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Abstract- In this study symmetry analysis is carried out for a system

dealing with nonreactive pollutant transport along a single channel. Constitutive
equations obeying a power law fluid are used in the description of the mathemat-
ical problem. We obtain forms of the source term for which the governing system
admits extra point symmetries. Invariant solutions which satisfy physical boundary
conditions are constructed. In some cases we resort to numerical methods to obtain

approximate solutions.

Keywords- Power law fluid, nonlinear system, symmetry reductions,

invariant and numerical solutions.
1. INTRODUCTION

The fluid dynamics of pollutants in rivers has a wide potential of applications
in many environmental and engineering areas. The river system is complex and
involves a number of parameters. Here we focus on macroscopic deterministic models
based on local conservation laws. Even in recent times analytical and numerical
solutions to the relevant mathematical models of river pollution are of vast interest
to researchers. Some previous contributions can be seen through the studies [1, 2,
3,4,5,6, 7.

In all the above mentioned studies, a viscous fluid is considered. However, no
information is currently available for a system characterizing pollutant transport of
a non-Newtonian fluid in a river. Such consideration in a river seems more realistic.
In view of this, our aim is to provide such a study. Hence the power law fluid has
been selected. This fluid model is able to describe both shear thinning and shear

thickening effects. However, power law fluids cannot predict the normal stress
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effects. The resulting system in the present study is nonlinear and it is linear for
a viscous fluid. The governing nonlinear system is solved by symmetry techniques.
We employ classical Lie point symmetry analysis. Numerical methods are utilised
where necessary. The paper is organized as follows: the mathematical statement
of the resulting system in dimensionless variables is presented in Section 2. We
provide the classical Lie point symmetry analysis in Section 3. In Section 4, we
consider numerical solutions. Discussion of the results and concluding remarks are

given in Section 5.
2. GOVERNING EQUATIONS

We consider river pollution which is initially incompressible and fully developed
with contaminant-dependent viscosity. An amount of pollutant concentration is
injected into the river and allowed to disperse. The Cauchy stress tensor in a power-

law fluid is

1
T=—pl+pu ‘witrA%

where p denotes the fluid pressure in a river, I an identity tensor, u is contaminant-

n—1
A17 (1)

dependent fluid dynamic viscosity, tr is the trace and the first Rivlin-Eriksen tensor
A, is given by
A, = (gradV) + (gradV)*, (2)

where V is the fluid velocity and * is the matrix transpose. It should be noted that
n is the power law index. With n = 1, Eq. (1) represents a

viscous fluid. Furthermore, Eq. (1) represents shear thinning (n < 1) and shear
thickening (n > 1) fluids. For unidirectional flow V = (u(y,?),0,0). Here u is
velocity of fluid in the x—direction and ¢ is the time. Note that the incompress-
ibility condition is automatically satisfied by the chosen value of V and momentum

equation along with Egs. (1) and (2) to yield
ou  dp O [ |ou|"" du 3
oy |’

- = — + J— J—
Par = "oz oy \ Moy
where p is the constant density of the fluid. = The pollutant concentration equation

is given by
dc 0 dc
Por =y (D(‘?_y) + S(y, 1). (4)

¢ denotes the pollutant concentration, D the mass diffusion and S(y,t) an external

pollutant source term. The river viscosity and the mass diffusivity are assumed to
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be pollutant dependent and given by power laws,

ORE SO ’

Here pig, co, Do and X are the river viscosity coefficient, characteristic concentration,
mass diffusivity coefficient and constant exponential respectively. Introducing the

dimensionless variables

Lu Y x vot L?P o Vo
x* — T, * — T * — T by = aP*_ ) — T R:_v
" Vo A L? PV v p Dy
0P, L?S c vy \ "1
O B e e
0%, VoCo ¢ o 2

we obtain, after dropping the stars for simplicity, the system of dimensionless PDEs
0 0 "o
Yk + M (C’\ _u) ,
dy
de 10 ( , Jc
=——c

ot Ay
o~ Roy a—y)JFS(Z/,t)-

du
dy

(6)

Here R is the Schmidt number and K is the imposed constant pressure axial gradient.
We require n # 0. We assume u, > 0 in the subsequent sections. Note that K may
be equated to zero by the transformation u = u + Kt. However, here we allow K to

be nonzero.
3. CLASSICAL LIE POINT SYMMETRY ANALYSIS

The theory and application of symmetry techniques may be found in texts such
as [8]. We adopt methods in [8] (which exclude explicit equivalence transformation
analysis) to perform group classification. In the initial Lie point symmetry analysis
of the system (6) with an arbitrary function S, the admitted generic symmetries are
nothing beyond translation in u. The cases for which extra symmetries are obtain
are listed in Table 1, wherein the analysis for the viscous fluid has been omitted.
Unless stated, all the parameters appearing in system (6) are taken to be arbitrary
in Table 1.

3.1. Lie point symmetry reduction: illustrative example
The symmetry generator Xy, in Table 1, reduces the system (6) with S = 0 to
the functional form
u=Kt+g(y), c=t"h(y),
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where g and h satisfy the ordinary differential equations (ODEs)

g =mh" y €eR,
. (7)
h/l + )\h—l(h/)Q + Xhl—)\ =0.

In terms of the original variables we obtain the invariant solution to the system (6)

with A = —1 and n = —1 given by
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Table 1: Extra point symmetries admitted by system (6).

S(y,t) Parameters Symmetries
arbitrary R=0 Xy =0, X3= <(1_n)> cOe + (u— Kt)0,,
X, = (”+108 + y0, )
X5 = —"Wed, + Kn(t)d, + h(t)d;.
0 Xy =0, X3=0;, X4=c0,— K\, — N\,
X5 = c0. + Kto, + yo, + 2t0,
(ay + pyer X, = 3u— Kt)0, + 2(ay + 5)2,
+%(2 — Ap)0; + O,
ePytd Xy = c0, — K\9, + 210, — Mo,
e Xy = [u— (M52 ) Kt| 0+
(3242) 0.+ 00, + (253 0
A q%l Xy = (q+ 1)cO. + Kt0, + to,
p=—2q—2 X3 =—-2(¢+ 1)co. + (u — Kt)0, + y0,
ePy+at X5 = —gay + 0
AeP?t Xo = 0y, X3 =2qco. + A\q(u — Kt)0,
+Aqy0y + 20;.
yPf(t) A= 123 Xy = pcO, + (u — Kt)0, + yo,
f(@) Xy = 9,
tP Xy =0y, Xs=2(p+1)co,
+(M+ A+ 1)(u— Kt)o,
+(Ap + A+ 1)y0, + 2t0,
fy) Xy =0,
¥ X, = c@c ~ A0, + (1) 0, - Mo,
v’ =, X3 = (57) 0.
+[u+t (Apfffl) Kt) 0, +y0y + (53F) Ot
(By — pt) =20, + 0,

X3 = 2080 + u0, + y0, + o,
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t Y+ Co
c:Zsze02< 5 ),cl, c €R, 72:0?
1
u = Kt+ 4y, Rvy3 ¢ = cos yte sin yte
2 261 261
+c
+y 2}+03, cs ER, 3 = . (8)
401

In the solution (8)2, n has been chosen to simplify the calculations. The initial
concentration is zero. We impose an instantaneous supply of concentration, ¢ = 1,

at y = 0, with ¢t = 1, and a zero flux boundary condition at large distance, say y = 1,

Jdc

ie., — = 0, requires a solution of
9y

y=1

0
= 0. The boundary condition a_c
)

y=1

1 1
sec? + o tan + =0.
201 2C1

1 1
This implies that tan( ;C2> = 0. Thus ( +62) =mm, m=20,1, 2 ...

C1 C1
Choosing the smallest value of m namely m = 0, implies ¢; = —1 explicitly. Thus

the invariant solution (8); becomes

t o (y—1
= . 9
¢ 2R ¢? vee ( 2¢ ) )

It is worth noting that for m > 0, ¢y is dependent on ¢;. With the boundary

condition ¢ =1 at y = 0, with ¢ = 1, ¢; satisfies the nonlinear equation

1
2 2
— | =2Rcj. 10
sec <2C1> c1 (10)
Eq. (10) is solved numerically for ¢; (choosing R = 0.1, 0.25, 0.5, respectively) by
utilising the Newton-Raphson method. The solution is shown in Table 2.

Furthermore the invariant solution (8), then is

Table 2: Chosen R values and corresponding ¢; values obtained by solving Eq. (10)

numerically.

R | 0.10 0.25 0.5
c1 | 2.2904 | 1.4964 | 1.1107
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1 y—1\ . [y—1 y—1
u=Kt+c3+4v R <§cos( 5, )sm( 5 )—i— 1o )

Witht =1, y =1, u =0, so that ¢ = —K. Thus solution (8); becomes

1 y—1\ . (y—1 y—1
=K{t—1)4+4m RS | = . 11
( )+4v Rey (2008( e )sm( Ser )+ 10, ) (11)

We observe that for A # —1, the change of variables h = w!'/(1 %),

w = w(y) transforms Eq. (7), into
o (1+ )\)Rw1/(1+x)

A
The ODE (12) is known as the Emden-Fowler type equation (see e.g. [9], [10]). We

omit the full analysis of Eq. (12), but provide a solution for a special case. Given

= 0. (12)

A = 1/3 we obtain the implicit solution

[ 5 2 178R
+ —C—IU}QFl(g 2 5 5/2>—y—62:07 (13)

where oF} is the hypergeometric function [11]. Due to the implicit nature of the
solution (13), it is difficult to construct the solution to the original system (6).

However, we resort to numerical solutions.
4. NUMERICAL SOLUTIONS

For A # —1, system (7) is rewritten as

1+ MR
g = MmNy (I+XA) W/ O+ — . (14)

A
Imposing the zero contaminant flux flow condition and v = K(t — 1) at y = 1, as
well as the instantaneous supply of contaminant at y = 0, necessitates a

solution to the system of equations in (14) subject to the conditions

We compute the approximate concentration w(y) and the flux w'(y) nume-

rically using bvp4c in Matlab®. The approximate velocity ¢(y) is dependent on
w(y); g(y) is computed using a second order Taylor series approximation. Higher
order Taylor series approximations could improve the accuracy of the velocity pro-
files g.



R.J. Moitsheki, S. Abelman and T. Hayat

Exact concentration att=1and A = -1
1.05 T T T T

- - R=0.10; c, = 2.2904

R =0.25; c, =1.4969
1t . 1

\\\\“ - R=O.50;cl=l.1107

A Tes -
\ I
\ Tree-l L
N TTme—eo Ll - =
0.951 N T
N
\
N
N
0.9} R 1
0.851 s ~ ]
0.8 . . . .
0 0.2 0.4 0.6 0.8
y

Figure 1: Comparison at ¢t = 1 of the variation of the exact concentration profiles
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Figure 2: Variation at ¢ = 1 of the approximate pollutant concentration profiles in

Eq. (14) as the pollutant disperses down the river.
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Figure 3: Variation at ¢t = 1 of the exact fluid velocity profiles in Eq. (9) and of the

approximate fluid velocity profiles in Eq. (14).
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Figure 4: Variation at ¢ = 1 of the approximate fluid velocity profiles in

Eq. (14) for both the shear-thinning and shear-thickening cases.

5. DISCUSSION AND CONCLUDING REMARKS

Nonreactive pollutants are introduced into a river or an open channel at a point
y = 0 and transported to some distance, say y = 1. After some time another quantity
of pollutants is introduced and the process is repeated. In Fig. 1 we compare the
exact concentration profiles at t = 1 with the corresponding approximate concentra-
tion profiles for specific values of the exponential constant A\. The exact concentation
solution is determined for A\ = —1, while in the approximate case A # —1. Thus
in the approximate case we choose A = —0.99. We observe that the concentration
saturates at y = 1 in both cases. The Schmidt number R is inversely proportional
to the concentration. The variation of the approximate pollutant concentration
is depicted in Fig. 2 for different values of A and R respectively, as the pollutant
disperses down the river or open channel. We notice that for A > 0 the concentra-
tion is inversely proportional A and directly proportional to R, while for A < 0 the
concentration is inversely proportional to R. In Fig. 3 the variation at t = 1
for the exact- and approximate fluid velocity profiles is shown for specific values of
A and n. We observe that the velocity is inversely proportional to R in both these
cases. The exact velocity solution is obtained for n = —1 and A = —1, while in the
approximate case A # —1. Here we choose A = —0.99. The approximate fluid ve-
locity ¢(y) is dependent on n and A. The variation at t = 1 for the approximate
fluid velocity profiles is illustrated in Fig. 4 for the shear thinning case with different

values of \. Similar results are observed for the shear thickening case. We observe



Symmetry Reductions of a Flow with Power Law Fluid 695

that the velocity decreases with increasing A. The approximate velocity profiles are
also depicted for the Newtonian, shear thinning and shear thickening cases for fixed
A. The velocity is least for the shear thinning case. In both Figs. 3 and 4 we
notice that the relative fluid velocity is increasing and slows at large distance. This
is due to the high pollutant concentration at this distance. At this large distance
(y = 1), we also observe the interesting phenomenon of fluid back flow. The fluid
is very dense here and creeps backward slowly. A system of PDEs describing
nonreactive contaminant transport in a
river (or along a single channel) and power-law fluid has been analyzed. We employed
classical Lie point symmetry techniques. Numerical techniques were utilised where
appropriate. We made use of invariant boundary conditions throughout so that
pertinent comparisons could be made.

The problem considered in this paper is applicable in industrial fluids such as

water-alcohol mixtures and so on.
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