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SUMMARY

It is important to measure public transport accessibility to help improve the sustainability of transport sys-
tems in metropolitan areas. Although many studies have defined different approaches for measuring public
transport accessibility, there have been limited methods developed for measuring accessibility levels that in-
corporate spatial aspects. Population density is an important distributional indicator that has also been ig-
nored in previous methods developed for quantifying accessibility. This paper outlines the research
context for measurement of public transport accessibility and then describes a methodology developed as
well as an application the Public Transport Accessibility Index in Melbourne area, Australia. Using the
Victorian Integrated Survey of Travel and Activity dataset, we applied separate-ordered logit regression
models to examine how the new index performs with a series of predictor variables compared with two
existing approaches. Key findings indicate that there is a higher probability of public transport patronage
in areas with higher levels of accessibility. Furthermore, it was found using statistical modelling that the
new index produces better results compared with previous approaches. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Public transport (PT) is considered to improve sustainability as well as being a more social means of
transportation [1], which may lead to increasing the liveability and sustainability of cities [2]. Public
transportation provides long-term sustainability in terms of reducing highway congestion and moving
large numbers of people over considerable distances [3]. This enhances systemic mobility, while de-
creasing the economic and environmental burdens of increasing private motorized travel. Furthermore,
an improved PT system provides mobility to those who do not have access to automobiles [2]. In other
words, use of PT is somehow considered within the definition of active transport as it often involves
some walking or cycling to connect to trip origins and destinations [4].

A number of research studies have identified that persons living in many suburban areas within
Australian metropolitan areas are significantly disadvantaged by current transport services [5—7]. More
recently, research has indicated that increasing auto fuel prices and home loan interest rates has inten-
sified the transport difficulties experienced by persons living in the fringe areas of Australian cities [8].
However, improving PT accessibility in terms of service coverage and availability may result in a more
reliable transport system as a whole [2].

A substantial body of research has been conducted relating to measuring PT accessibility. Neverthe-
less, there is limited research on quantifying the PT accessibility incorporating spatial factors. More-
over, the importance of population density within geographical areas and its influence on the level
of accessibility has largely been ignored. Hence, this study presents a new approach for measuring
PT accessibility within geographical areas that integrates population density.
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This paper presents the results of a study aimed at objectively measuring PT accessibility by consid-
ering population density in the metropolitan area of Melbourne, Australia. The study contains four
main parts. The first part after a review of previous research describes the calculation process for esti-
mating the accessibility index. The following section presents the methodology, analysis and results of
the models. The final section discusses the key findings and the implications of the approach.

2. BACKGROUND

Accessibility measures have been generally categorized into three groups, access to PT stops, duration
of journeys by PT modes and access to destinations by PT modes [9]. A large number of studies mea-
suring accessibility have focused on the proximity to a PT stop/station [10-13]. Some of these studies
have measured accessibility levels by considering an administrative division to a PT stop. Currie [11]
claimed that using an administrative division as an alternative for homes of all residents within a se-
lected boundary can bias the results. To address this problem, some studies have measured accessibil-
ity from dwelling units to PT stops [10, 14, 15]. A key component in modelling access to PT stops is
the walking distance. Typically, the maximum acceptable walking distance is considered as 400 and
800 m for PT stops or stations [7, 11, 16].

Although physical access to PT stops is important, the time taken to travel between an origin and
destination by PT modes can be considered as another significant factor [1]. Along with studies that
focus on access to PT stops, some studies focus on the duration of a journey undertaken by PT modes
[17, 18]. O’Sullivan ef al. [17] measured PT accessibility generating maps of accessible areas with the
same travel time. In another study, Cheng and Agrawal [19] introduced an accessibility measurement
tool that calculates a PT service area considering travel time. Yigitcanlar et al. [20] introduced a Geo-
graphic Information System (GIS)-based Land Use and Public Transport Accessibility Index. This ap-
proach measures accessibility based on both PT travel time and walking distances utilizing GIS
analysis techniques. They used an origin-based accessibility and destination-based GIS technique
and applied the index to two pilot studies in the Gold Coast, Australia. Their findings indicated that
the Land Use and Public Transport Accessibility Index could easily be applied to a range of different
of land use categories.

Access to a destination using PT modes is another technique of measuring accessibility [21].
Huang and Wei [22] measured access via PT using business and industrial land parcels. They com-
puted the distance between census tracks, as the origin points, and those parcels using a PT
network.

Service frequency is a critical aspect of accessibility, which varies in different commuting times [9].
Several studies conducted using service frequency as a complement in their approach or as an indepen-
dent measure. Service frequency-based measurements have been categorized into two general groups
Mavoa et al. [9]. For the first group, a minimum service frequency standard has been adopted. This
approach excludes the PT that does not meet the standard [21]. The second group includes all PT stops
while using service frequency. For instance, using the number of trips per week for each stop or station
[11] or category, the service frequency is measured by how often a PT mode arrives [20]. A needs-gap
approach used by Currie [7] identified spatial gaps in terms of PT supply in Hobart, Australia. A more
recent version of that approach was developed for metropolitan Melbourne [11]. These studies used a
combined measure of service frequency and access distance, which was calculated for each census col-
lector district (CCD). Among a series of service frequency methodological developments within this
area, the PT accessibility level (PTAL) is a UK approach that measures the level of accessibility.
The PTAL provides a six-level rating scale of PT accessibility, which includes measures such as access
walk time, service frequency and waiting time. This approach calculates the level of access by PT to
points of interest [11, 23].

A major weakness of existing approaches is that they assign a level of accessibility to areas without
considering the population distribution within those areas. Therefore, the current study focuses on
measuring access to PT stops while considering population levels in conjunction with walk time and
service frequency. The following section presents the methodology, which describes the computation
of the index.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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3. METHODOLOGY

This study presents a method for measuring PT accessibility as well as modelling the number of trips
undertaken by PT modes. In the first step, the Public Transport Accessibility Index (PTAI) is intro-
duced that is an index for measuring the level of accessibility to PT in Melbourne’s 9510 statistical
areas level 1 (SAls), the second smallest geographic area defined in the Australian Statistical Geogra-
phy Standard [24, 25]. In order to define the index two factors, a weighted equivalent frequency (WEF)
and the ratio of population density in SAls and buffer areas (walking catchments of each PT
stops/stations) are calculated. To calculate the PTAI we adopted the following datasets.

3.1. Public transport stops/stations

Three modes of PT including public buses, trams and trains are considered. A database of bus and
tram stops, train stations and PT routes and corridors were obtained from the Victorian Government’s
open data sources [26]. According to the database, the Melbourne region is covered by approxi-
mately 17 800 bus stops, 1700 tram stops and 240 train stations. These include almost 300 bus routes
and a train system comprising 16 lines servicing the Greater Melbourne area (Figure 1) and suburban
regions [27].

3.2. Public transport service frequency

Service frequency data are calculated from the timetable of each mode during the morning peak hours
(7.00 to 9.00 hours). Timetables are accessible through the Public Transport Victoria website [28].
Based on the dataset, average walk times from POIs to the closest tram stops, bus stops and train
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Figure 1. Greater Merbourne area.
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stations were 1, 5 and 7 min, respectively. Also, the average waiting time (AWT) for desired services
from selected POI was 8, 2 and 5 min, correspondingly to the closest tram stops, bus stops and train
stations.

3.3. Points of interests

A database of points of interests (POIs) was obtained from Australian Urban Research Infrastructure
Network. This included urban centres, significant buildings, landmarks, public spaces, community fa-
cilities and indigenous locations, consisting of 15588 points. Figure 2 shows the distribution of POIs
and PT stops/stations.

3.4. Geographical areas

A database of Mesh Blocks from the 2011 Census for the Melbourne Region was accessed from
Australian Bureau of Statistics (ABS). This dataset contains the total usual resident population and to-
tal number of dwellings from the 2011 Census of Population and Housing for Mesh Blocks and all
other statistical areas, including SA1s. According to ABS, the Melbourne region contains 53 074 Mesh
Blocks, 9510 SATls, 277 statistical area level 2 (SA2) and 31 local government areas (LGAs). Figure 3
presents the statistical geography areas of the Melbourne region. Mesh blocks are the smallest geo-
graphical unit released by the ABS, and all other statistical areas are built up from, or approximated
by, whole Mesh Blocks.

3.5. Victorian Integrated Survey of Travel and Activity dataset

The Victorian Integrated Survey of Travel and Activity (VISTA) dataset [29] has been provided from
the VISTA. This was a cross-sectional survey conducted from 20009 till July 2010. It covers the Mel-
bourne Statistical Division (MSD) as defined by the ABS, plus the regional cities of Geelong, Ballarat,
Bendigo, Shepparton and Latrobe Valley. Data were collected regarding demographic, trip information
and car ownership from randomly selected residential properties. A total of 16411 households, com-
prising 42002 individuals, responded with a response rate of 47%. In this research, only residents
within the MSD (22201 individuals) have been considered. This study used trip stages undertaken
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Figure 2. Distribution of points of interest (POIs) and public transport stops stations in Melbourne region.
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Figure 3. Geographical areas in Melbourne region.

by PT for assessing the index. According to VISTA definitions, trip stages are one-way travel move-
ments from an origin to a destination for a single purpose (including change of mode) and by a single
mode.

3.6. Approach

The current study aims to measure the level of accessibility for each SA1. The index measures the ac-
cessibility of a selected POI from the PT network considering walk time and service frequency, which
reflects the estimated doorstep frequency. The PTAI also incorporates the share of population density
in PT mode service areas and SAls.

As mentioned, there are roughly 20000 PT stops within the Melbourne region. This area is covered
by about 16000 POI including community services and facilities, landmarks, non-residential and
buildings. In some SA1s, with two or more stops/stations, service areas have been merged using the
same break value. Network analysis was conducted separately for each PT mode. For instance, consid-
ering a shopping centre as a selected POI, the distance of the nearest public bus stop has been mea-
sured. Thereafter, the same process was applied for the closest tram stop and train station. In other
words, the following steps were calculated for all three modes. In terms of determining the service fre-
quency for a POI, network analysis of closest facility was applied. The process of computing the ac-
cessibility index can be broken into the several stages from measuring the walking distances and
times to estimating population densities in service areas of PT modes. The following sections describe
the formulation of the index. The calculation of the WEF extends the approach used in measuring
PTALSs in London [30].

3.7. Walk time

The walking time was the first component calculated from a specified POI to the closest PT stops. Dis-
tances from the POI were converted to a measure of time assuming an average walking speed of
4.8 km/h or 80 m/min [30]. Walk distance, using network analysis by ArcGIS 10.2, was calculated
from a particular POI to the closest PT stop/station, including bus stops, tram stops and train stations.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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3.8. Average waiting time

The AWT is the average time between arriving at a stop/station and the arrival time of the desired ser-
vices. For each selected route, the AWT was considered as the interval between services. For instance,
for a PT mode running services every 5min or 12 frequencies per hour, the AWT would be 2.5 min.
The AWT is estimated as half the headway (i.e. the time interval between services) as shown in Equa-
tion (1).

AWT; =0.5*%(60/F;)i=1,2,3,...,nj=1,2,3 (1)
ij ij J

where AWT}; is the AWT (min) at the closest stop/station to POI i for PT mode j and F; is the frequency
of mode j (defined as the number of services per hour) at the closest stop/station to POI i.

3.9. Total access time

After calculating the WT and AWT, the total access time (TAT) of a selected POI to the nearest PT
stop/station is calculated. This includes walking times from the POI to the stop/station and AWTs.
TAT, as shown in Equation (2), comprises WT and AWT.

where TATjj is the total access time (min) of PT mode ; at the closet stop/station to POI i. WT};, as ex-
plained earlier, is the walk time (min) from POI i to the closest stop/station of PT mode ;.

3.10. Equivalent frequency

Total access times were converted to an equivalent frequency (EF) using Equation (3). This measures
the doorstep availability of a route at the specified POI. The EF as presented in Equation (3) is calcu-
lated as 30 min divided by the TAT. This treats access time as a notional AWT as though the route was
available at the ‘doorstep’ of the selected POI [23, 30-32].

30

EFj=— =
P = TAT;

1,2,3,...,nj=1,2,3 3)

where EFj; is the EF for PT mode j at the closest stop/station to the POI i.

3.11. Weighted equivalent frequency

The WEEF is calculated as the summation of the EFs of PT modes with a weighting in favour of the
most dominant mode (Equation (4)).

WEF;-,-:aEF,-dJr[}ZZEFU-i:1,2,...,nj:1,2,3 4)
i j+d

WEF; i s the WEF for PT mode j at the closest stop/station to the POl i, EF;; is the equivalent fre-
quency of the most dominant PT mode at the closest stop/station to POI i, a and £ are the coefficients
considered for the equivalent frequency of the most dominant PT mode and all other PT modes. In the
current study according to the average weekly service level of the PT modes reported by Public Trans-
port Victoria [33], « and f were assigned 1 for the train (the dominant mode) and 0.5 for the two other
modes.

3.12. Weighted equivalent frequencies for statistical areas level 1
The WEFs calculated for POIs were transferred to the SAls. For this purpose, spatial joining (using

ArcGIS 10.2) was used based on the criteria of closeness to the boundary of SA1s. Hence, considering

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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any POI, the WEF has been transferred from the one which had the minimum distance to the boundary
of its surrounding SA1s. The reason behind this was that SA1 boundaries are completely nested within
roads, so, the closer POI to a SA1 boundary has the shorter distance to the road as well. This may make
that particular POI more accessible than its counterparts.

3.13. Population density

Population density was used as an indicator of the spatial distribution of the population in calculating
the index. Population density was calculated for both buffer areas and SAls. Based on typical walk
catchments for PT modes, 400 m was considered for access to bus and tram stops and 800 m assumed
for access to train stations. Thereafter, service areas of PT modes overlapped with SAls, using a GIS
to calculate the share of population density for each SA1 considering the assumption of a homoge-
neous distribution of population with a SA1. To avoid duplication, the residential population was
transferred to buffer catchments considering the proportion of overlapping areas, assuming that
20% of a specified SA1 was covered by a walk catchment of a selected stop/station. In this case,
the population calculated for that walk catchment would be 20% of the total population of the SA1.
Table I presents information about the population and areas of SAls and walking catchments of PT
modes. As indicated, SAls have a mean population of 414 persons with the average area of
0.93km”.

3.14. Public Transport Accessibility Index

For each SA1, the PTAl is calculated using the formula given in Equation (5). The index is a combined
measure of WEF and population density ratio given as

if Dy, = 0 ®)

31 Dy
PTAIsy = 33 (1 + —’) *WEFsy,
j=li=1 Dsa,

if Dy, #0;

31 /Dy
PTAIgy = Y Y (B’f)*WEFSAh
j=1i=1 \Dsa1,

where PTAIgy, denotes PTAI for a given SA1 and Dy, is the population density of buffer i for PT
mode j. Dga; is the population density of the SAl. and WEFg,, is the WEF calculated for the
corresponded SAL.

In this approach, accessibility is calculated for the spatial coverage of each SA1 that is covered by
walking buffers to PT stops/stations as well as their frequencies. The index also counts the overlapping
buffer areas. For instance, where there is a place within possible walking distance to a both bus and
tram stop, the measurements are double counted, which indicates that those areas have a higher level

Table I. Population and areas of SAls and walking catchments of public transport stops/stations.

Population Area (km?)
Standard Standard

Categories Mean deviation Min Max Mean deviation = Min Max
SAls 414 209.5 0 6427  0.93 10.2 0.002  854.3
Walking buffers for tram stops 31 41.3 0 724 0.10 0.19 0.01 1.50
Walking buffers for train stations 66 55.6 0 1286  1.50 0.54 0.50 3.20
Walking buffers for bus stops 26 35.1 0 869 0.14 0.20 0.01 2.50
SAls, statistical areas level 1.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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of accessibility to PT. A higher value of the PTAI indicates a higher level of accessibility. The index is
allocated to six categories of accessibility levels, where category 1 represents a very poor level and
level 6 represents an excellent level of accessibility (Table II). A value of 0 indicates that there is either
no accessibility or no population in a specified SAI. In areas with no population or non-residential
uses, the PTAI is equal to WEFg,;.

Table II presents the ranges and categories of the PTAIL The index was grouped into six main cat-
egories including very poor, poor, moderate, good, very good and excellent plus a zero group. The
classification method used for PTAI categories are based on quantiles because they are known as
one of the best methods for simplifying comparison as well as aiding general map reading [34]. Zero
accessibility was calculated for 16243 residents or 0.55% of total population. Very poor areas were
mostly located in outer Melbourne. Overall, around 50% of total population have zero to moderate ac-
cessibility to PT.

Figure 4 illustrates the distribution of PTAI categories in the Melbourne region. As explained ear-
lier, the PTALI is categorized into six bands. The first category represents a very poor accessibility,
while the last category corresponds to an excellent level of accessibility to PT. First and last categories
have been further subdivided into sublevels to provide better clarity. High levels of accessibility from
good to excellent are mostly concentrated in the inner parts of Melbourne region. As shown, outer
Melbourne, where PT is mainly provided by public buses have lower levels of accessibility in compar-
ison to the inner parts and the central business district (CBD).

Table III presents a summary of the descriptive statistics of the index components. This shows that
there was on average 414 residents in each SA1 with an average area of 0.93 km?. The average number
of stops/stations per SA1 was 2.1, which receive a total of 9.6 services during peak times. The average
WEEF per SA1 was 5.5, and the average value of the PTAI per SA1 was 9.7. On average, 28% of the
Melbourne area is covered by the walking catchments of bus stops. This proportion is 4% and 3% for
train station and tram stop walking buffers, respectively.

3.15. Existing measures

Public Transport Accessibility Index extends the more recent and common approaches, including the
UK approach [30] measuring PTAL and Supply Index (SI) introduced by Currie [11]. PTAL mea-
sures accessibility using local indicators and accessibility modelling. It uses a six-level scale to rate
PT service access, which includes measurements such as walk time, waiting time and service fre-
quency. The index developed in this paper calculates the sum of equivalent doorstep frequency of
all different PT modes. SI is a supply index calculated for Melbourne’s 5839 CCDs. The index is
a combined measure of service frequency (number of PT vehicle arrivals per week) and access
distance.

Both indexes, PTAL and SI, were calculated for SA1s as presented in Table IV. Based on the PTAL
about 50% or about 2 M residents have zero to moderate access to PT modes. While considering SI,
these figures rise to 67% or 2.6 million residents.

Table II. PTAI ranges and categories.

Number of SAls Population
PTAI

categories No. Percent No. Percent
0 N/A 52 0.55 16243 0.41
<2 Very poor 1331 14.00 538536 13.66
2-3.5 Poor 1607 16.90 671449 17.04
3.5-6 Moderate 1791 18.83 751327 19.06
6-12 Good 1969 20.70 801520 20.34
12-20 Very good 1480 15.56 623111 15.81
>20 Excellent 1280 13.46 539025 13.68
Total N/A 9510 100.00 3941211 100.00

PTAL Public Transport Accessibility Index; SAls, statistical areas level 1.
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Figure 4. Distribution of Public Transport Accessibility Index (PTAI) categories in Melbourne region.

4. DATA ANALYSIS

Built environment factors, as well as PT access measurements, were combined with the VISTA dataset
using the SA1 codes. The VISTA dataset contains trip record information for 22 184 individuals who
were randomly selected from 1822 SATls. The following sections present the results of the models ap-
plied to the data while comparing the new index with the previous measurements.

4.1. Modelling and interpretation

Ordered logit regression models were used to explore the correlations of PT trips and socio-economic
characteristics as well as built environment factors. Estimates from the model denote the ordered log-
odds (logit) regression coefficients. Interpretation of the ordered logit coefficient is that, for a one-unit
increase in the predictor, the response variable level is expected to change by its respective regression
coefficient in the ordered log-odds scale, while the other variables in the model are held constant. In-
terpretation of the ordered logit estimates is not dependent on auxiliary parameters. Secondary param-
eters are used to differentiate the adjacent levels of the response variable. ORs are the proportional
odds ratios. They can be obtained by using the exponential function with the coefficient estimate,
(i.e. €©°?"). The interpretation OR is that for a one-unit change in the predictor variable, the odds for

Table III. Descriptive statistics of indicators in each SA1.

Indicators Mean  Standard deviation =~ Minimum  Maximum
Area (km?) 0.93 10.2 0.002 854.3
Population 414 209.5 0 6224
Frequency of bus services 22 1.5 0 20
Frequency of tram services 2.9 4.1 0 12
Frequency of train services 4.5 2.6 0 7

Number of public transport stops/stations per SA1 2.1 2.5 0 60

WEF 55 8.6 0 659.7
PTAI 9.7 10.9 0 98.2

PTALI, Public Transport Accessibility Index; SA1, statistical area level 1; WEF, weighted equivalent frequency.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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Table IV. PTAL and SI for SAls.

PTAL ST

PTAL/SI categories Number of SAls Population (%) Number of SAls Population (%)
Zero access/supply 52 16243 (0.4) 267 96 585 (2.5)
Very poor/very low 1370 560271 (14.2) 2117 837018 (21.2)
Poor/low 1398 604059 (15.3) 2014 843374 (21.4)
Moderate/below average 1857 773731 (19.6) 2069 876429 (22.2)
Good/above average 1415 582554 (14.8) 1032 431338 (10.9)
Very good/high 1624 670184 (17.0) 1000 416 642 (10.6)
Excellent/very high 1794 734169 (18.6) 1011 439825 (11.2)
Total 9510 3,41211 (100.0) 9510 3,41211 (100.0)

PTAL, Public Transport Accessibility Level; SAls, statistical areas level 1; SI, Supply Index.

cases in the level of the outcome that is greater than k versus less than or equal to &, where £ is the level
of the response variable are the proportional odds times larger [35]. A typical model for the cumulative
logits is shown in Equation (6):

logitP(Y<))] = o + X1 + B Xo + - + B, X0 = 0y + f X (6)
where j=1, ..., c — 1; c is the total number of categories; X1, X, ..., X, are n explanatory variables; and
b1, P, ..., B, are corresponding coefficients.

Three separate ordered logit regression models were specified with socio-economic and built envi-
ronment factors. M1 presents the results of ordered logit models considering all the predictor variables
and the PTAI as the PT accessibility measure. M2 and M3 contain the entire variable used in the M1;
however, SI and PTAL are used for PT accessibility measures, respectively. PT trips are defined as an
ordered dependent variable. Age, gender, car licence, employment type, household size, household
structure and a number of cars in the household were employed as socio-economic variables [36—
39]. Built environment factors include roadway measure (RDW), Land Use Mix Entropy Index
(LUMIX) and PT accessibility measurements (PTAI/SI/PTAL). RDW examines how long the network
spreads over an area. It is quantified by total roadway length divided by the total area where the dis-
tance is normalized by 100 m?. LUMIX was calculated using Equation (7) [36]. The values vary from
0 to 1, while 1 indicates a perfect balance among different types of land uses and 0 represents homo-
geneity.

LUMIX:—(ém> (7

j=1 an

where LUMIX indicates the land use mix entropy index within buffer i (SAls). Pj represents the pro-
portion of a type of land use j, and J is the number of land use categories. Six different land-uses cat-
egories, including residential, commercial, industrial, transport and infrastructure, community services
and sport and recreation centres, have been chosen to calculate LUMIX. These categories are defined
from 10 main use categories defined by Australian Valuation Property Classification Codes [40].
Table V shows the list of independent variables and their description as well as hypothesized relation-
ship with the dependent variable.

As mentioned, in the VISTA dataset travels is reported in the form of trip stages where a ‘trip stage’
is a segment of travel with a single purpose and mode. Hence, the dataset contains the details of trips
stages made by 22 184 individuals in the MSD. Table VI shows the frequency of PT trips which cat-
egorized into five groups from very low to very high ranges of PT trips generated in SAls.

Table VII suggests the descriptive statistics for the variable used in the ordered logit models. These
statistics were calculated for 77 020 trip stages records. In terms of socio-demographic characteristics,
respondents were 38 years old on average and equality distributed in terms of gender. The average of

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
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Table V. Independent variables and their hypothesized associations with PT trips.

Variables Description Hypothesized relationship
Socio-demographic

Age Age of the respondent +/—
Sex Gender +/—
Licence Driver licence —
Employment type Type of the work +/—
HH size Usual number of residents in the household +
HH structure Demographic structure of household +/—
Car no. Number of vehicles in the household

Built environment

PTAI Public Transport Accessibility Index +
SI Supply Index +
PTAL Public Transport Accessibility Level +
RDW Roadway measure —
LUMIX Land Use Mix Entropy Index +

HHstructure is converted to five dummy variables: sole person, couple no kids, couple with kids, one parent and other. Employ-
ment type is converted into three dummy variables: full time, part time and other; sex and driver licence are defined as binary
variables.

PT, public transport.

Household size (HH size) shows that respondents were almost all from households with a usual
number of about three residents.

In order to examine the applicability of the new index compared with existing approaches, three or-
dered logistic regression models were estimated. All the variables were considered constant in the
models except the PT accessibility measures. The PTAI along with other variables were employed
to run the model M1, likewise, the SI in M2 and the PTAL in M3 (Table VIII). The coefficient values
for PT measurements are different in the models and the PTAI in M1 has the highest value. This can be
interpreted as when the PTAI increases by one unit, the odds of being in the higher levels of PT trips
increases, given that all other variables in the model are held constant. Furthermore, M1 has the lowest
Akaike information criterion (AIC) that is a measure of the relative quality of statistical models for a
given set of data. Given a series of models for the data, the AIC estimates the quality of each model,
relative to each of the other models. Hence, the AIC provides a means for model selection [41-43]. In
terms of association, as presented in Table VIII, age, number of cars in a household and being a male
are negatively associated with PT trips.

Meanwhile, built environment features also have a significant impact on the number of PT trips.
LUMIX and PT access measures are positively and RDW negatively associated with PT trips. For in-
stance, there is an expectation of a 0.16 increase in the log odds of being in a higher level of PT trips
for a unit increase of LUMIX. In contrast, while the RDW decreases for about 0.1 in M1, the log odds
of being in a higher level of PT trips. This figure is 0.05 in M3. With regards to PT access measure-
ments, a larger increase in the log odds of being in a higher level of PT trips is expected with the PTAI
in the model.

Table VI. Frequency of PT trips.

PT trips categories PT trips Frequency Percent Cumulative percent
Very low 1-9 15169 19.7 19.7

Low 9-14 13965 18.1 37.8

Average 15-23 15585 20.2 58.1

High 24-39 15974 20.7 78.8

Very high 40+ 16327 21.2 100.0

N/A Total 77020 100.0

Analysis has been run on records related to SAls with non-zero PT trips.
PT, public transport.
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Table VII. Descriptive statistics.

Variable Mean SD Min Max
PT trips 25.04 19.57 1.00 106.00
Age 37.55 19.76 0.00 96.00
Sex 1.53 0.50 1.00 2.00
Licence 1.24 0.42 1.00 2.00
HH size 3.25 1.35 1.00 6.00
Employment type 2.05 0.93 1.00 3.00
HH structure 2.86 0.99 1.00 5.00
Car no. 1.90 0.95 0.00 4.00
PTAI 33.26 360.30 0.00 7235.57
SI 17191.58 17132.71 0.00 222037.92
PTAL 16.40 174.80 0.00 3482.64
RDW 1.36 0.79 0.00 5.57
LUMIX 0.42 0.15 0.00 0.87

n="77020 trip stages.
LUMIX, Land Use Mix Entropy Index; PT, public transport; PTAI, Public Transport Accessibility Index; PTAL, Public Trans-
port Accessibility Level; RDW, roadway measure; SD, standard deviation; SI, Supply Index.

After estimating and comparing the three ordered logit models, the standard difference-of-means test
(Equation (8)) was also used to test the statistical differences in the estimated coefficients obtained
from the ordered logistic regression models. The reason behind this was to investigate whether there
are any significant differences between the coefficients estimated by three models.

Table VIII. Outputs of the ordered logit model for public transport trips.

Ml M2 M3
Parameter Coefficient SE OR  Coefficient SE OR  Coefficient SE OR
Age*H* —0.001 0.000 0.999 —0.002 0.000 0.998 —0.002 0.000 0.998
Sex (male)** —0.038 0.014 0.963 —0.030 0.014 0.971 —0.031 0.013 0.97
Licence (yes) 0.000 0.021 1 0.015 0.021 1.015 0.014 0.021 1.014
HH size*** 0.044 0.008 1.045 0.029 0.008 1.029 0.031 0.008 1.031
Employment type
Full time*** 0.077 0.016 1.08 0.071 0.016 1.073 0.086 0.016 1.09
Part time —0.002 0.022 0.998 —0.003 0.022 0.997 0.021 0.022 1.021
HH structure
Sole person*** —0.159 0.037 0.853 —0.197 0.037 0.821 —0.193 0.037 0.825

Couple no kids*** —0.099 0.029 0.906 —0.142 0.029 0.868 —0.148 0.029 0.862
Couple with kids***  —0.087 0.024 0917 -0.110 0.024 0.896 —0.133 0.024 0.876

Single parent*** —-0.277 0.033 0.758 —0.346 0.033 0.707 —-0.357 0.033 0.7
Car no.*** —0.180 0.008 0.836 —0.185 0.008 0.831 —0.223 0.008 0.8
LUMIX##%* 0.164 0.012 1.178 0.145 0.012 1.156 0.252 0.012  1.287
RDW##* —0.091 0.012 0913 —0.096 0.012 0.908 —0.052 0.012  0.949
PTAT*** 0.307 0.004 1.36

STH#* 0.260 0.004 1.297

PTAL*** 0.179 0.004 1.196

Public transport trips are converted to five dummy variables by using level 1 as the reference level (very low): less than 9 trips,
level 2 (low): 9—14 trips, level 3 (average): 15-23 trips, level 4 (high): 24 to 40 trips and level 5 (very high): more than 40 trips.
Threshold coefficients for M1: 112 — 0.447, 213 — —0.511, 314 — —1.387; 415 — —2.443; M2: 112 —0.707, 2I3 — —0.248, 3|
4 — —1.115; 415 — —2.158 and M3: 112 — 0.811, 2I13 — —0.130, 3l14 — —0.986; 4I5 — —2.015; (3)

Overall goodness-of-fit:

MI: log likelihood = 7451.69; AIC =240 282.51.

M2: log likelihood = 6536.15; AIC =241 198.06.

M3: log likelihood =4732.28; AIC =243 001.92.

AIC, Akaike information criterion; LUMIX, Land Use Mix Entropy Index; OR, odds ratio; PTAI, Public Transport Accessibility
Index; PTAL, Public Transport Accessibility Level; RDW, roadway measure; SE, standard error; SI, Supply Index.
*##*Significance codes: p < 0.001.

*#p < 0.01.
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where J; is the estimated coefficient of a built environment variable, i; SE denotes the standard error
[44, 45]. The estimated coefficients from the models were compared with each other, and results are
presented in Table IX. The #-statistics results indicated that there is a significant difference between
the coefficients of PT accessibility measurements estimated by the three models.

4.2. Tests of associations

Ordinal and interval tests of association were applied to compare the relationship between the PT ac-
cessibility measures and the number of PT trips. Somers’ D, Gamma and Spearman test are asymmet-
ric measures of association between two variables, which plays a central role as a parameter behind
rank or nonparametric statistical methods [46]. Moreover, in terms of linear association, PTAI had a
higher value (r=0.350, p < 0.001). Table X presents the results of the test. As shown, the PTAI has
a better association in comparison with existing approaches.

Figure (5) shows the average number of PT trips undertaken by train, tram and public bus within
PTALI categories. It can be seen that the more accessible areas are, the more PT trips are generated.
All the three modes had a similar trend; however, train usage shows a sharper upward increase in good
to excellent levels of accessibility.

Table IX. Outputs of the ordered logit model for public transport trips.

Measurements Coefficient (SE) t.diff
PTAI 0.3072 (0.00445) —

SI 0.2598 (0.00419) —
PTAL 0.1787 (0.00397) —
M1/M2 — 182.3077%%*
M1/M3 — 267.7083%:k*
M2/M3 — 368.6364%**

PTAL Public Transport Accessibility Index; PTAL, Public Transport Accessibility Level; SE, standard error; SI, Supply Index.
**+*Significance codes: p < 0.001.

Table X. Test of associations between public transport trips and public transport measurements.

PTAI SI PTAL
Test of associations Value p-value Value p-value Value p-value
Ordinal by ordinal Somers’ D 0.255 0.000 0.219 0.000 0.203 0.000
Gamma 0.257 0.000 0.244 0.000 0.205 0.000
Spearman 0.309 0.000 0.296 0.000 0.208 0.000

Interval by interval Pearson’s r 0.350%%** 0.000 0.287%** 0.000 0.2147%%* 0.000
No. of valid cases 77020

PTALI, Public Transport Accessibility Index; PTAL, Public Transport Accessibility Level; SE, standard error; SI, Supply Index.
***Significance codes: p < 0.001.
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Figure 5. Average numbers of public transport (PT) trips for different modes within Public Transport Accessi-
bility Index (PTAI) categories.

5. DISCUSSION

This paper introduced a new approach measuring PT accessibility. The PTAI defines and extends
existing PTAIs by including PT modes’ service frequency and population density. It is an applicable
measurement for examining the level of accessibility of PT, and also it provides the ability to investi-
gate accessibility at a variety of geographical scales. Hence, the index could be useful for
neighbourhood level to regional studies. The transit frequency component provides a useful comple-
ment to the PTAI and makes it more representative of real access than either alone. This index allowed
the level of accessibility in Melbourne region to be explored. Results indicate that 0.5% of SA1s have
zero accessibility to PT. From this percentage, 1.74% of SAls have no population and 52 SAls
representing 0.4% of Melbourne residents had no access to PT. About 30% of residents had very poor
or poor access to PT. Those PTAI categories mainly belong to the outer parts of the Melbourne region
(Figure 4). However, these levels of accessibility were not exclusive to outer areas. In the Greater
Melbourne area, about 50% of residents have zero to moderate levels of accessibility when outer
Melbourne has only 17% of residents have above-average levels of accessibility. As discussed,
approximately 30% of Melbourne region is covered by PT walking catchments. This includes about
17800 bus stops, 1700 tram stops and 240 train stations with an average frequency of 2.2, 2.9 and
4.5 (per hour), respectively. Although public buses have the highest catchment coverage and frequency
during the peak hours, it is used less than the train (by 8.3%) and tram (by about 1%).

Two recent and common approaches, SI and PTAL, have been explained and also built for
SAls, in the Melbourne region. The new index showed much consistency with the existing
approaches. All the three indexes along with a series of socio-economic characteristics and built
environment factors were applied in three separate ordered logit models. The M1 model included
the PTAI along with other predictor variables, while the M2 and M3 models used SI and PTAL
as the measures of PT accessibility, respectively. Comparing the results, M1 had the lowest AIC
(AICy;1=240282 < AIC);p=241198 < AIC),3=243001) and showed a better fit for the data. The
estimated coefficient for PTAI in M1 (Bp7s;=0.307) was higher than coefficients estimated for
ST (Bs;=0.260) and PTAL (Bpza;=0.179) in M2 and M3, respectively. This figure indicates that
higher log odds of being in a higher level of PT trips are expected, while there is a one-unit
increase in PTAI compared with its counterparts.

Copyright © 2016 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:1785-1801
DOI: 10.1002/atr



PUBLIC TRANSPORTATION 1799

Tests of association have also applied to examine whether there is a stronger relationship between the
new index and number of trips made by PT modes. These findings show that association values for
PTAI both in ordinal and interval tests were higher than existing measurements. Thus, PTAI was eval-
uated as a valid means of measuring PT mode use in Melbourne region based on the VISTA database.

This study’s results show much consistency with the previous study undertaken on PT supply and
need analysis Melbourne’s 5839 CCDs by Currie [11]. Although the approaches used in these studies
were different, there are clear similarities between the results. There also similarities with another re-
search that calculate PTALs [23, 47].

Opverall, accessibility can be considered as a measure of locational disadvantage, particularly from a
social planning perspective. Poor accessibility to PT can deter access to different facilities and social
advantages. Lucas [48] argued there are interrelationships between transport shortcomings and key
areas with social disadvantages such as unemployment, health inequalities and poor education. In this
regard, in many transport studies, weighted socio-economic factors have been combined in calculating
the level of accessibility to PT [49, 50]. However, in many transport models, socio-economic charac-
teristics have been often considered as independent variables. Therefore, a weighted accessibility index
in such models may duplicate the effects of social factors and bias the results. Besides, from a trans-
portation planning perspective, accessibility reflects an indicator of the spatial distribution of PT stops
and routes.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This study contained two main parts, including the PTAI and the assessment and comparison of the
index using VISTA data. This study employed GIS techniques to accurately measure the level of ac-
cessibility to PT in the Melbourne region. The findings indicate the concentration of PT in the inner
part of Melbourne, and the CBD is high, and they can be accessed by all three modes. However, the
outer suburbs which are characterized by sprawling patterns; PT is generally limited to buses. This
can be referred to the policy of increasing bus services based on address needs. Moreover, results re-
vealed the fact that people were more likely to use PT modes when it is more accessible. In terms of
numbers of trips generated by PT modes, findings showed that the average numbers of PT trips for all
three modes would be higher at the higher levels of PTAI categories.

Overall, the techniques presented are straightforward to apply, while it showed better and more ac-
curate, measurements for PT accessibility based on the VISTA dataset. The quantitative approaches
developed can be employed for any number of public modes in other cities around the world. It is de-
signed to be applied with available census and transport modelling tools. Furthermore, the analysis
provides reliable and defendable results that enabled the accessibility for about 99% of the SAls to
be calculated. Nonetheless, they can be enhanced by greater details to achieve even more accurate
results.

A weakness of this approach is that the index is estimated to be equal to WEFs for SA1s with non-
residential uses or no population. These results in the index are having a value of 0 for SA1s with non-
residential uses (165 out of 9510 SA1s). Furthermore, the PTAI does not consider the connectivity be-
tween public modes that can influence accessibility, particularly in areas of low accessibility. Another
weakness of this method is that the index does not take into account the effects of temporal disparity
[51-53]. This study has not focused on off-peak periods that tend to have lower PT service frequency
and PT users encounter lower level of service and consequently lower mobility. Besides, calculating
the AWTs assumed passengers arrived at the stops/stations randomly. Future studies may consider
these points when measuring accessibility.

However, this study adopted GIS approaches to calculate the PTAI and illustrated the level of acces-
sibility for the 9510 SA1s in the Melbourne region. The findings, therefore, should provide a measure
to identify areas with low levels of accessibility. In addition, this study calculated the PTAI with the
knowledge of population distribution within SA1s. In this regard, the index provides a practical means
of measuring the levels of accessibility within metropolitan areas, while it can be employed in model-
ling different aspects of travel behaviour. Besides, considering the applicability new index, it can be
concluded that this index not only measures the level of PTALs but also it can be a better predictor
when it is applied in a travel behaviour model.
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