The example results also demonstrate the effectiveness of the proposed
method in analyzing the influencing mechanism of those factors. Each factor has its own influencing
patterns for the SLP. Given those influencing patterns, we can see clearly how those factors influence
the optimal SLP. When one of those factors changes, we will have explicit schemes to keep an optimal
SLP solution. When the budget is a constraint of the SLP, some strategies of sensor layout proposed in
this paper can be referred in practice.
The main contributions of this paper are the following. (1) It is among the first papers to present an anal-

ysis of SLP IFs for freeway corridors, to calibrate every factor with field data, and to address the sensitivity
analysis of each factor in detail; (2) the proposed formulation of the SLP was implemented in the context of
a traffic information acquisition system that supports multiple scenarios in an ITS, such as different sensor
types and different locations; and (3) the proposed sensor ICF can be used to describe the heterogeneity of
the spatial distribution of traffic information credibility from point sensor networks. By spatial superposi-
tion operation, sensor IDFs on several freeways can be used to describe the spatial heterogeneity of freeway
networks and can be used to determine the optimal solution of the SLP for freeway networks.
Although the method proposed in this paper is to address the SLP of a freeway corridor, it could be

applied to urban roads with traffic lights. The function for a road ICF could also be calibrated by spatial
superposition operation of sensor ICFs. By defining a correlation coefficient matrix of different roads,
the method proposed in this paper could be extended to the SLP of an urban road network or other road
networks, which will be one direction of our future work. Future research can be conducted in several
directions. First, SCF is used to demarcate the sensor ICF in this paper. Other methods must be developed
to describe the spatial characteristics of traffic information. Second, a freeway corridor was selected as the
study object for the SLP in this paper. Studying the spatial characteristics of other road types would be
helpful and meaningful contributions to this research topic. The numerical example presented in this paper
assumes that the values of eachmodel parameter are equal at different locations.More complex case studies
are more common in the real world and would be more rewarding to study.

6. LIST OF SYMBOLS AND ABBREVIATIONS

6.1. Symbols

VoA(t) the traffic volume time series at point A, at time t
VoB(t) the traffic volume time series at point B, at time t
VolA(t) the traffic volumes at point A, at time t
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VolB(t) the traffic volumes at point B, at time t
dA,B the distance between point A and point B
corr the CC of the two time series
N the sampling number during a certain period
n the number of sensor in the one-way road
τ the sampling interval
f(i), fi, f the ICF of the sensor at location i
i, j the index of sensor location
C(i), C the integration cost of the sensor at location i
V(i), V the traffic information value of the sensor at location i
q(i), q the accuracy of the sensor at location i
Cl(i) the layout cost of the sensor at location i
Cd(i) the device cost of the sensor at location i
Cm(i) the annual maintenance cost of the sensor at location i
Tl the lifetime of a sensor
Bd(i) the direct benefits of the sensor at location i
Be(i) the external benefits of the sensor at location i
Ty the days in a year
Tp the peak hours per day
Cc the average congestion cost per hour for one vehicle
Qd(i) the number of vehicles that do not encounter congestion at the sensor location i
Ce the external cost due to the reduced traffic congestion per hour for one vehicle
IM(n), IM the fixed investment of n sensors
L the length of a one-way road
B the budget
z the integration value of all the located sensors
xi the coordinate of location i along the one-way road
Xi 0 or 1, 1 a sensor is located at location i, 0 indicating that there is not a sensor at that location
d the distance of two adjacent sensor along the one-way road
dij the distance between location i and location j
D the directed graph
vi the vertex of directed graph D at location i
eij the edge from vi to vj
wij the weight of eij
aij the coordinate of the crossover point of fi and fj
zm the maximum integration value
Ω the solution set
Iij the integration value between location i and location j
d0 the distance between xi and ai,i+1
I0 the integration value between location i and location i+1
SCFi,j the value of SCF between sensor i and sensor j

6.2. Abbreviations

SLP sensor location problem
MIVM maximum integration value model
ITS intelligent transportation systems
IFs influencing factors
CC correlation coefficient
SCF spatial correlation function
ICF information credibility function
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